第28章《锐角三角函数》水平测试(一)及答案

合集下载

人教版初3数学9年级下册 第28章(锐角三角函数)正切函数专题练习(含答案)

人教版初3数学9年级下册 第28章(锐角三角函数)正切函数专题练习(含答案)

人教版九年级数学下册第二十八章锐角三角函数之正切函数专题练习一、选择题1.如图,第一象限的点P的坐标是(a,b),则tan ∠POx等于( )A.abB.baC.aa2+b2D.ba2+b22.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=2,则t的值是( )A. 1B. 1.5C. 2D. 33.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y 的值是( )A. 2B. 8C.-2D.-84.正比例函数y=kx的图象经过点(3,2),则它与x轴所夹锐角的正切值是( )A.23B.32C.132D.1335.根据图中的信息,经过估算,下列数值与tanα值最接近的是( )A. 0.26B. 0.43C. 0.90D. 2.236.如图,在2×3的正方形网格中,tan ∠ACB的值为( )A.223B.2105C.12D. 27.如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则tan ∠APB等于( )A. 1B.3C.33D.128.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为( )A.12B.13C.14D.249.在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为( )A.12B.32C.33D.310.如图,E在矩形ABCD的边CD上,AB=2BC,则tan ∠CBE+tan ∠DAE的值是( )A. 2B. 2+3C. 2-3D. 2+2311.在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B的正切值( )A.扩大2倍B.缩小2倍C.扩大4倍D.大小不变12.比较tan 20°,tan 50°,tan 70°的大小,下列不等式正确的是( )A. tan 70°<tan 50°<tan 20°B. tan 50°<tan 20°<tan 70°C. tan 20°<tan 50°<tan 70°D. tan 20°<tan 70°<tan 50°二、填空题13.如图,P(12,a)在反比例函数y=60图象上,PH⊥x轴于H,则tan ∠POH的值为__________.x14.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果2b=3a,则tan A=__________.15.在一个直角三角形中,如果各边的长度都扩大4倍,那么它的两个锐角的正切值__________.16.已知∠B是△ABC中最小的内角,则tan B的取值范围是____________.17.比较大小:tan 50°________tan 48°.三、解答题18.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.求tan ∠BOA的值.19.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.答案解析1.【答案】B【解析】如图因为第一象限的点P的坐标是(a,b),所以tan ∠POx=ba.故选B.2.【答案】B【解析】如图,tanα=ABOB =2,即3t=2,解得t=1.5.故选B.3.【答案】D【解析】如图,∵点P(4,y)在第四象限内,∴OA=4,PA=-y又OP与x轴正半轴的夹角的正切值是2,∴tan ∠AOP=2,∴PAOA=2,∴-y=2×4,∴y=-8.故选D.4.【答案】A【解析】如图,过A作AB⊥x轴于B,∵A(3,2),∴AB=2,OB=3,∵正比例函数y=kx的图象经过点(3,2),∴它与x轴所夹锐角的正切值是tan ∠AOB=ABOB =23,故选A.5.【答案】B【解析】如图,AB≈2.6,OB=6,tanα=ABOB ≈2.66≈0.43.故选B.6.【答案】D【解析】如图,过A作AD⊥BC于D,设每个小正方形边长为1,在Rt△ACD中,AD=2,CD=1,则tan ∠ACB=ADCD=2,故选D.7.【答案】A【解析】∵A、B、O是小正方形顶点,∴∠AOB=90°,∴∠APB=12∠AOB=45°,∴tan ∠APB=1.故选A.8.【答案】B【解析】设每个小正方形边长为1,过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,CD=1,BD=3,故tan B=CDBD =13,则tan B′=tan B=13.故选B.9.【答案】D【解析】∵AB=2,AC=1,∴CB=22−12=3,∴tan A=BCAC=3,故选D.10.【答案】【解析】∵四边形ABCD是矩形,∴tan ∠CBE=CEBC ,tan ∠DAE=DEAD,∵AD=BC,CE+DE=CD=AB=2AD,∴tan ∠CBE+tan ∠DAE=CEBC +DEAD=CDAD=2ADAD=2.故选A.11.【答案】D【解析】把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形与原来的三角形相似,则∠B的大小不变,则∠B的正切值不变.故选D.12.【答案】C【解析】由锐角的正切值随角增大而增大,得tan 20°<tan 50°<tan 70°,故C符合题意,故选C.13.【答案】512【解析】∵P(12,a)在反比例函数y=60x图象上,∴a=6012=5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=512.14.【答案】23【解析】∵∠C=90°,a,b,c分别是∠A,∠B,∠C对边,∴tan A=ab,∵2b=3a,∴a b =23,∴tan A =a b =23.15.【答案】不变【解析】∵锐角的正切值是该角的对边与邻边的比,∴当各边都扩大为原来的4倍时,比值不变.16.【答案】0<tan B ≤3【解析】根据三角形的内角和定理,易知三角形的最小内角不大于60°.根据题意,知:0°<∠B ≤60°.又tan 60°=3,故0<tan B ≤3.17.【答案】>【解析】根据锐角三角函数的增减性:正切值随着角度的增大(或减小)而增大(或减小),∵50°>48°,∴tan 50°>tan 48°.18.【答案】解 tan ∠BOA =AB OA =24=12.【解析】19.【答案】解 如图,过点A 作AD ⊥BC 的延长线于D ,S △ABC =12BC ·AD =12×6×AD =12,解得AD =4,在Rt △ABD 中,BD =AB 2−AD 2=82−42=43,tan B =AD BD =443=33.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.。

人教版九年级数学下册 28.1 锐角三角函数 练习及答案

人教版九年级数学下册 28.1 锐角三角函数  练习及答案

人教版九年级数学下册 第28章 锐角三角函数 28.1 锐角三角函数1. 在Rt △ABC 中,若∠ACB=90°,AC =2,BC =3,则下列各式中成立的是( )A .sinB =23 B .cos B =23C .tan B =23D .sin A =232. 在△ABC 中,∠C=90°,AB =13,BC =5,则sinA 的值是( ) A.1312 B. 135 C.125 D.513 3.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则∠α的正弦值为( )A. 125 B.1312 C. 135 D.5124. 在Rt △ABC 中,若各边长度都扩大到原来的2倍,则锐角B 的正切值( ) A .扩大到原来的4倍 B .缩小到原来的12C .扩大到原来的2倍D .没有变化5. 如图,AB 为⊙O 的直径,点D 为BC ︵的中点,AD 交BC 于点M ,点E 为AM 的中点,若AB =5,BC =4,则tan ∠CEM 的值为( )A.43B.35C. 45D.346. 已知Rt △ABC ∽Rt △A ′B ′C ′,∠C=∠C ′=90°,且AB=2A ′B ′,则sinA 与sinA ′的关系为( )A.sinA=2sinA ′B.sinA=sinA ′C.2sinA=sinA ′D.不确定 7. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE∶BE =4∶1,EF ⊥AC 于点F ,连接BF ,则tan ∠CFB 的值是( )A.33B.233C.533D .5 38. 如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=21,则BC 的长是( )A. 45B. 25C.6D. 29.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tanA 的值是( ) A. 65B.56 C.3102 D.1010310. 如果在△ABC 中,sinA=cosB=22,那么下列最确切的结论是( ) A.△ABC 是等腰直角三角形 B.△ABC 是等腰三角形 C.△ABC 是直角三角形 D.△ABC 是锐角三角形 11. 在Rt △ABC 中,∠C=90°,a=1,c=2,那么sinA= .12. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 .13. 在△ABC 中,∠A=75°,sinB=23,则tanC = .14. 计算:(1) (1+sin 40°)(1-cos 50°)+sin 240=________; (2) (4cos 30°sin 60°)2+(-2)-1-( 2 017-2 018)0=________. 15. 已知正方形ABCD 的边长为2,点P 是直线CD 上一点,若DP =1,则tan ∠BPC 的值是________.16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为________.17. 如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =3,AB =1,则点A 1的坐标为________.18. 计算下列各式的值:(1) cos 60°-tan 60°+cos 30°+2sin 245°;(2) sin 30°sin 60°-cos 45°-(1-cos 30°)2-tan 45°.19. 如图,在四边形ABCD 中,∠A=∠C =90°,∠ABC=30°,AD =3,BC =15,求tan ∠ABD 的值.20. 如图,在Rt △ABC 中,∠ACB =90°,sin B =35,D 是BC 上一点,DE ⊥AB 于点E ,CD =DE ,AC +CD =9,求BC 的长.答案:1—10 CBCDA BCDBA11. 1212.1213. 1 14. (1) 1 (2) 152 15. 2或2316. 2317. ⎝ ⎛⎭⎪⎪⎫32,32 18.(1) 32-32(2)332+2-2 19. 解:如图,延长CD ,BA 交于点E.∵∠C =90°,∠ABC =30°,∴∠E =60°.在Rt △ADE 中,AD =3,∠E =60°, ∠DAE =90°,∴tan E =AD AE ,即tan 60°=3AE =3,∴AE = 3.在Rt △BCE 中,BC =15,∠ABC =30°,∴cos ∠ABC =BCBE,即cos 30°=15BE =32,∴BE =103,∴AB =BE -AE =103-3=93,∴tan ∠ABD =AD AB =393=39.20. 解:在Rt △BED 中,sin B =35,可设DE =3k ,则BD =5k ,CD =3k ,BC=8k ,BE =4k.∴tan B =3k 4k =34.在Rt △ACB 中,AC =BC·tan B =8k·34=6k.∵AC +CD =9,∴6k +3k =9,即k =1,∴BC =8k =8.。

2022-2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022-2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.计算4cos230°的值()A.3B.1C.D.2.如图,在Rt△ABC中,把锐角A的对边与邻边的比叫做∠A的正切,记作tan A,且a、b、c分别是∠A、∠B、∠C的对边,则tan A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A的值为()A.B.C.D.4.已知α为锐角,且,那么α的正切值为()A.B.C.D.5.已知sin a>,那么锐角a的取值范围是()A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°6.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8二.填空题7.已知α是锐角,,则α=;cosα=.8.若sin65°=,则cos25°=.9.如果(α、β为锐角),则α=,β=.10.Rt△ABC中,∠C=90°,tan A=2,则cos A的值为.11.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若a2=bc,则sin B 的值为.12.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tan B的值是.13.已知在△ABC中,AB=7,AC=8,BC=5,则sin C=.14.直角坐标系内,点A与点B(sin60°,)关于y轴对称,如果函数的图象经过点A,那么k=.15.若锐角x满足tan2x﹣(+1)tan x+=0,则x=.三.解答题16.计算:cos60°﹣sin245°+30°+cos30°﹣sin30°.17.计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.18.计算:(1)cos45°+3tan30°﹣2sin60°;(2)tan45°﹣4sin30°•cos230°.19.在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.(2)tan A=2,S△ABC=9,求△ABC的周长.20.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.参考答案一.选择题1.解:4cos230°=4×()2=4×=3,故选:A.2.解:tan A==,故选:A.3.解:∵Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A==,故选:C.4.解:在Rt△ABC中,∠C=90°,∠A=α,∵sin A=sinα==,∴设BC=5x,AB=13x,∴AC===12x,∴tan A===,即α的正切值为.故选:A.5.解:∵sin60°=,sinα>,一个锐角的正弦值随着锐角的增大而增大,∴α>60°,∵α为锐角,∴60°<α<90°,故选:A.6.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题7.解:∵tanα﹣=0,∴tanα=,∵α是锐角,∴α=60°,∴cos60°=,故答案为:60°;.8.解:∵65°+25°=90°,∴cos25°=sin65°=,故答案为:.9.解:∵|1﹣tanα|≥0,≥0,∴当(α、β为锐角),则tanα=1,sinβ=.∴α=45°,β=30°.故答案为:45°,30°.10.解:在Rt△ABC中,∠C=90°,得AB为斜边.由tan A==2,得BC=2AC.在Rt△ABC中,∠C=90°,由勾股定理,得AB==AC.cos A===,故答案为:.11.解:∵a2=bc,即b=,∴sin B====()2=sin2A,又∵sin2A+sin2B=1,∴sin2B+sin B﹣1=0,∴sin B=(取正值),故答案为:.12.解:在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,不妨设BC=k,则AB=3k,由勾股定理得,AC==2k,所以tan B==,故答案为:2.13.解:过点A作AD⊥BC于D,如图所示:设CD=x,则BD=BC﹣CD=5﹣x,在Rt△ABD中,由勾股定理得:AD2=AB2﹣BD2,在Rt△ACD中,由勾股定理得:AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即:72﹣(5﹣x)2=82﹣x2,解得:x=4,∴CD=4,∴CD=AC,∴∠CAD=30°,∴∠C=90°﹣30°=60°,∴sin C=sin60°=.故答案为:.14.解:∵sin60°=,∴点B(,).根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知:点A为(﹣,),∵函数的图象经过点A,∴k=×=.15.解:∵tan2x﹣(+1)tan x+=0,∴(tan x﹣1)(tan x﹣)=0,∴tan x=1或,当tan x=1时,x=45°;当tan x=时,x=60°.故x=45°或60°.三.解答题16.解:cos60°﹣sin245°+30°+cos30°﹣sin30°=﹣()2+×()2+﹣=﹣+×+﹣=﹣++﹣=﹣.17.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.18.解:(1)原式=+3×﹣2×=+﹣=;(2)原式=1﹣4××()2=1﹣2×=1﹣=﹣.19.解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S△ABC=9,∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.20.解:(1)过点D作DH⊥AB,垂足为点H,∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=5,∵,∴,∴,即CD=;(2),∵BD=2DE,∴,∴.。

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷时间:100分钟 满分:120分 一、选择题(每题3分,共30分) 1.cos 45°的值为( ) A.12 B.22 C.32 D .12.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( )A.43B.34C.45D.35(第2题) (第4题) (第5题) (第6题) 3.在△ABC 中,若⎪⎪⎪⎪⎪⎪cos A -12+(1-tan B )2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A.12B.13C.14D.245.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24 m ,那么旗杆AB 的高度是( ) A .12 mB .8 3 mC .24 mD .24 3 m6.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( ) A .26 mB .28 mC .30 mD .46 m7.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2 3 mB .2 6 mC .(23-2)mD .(26-2)m(第7题)(第8题)8.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25 B.23 C.52 D.329.如图,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sin A=35,则下列结论中正确的有()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.A.1个B.2个C.3个D.4个(第9题)(第10题) (第12题)10.如图,在Rt△ABC中,∠B=90°,∠BAC=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB的长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312 B.36 C.33 D.32二、填空题(每题3分,共24分)11.已知α为锐角,sin(α-20°)=32,则α=________.12.如图,若点A的坐标为(1,3),则∠1=________.13.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.(第14题) (第15题) (第16题) (第18题)14.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若sin ∠CAM =35,则tan B =________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90 m ,那么该建筑物的高度BC 约为________m(精确到1 m ,参考数据:3≈1.73). 16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.17.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为________. 18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m. 三、解答题(19,21,24题每题12分,其余每题10分,共66分) 19.计算:(1)(-2)3+16-2sin 30°+(2 019-π)0;(2)sin 2 45°-cos 60°-cos 30°tan 45°+2sin 2 60°·tan 60°.20.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.已知2a =3b,求∠B的正弦、余弦和正切值.21.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin A=45,求AD的长.(第21题)22.数学拓展课程《玩转学具》课堂中,小陆同学发现,一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.(第22题)23.如图,天星山山脚下西端A处与东端B处相距800(1+3)m,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22m/s.若小明与小军同时到达山顶C处,则小明的行走速度是多少?(第23题)24.如图,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3 m到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2 m,∠BCA=30°,且B,C,D三点在同一直线上.求:(1)树DE的高度;(2)食堂MN的高度.(第24题)答案一、1. B 2. A 3. C 4. B 5. B 6. D7.B 8. B 9. C10.B 点拨:如图,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x=36.(第10题)二、11. 80° 12. 60° 13. 12 14. 23 15. 20816.22 点拨:如图,连接BC ,易知∠D =∠A .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AB =3×2=6,AC =2,∴BC 2=62-22=32, ∴BC =4 2.∴tan D =tan A =BC AC =422=2 2.(第16题)17.123 点拨:如图,过A 点作AD ⊥CB ,交CB 的延长线于点D ,则∠ABD =180°-120°=60°.在Rt △ABD 中,AD =AB ·sin ∠ABD =6×32=33,∴S △ABC =12AD ·BC =12×33×8=12 3.(第17题)18.(30+103)三、19.解:(1)原式=-8+4-2×12+1=-8+4-1+1=-4;(2)原式=(22)2-12-32+2×(32)2×3= 3.20.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k ,∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23.21.解:(1)在Rt △ABE 中,∵∠A =60°,∠ABE =90°,AB =6,tan A =BEAB ,∴∠E =30°,BE =AB ·tan A =6×tan 60°=6 3.在Rt △CDE 中,∵∠CDE =90°,CD =4,sin E =CDCE ,∠E =30°, ∴CE =CD sin E =412=8.∴BC =BE -CE =63-8.(2)∵∠ABE =90°,AB =6,sin A =45=BEAE ,∴可设BE =4x (x >0),则AE =5x ,由勾股定理可得AB =3x , ∴3x =6,解得x =2. ∴BE =8,AE =10.∴tan E =AB BE =68=CD DE =4DE , 解得DE =163.∴AD=AE-DE =10-163=143.22.解:在Rt△ABC中,BC=2,∠A=30°,∴AC=BCtan A=2 3.∴EF=AC=2 3.∵∠E=45°,∴FC=EF·sin E= 6.∴AF=AC-FC=23- 6.23.解:如图,过点C作CD⊥AB于点D,设AD=x,小明的行走速度是a.(第23题)∵∠A=45°,CD⊥AB,∴CD=AD=x,∴AC=2x.在Rt△BCD中,∵∠B=30°,∴BC=CDsin 30°=x12=2x.∵小军的行走速度为22m/s,小明与小军同时到达山顶C处,∴2x22=2xa,解得a=1(m/s).答:小明的行走速度是1 m/s. 24.解:(1)设DE=x.∵AB=DF=2,∴EF=DE-DF=x-2.∵∠EAF=30°,∴AF=EFtan∠EAF=x-233=3(x-2).又∵CD=DEtan ∠DCE =x3=33x,BC=ABtan ∠ACB=233=23,∴BD=BC+CD=23+3 3x.由AF=BD可得3(x-2)=23+33x,解得x=6(m).答:树DE的高度为6 m.(2)如图,延长N M交DB的延长线于点P,则AM=B P=3.(第24题)由(1)知CD=33x=33×6=23,BC=23,∴PD=BP+BC+CD=3+23+23=3+4 3. ∵∠NDP=45°,∴NP=PD=3+4 3.∵MP=AB=2,∴NM=NP-MP=3+43-2=1+43(m).答:食堂M N的高度为(1+43)m.。

人教版九年级数学下册第28章:锐角三角函数 全章测试含答案

人教版九年级数学下册第28章:锐角三角函数  全章测试含答案

人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案任务一 求锐角三角函数值子任务1 利用参数法求锐角三角函数值母题1 如图,在Rt △ABC 中,∠C=90°,BC=3AC ,则tan B=( )A .13B .3C .√1010 D .3√1010变式练1:在直角三角形ABC 中,若2AB=AC ,则cos C 的值为( )A .12或2√35B .12或2√55 C .√32或2√55 D .√32或2√35子任务2 构造直角三角形求锐角三角函数值母题2 如图,已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB=90°,∠ACB=2∠D ,AD=2,AC=32,求tan D 的值.变式练2:如图,△ABC与△BDC均为直角三角形,若∠ACB=30°,∠DBC=45°,求∠ADB的正切值.母题3如图,在△ABC中,CA=CB=4,cos C=14,则sin B的值为()A.√102B.√153C.√64D.√104变式练3:如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tan B=53,则tan∠CAD的值为.子任务3利用等角转换法求锐角三角函数值母题4如图,在半径为3的☉O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=()A.2√2B.√24C.13D.2√23【关键点拨】变式练4:如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1∠BAC,求sin∠BPC.2子任务4利用网格求锐角三角函数值母题5如图,这是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是.【关键点拨】变式练5:如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√1313B.√66C.√2613D.√2626子任务5在折叠问题中求锐角三角函数值母题6如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为.【关键点拨】变式练6:直角三角形纸片ABC,两直角边BC=4,AC=8,现将△ABC纸片按图中方式折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值是()A.12B.34C.1D.43任务二 由一个锐角的三角函数值求三角形的边长母题7 在Rt △ABC 中,∠C=90°,sin A=35,AC=8 cm,则BC 的长度为( )A .3 cmB .4 cmC .5 cmD .6 cm变式练7:已知∠A 是锐角,sin A=35,则cos A 的值为( )A .35B .45C .34D .54任务三 由一个锐角的三角函数值求三角形的面积母题8 已知△ABC 中,tan B=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD=2∶1,则△ABC 面积的所有可能值为 .变式练8:在△ABC 中,AB=3√6,AC=6,∠B=45°,则BC= .任务四 锐角三角函数的探究问题母题9 如图1,在Rt △ABC 中,以下是小亮探究asinA 与bsinB 之间关系的方法:∵sin A=a c ,sin B=b c , ∴c=a sinA ,c=bsinB ∴asinA =bsinB .根据你掌握的三角函数知识,在图2的锐角三角形ABC 中,探究asinA ,bsinB ,csinC 之间的关系,并写出探究过程.图1 图2变式练9:把(sin α)2记作sin 2α,根据图完成下列各题:图1图2(1)如图1,sin 2A 1+cos 2A 1= ,sin 2A 2+cos 2A 2= sin 2A 3+cos 2A 3= .(2)观察上述等式后猜想:在Rt △ABC 中,∠C=90°,总有sin 2A+cos 2A= . (3)如图2,在Rt △ABC 中证明(2)题中的猜想.(4)已知在△ABC 中,∠A+∠B=90°,且sin A=1213,求cos A 的值.参考答案母题1 A 提示:在Rt △ABC 中,∠C=90°,BC=3AC∴tan B=AC BC =AC 3AC =13.故选A .变式练1 C 提示:①当AC 为直角边时∵2AB=AC∴BC=√AB 2+AC 2=√5AB∴cos C=AC BC =2AB √5AB =2√55;②当AC 为斜边时 ∵2AB=AC∴BC=√AC 2-AB 2=√3AB∴cos C=BC AC =√3AB 2AB=√32. 综上,cos C=2√55或√32. 故选C .母题2 解:∵∠ACB=∠D+∠CAD ,∠ACB=2∠D∴∠CAD=∠D∴CA=CD. ∵∠DAB=90°∴∠B+∠D=90°,∠BAC+∠CAD=90° ∴∠B=∠BAC ∴AC=CB∴BD=2AC=2×32=3. 在Rt △ABD 中,∵∠DAB=90°,AD=2∴AB=√32-22=√5∴tan D=AB AD =√52.变式练2解:如图,过点A 作DB 延长线的垂线,垂足为点E 则∠E=90°,∠ABE=45°,AE=BE.设AE=BE=x ,则AB=√2x ,BC=√6x ,BD=CD=√3x∴DE=√3x+x ,∴tan ∠ADB=AE DE =(√3+1)x =√3+1=√3-12.母题3 D 提示:如图,过点A 作AD ⊥BC ,垂足为D在Rt △ACD 中,CD=CA ·cos C=1∴AD=√AC 2-CD 2=√15.在Rt △ABD 中,BD=CB-CD=3,AD=√15.∴AB=√BD 2+AD 2=2√6.∴sin B=AD AB =√104.故选D . 变式练3 15 提示:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E.在Rt △BAD 中,tan B=AD AB =53. 可设AD=5x ,则AB=3x.∵∠CDE=∠BDA ,∠CED=∠BAD ∴△CDE ∽△BDA∴CE AB =DE AD =CD BD =12 ∴CE=32x ,DE=52x ∴AE=AD+DE=152x ∴在Rt △AEC 中,tan ∠CAD=CE AE =15.故答案为15.母题4 A 提示:如图,连接BC.∵AB 是直径,∴∠ACB=90°. ∵☉O 的半径为3,∴AB=6 ∴BC=√AB 2-AC 2=√62-22=4√2∴tan D=tan A=BC AC =4√22=2√2. 故选A .变式练4 解:如图,作AD ⊥BC 于点D.∵AB=AC=5,BC=8∴BD=CD=4,∠BAD=12∠BAC. ∵∠ADB=90°,∴sin ∠BAD=BD AB =45.又∵∠BPC=12∠BAC∴∠BPC=∠BAD ∴sin ∠BPC=45. 母题5 2 提示:如图,过点Q 作QC ∥BA ,连接PC∴∠QMB=∠CQP. 由题意得CQ 2=22+22=8 PC 2=42+42=32 PQ 2=22+62=40∴PC 2+CQ 2=PQ 2∴△PCQ 是直角三角形 ∴∠PCQ=90°∴tan ∠CQP=PC CQ =√22√2=2∴tan ∠QMB=tan ∠CQP=2. 故答案为2.变式练5 D 提示:如图,延长AC 到点D ,连接BE 交CD 于点O∴BE ⊥CD ,AB=√22+32=√13,OB=12BE=12√12+12=√22∴sin ∠BAC=OB AB =√22√13=√2626. 故选D .母题6 13 提示:∵在△ABC 中,∠ACB=90°,AC=BC=4∴∠A=∠B.由折叠的性质得到△AEF ≌△DEF∴∠EDF=∠A ∴∠EDF=∠B∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180° ∴∠CDE=∠BFD. 又∵AE=DE=3∴CE=4-3=1.在直角△ECD 中,sin ∠CDE=CEED =13∴sin ∠BFD=13. 故答案为13.变式练6 B 提示:根据题意,BE=AE.设BE=x ,则CE=8-x. 在Rt △BCE 中,x 2=(8-x )2+42 解得x=5∴CE=8-5=3∴tan ∠CBE=CE CB =34.故选B .母题7 D 提示:∵sin A=BCAB =35∴设BC=3x ,AB=5x. 又∵AC 2+BC 2=AB 2∴82+(3x )2=(5x )2解得x=2或x=-2(舍去)∴BC=3x=6 cm . 故选D .变式练7 B 提示:∵sin 2A+cos 2A=1∴cos A=√1−(35) 2=45. 故选B .母题8 8或24 提示:如图1所示∵BC=6,BD ∶CD=2∶1∴BD=4.∵AD ⊥BC ,tan B=23∴AD BD =23∴AD=23BD=83∴S △ABC =12BC •AD=12×6×83=8. 如图2所示∵BC=6,BD ∶CD=2∶1,∴BD=12.∵AD ⊥BC ,tan B=23,∴AD BD =23,∴AD=23BD=8 ∴S △ABC =12BC •AD=12×6×8=24. 综上所述,△ABC 面积的所有可能值为8或24. 故答案为8或24.图1 图2变式练8 3√3+3或3√3-3 提示:①当△ABC 为锐角三角形时 过点A 作AD ⊥BC 于点D ,如图1.图1∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3,∴BC=BD+CD=3√3+3. ②当△ABC 为钝角三角形时过点A 作AD ⊥BC 交BC 延长线于点D ,如图2.图2∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3∴BC=BD-CD=3√3-3.综上,BC 的长为3√3+3或3√3-3.故答案为3√3+3或3√3-3.母题9 解:a sinA =b sinB =c sinC .理由如下:如图,过点A 作AD ⊥BC ,过点B 作BE ⊥AC在Rt △ABD 中,sin B=AD c ,即AD=c sin B 在Rt △ADC 中,sin C=AD b ,即AD=b sin C∴c sin B=b sin C ,即b sinB =c sinC 同理可得a sinA =c sinC则a sinA =b sinB =c sinC .变式练9 解:(1)1;1;1 提示:sin 2A 1+cos 2A 1=122+√322=14+34=1 sin 2A 2+cos 2A 2=1√22+1√22=12+12=1 sin 2A 3+cos 2A 3=352+452=925+1625=1.故答案为1;1;1.(2)1.(3)在题图2中,∵sin A=a c ,cos A=b c ,且a 2+b 2=c 2 则sin 2A+cos 2A=a c 2+b c 2=a 2c 2+b 2c 2=a 2+b 2c 2=c 2c 2=1 即sin 2A+cos 2A=1.(4)在△ABC 中,∠A+∠B=90°,∴∠C=90°. ∵sin 2A+cos 2A=1,∴12132+cos 2A=1 解得cos A=513或cos A=-513(舍去),∴cos A=513.。

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题)  含答案

第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十八章《锐角三角函数》水平测试(一)班级 姓名 座号 一、选择题:(每题4共30分)1.在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21B.33 C. 1 D. 32.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A .10米 B .15米 C .25米D .30米3.若A B ∠∠、均为锐角,且21cos 21sin ==B A ,,则( ). A .︒=∠=∠60B AB .︒=∠=∠30B AC .︒=∠︒=∠3060B A ,D .︒=∠︒=∠6030B A ,4. 在△ABC 中,∠C =90°,53sin =A ,则=B tan ( ). A.53 B.54 C.43 D.345.在ABC Rt ∆中,︒=∠90C ,若︒=∠30A ,则三边的比c b a ::等于( )A .1:2:3B .1:3:2C .1:1:3D .1:2:26.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( ) A.55 B.255C.12 D.27.cos 245°+tan60°•cos30°等于( ).A 、1B 、2C 、2D 、330 °ABO8.如图,设,,βα=∠=∠BOC AOC P 为射线OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,则PEPD等于( ) A .βαsin sin B .βαcos cos C .βαtan tan D .αβtan tan 9、把Rt △ABC 各边的长度都扩大3倍得Rt △A ’B ’C ’,那么锐角A 、A ’的余弦值的关系为( ).A 、cosA =cosA ’B 、cosA =3cosA ’C 、3cosA =cosA ’D 、不能确定10、化简2(tan 301)- =( )。

A 、313-B 、31-C 、313- D 、31- 二、填空题:(每题4分,共32分)11.∆ABC 中,4590==︒=∠BC AB C ,,,则._____tan =A 12.在一艘船上看海岸上高42米的灯塔顶部的仰角为30度,船离海岸线____________米.13.若∠A 是锐角,且sinA=cosA,则∠A 的度数是____________度14.等腰三角形的两边分别为6和8,则底角α的正切为._____ 15.菱形中较长的对角线与边长之比为1:3,那么菱形的两邻角分别是._____16.升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_________。

(取3 1.73=,结果精确到0.1m ) 17.某坡面的坡度为1:3,则坡角是_______度.18.在等腰梯形ABCD 中,腰BC 为2,梯形对角线AC 垂直BC 于点C ,梯形的高为 3,则CAB ∠为._____度O三、解答题: 19.计算:①︒+︒⋅︒30tan 45cos 45sin (6分)②2sin 6012cos302sin 45+-(6分)20.已知△ABC 中.∠C =30°,∠ BAC =105°.AD⊥BC,垂足为D ,AC=2cm,求BC 的长(6分)21.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼的前面15米处要盖一栋20米高的新楼。

当冬季正午的阳光与水平线的夹角为32°(可用数据sin≈0.5299,cos32°≈0.8480,tan32°≈0.6249) (10分) (1)问超市以上的居民住房采光是否受到影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米?ABD C新楼居民楼太阳光 32° A BCD22.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一60方向、B地西条笔直公路.如图中线段AB,经测量,在A地北偏东︒45方向的C处有一个半径为0.7千米的公园,问计划修筑的这条偏北︒公路会不会穿过公园?为什么?(10分)23.下图表示一山坡路的横截面,CM是一段平路,它高出水平地面24米.从A到B、从B到C是两段不同坡角的山坡路,山坡路AB的路面长100米,它的坡角∠BAE=5°,山坡路BC的坡角∠CBH=12°.为了方便交通,政府决定把山坡路BC的坡角降到与AB的坡角相同,使得∠DBI=5°.(精确到0.O1米)(1)求山坡路AB的高度BE.(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781) .24、如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.25.如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李ABCD师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)26.如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯60.子与地面的倾斜角α为⑴求AO与BO的长;⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的15,试求AA’的长.中点P也随之运动到P’点.若∠POP’=参考答案1.B2.B3.D4.D5.B6.B7. C8.A9.A 10.A 11、34; 12、342; 13、45; 14、35525或; 15、60°,120°; 16、15.0m 17、30度; 18、30°19、①3321+;②3142323231++===+-;20、31+21、(1)延长太阳光线交地面于点E ,则∠E=32°。

tanE=6249.0=BEAB,而AB=20,所以BE ≈32,所以CE=32-15=7,又tanE=6249.0=CECF, 所以CF ≈4.4.所以超市前面部分不能被阳光照到,采光要受到影响。

(2)由(1)知BE=32,所以,要使超市不受到采光不受影响,两楼应相距32米以上。

22、过C 点作CD ⊥AB ,由题可知,∠A=30°,∠B=45°。

设CD=x 千米,则可算出AD=3x,BD=x 。

又AB=2,所以3x+ x=2,解得x=3-1>0.7. 所以计划修筑的这条公路会不会穿过公园。

23、解:(1)在Rt △ABE 中,BE=8.72(米)(2)在Rt △CBH 中,CH=CF-HF=15.28.BC=73.497 在Rt △DBI 中,DB=175.229∴DB-BC ≈175.229-73.497=101.732≈101.73(米)24、解:延长BC 交AD 于E 点,则CE ⊥AD .在Rt △AEC 中,AC =10,由坡比为1:3可知:∠CAE =30°.∴ CE =AC ·sin30°=10×21=5, AE =AC ·cos30°=10×23=35.在Rt △ABE 中,BCEDBE =22AE AB -=()223514-=11.∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米). 答:旗杆的高度为6米. 25、过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F . ∵AB =AC , ∴CE =12BC =0.5. 在Rt △ABC 和Rt △DFC 中,∵tan780=AEEC, ∴AE =EC ×tan780≈0.5×4.70=2.35.又∵sin α=AE AC =DFDC, DF =DC AC ·AE =37×AE ≈1.007.李师傅站在第三级踏板上时,头顶距地面高度约为: 1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11. ∵0.05<0.11<0.20,∴它安装比较方便.26、(1)∵AO ⊥BO ,∠B=60°,∴∠OAB=30°,而AB=4,∴OB=2,OA=23,(2)①∵AC:BD=2:3,∴设AC=2x ,BD=3x , 由(1)可知OC=23-2x ,OD=2+3x ,而梯子的长度不变。

即CD=4, 222CD OD OC =+,即(23-2x)2+(2+3x)2=42.解得x=13638-, ∴AC=1312316-.②P 点运动的路径是以O 为圆心OP 为半径的一段弧。

∵P 为RT △ABO 斜边上的中线,∴OP=BP ,15,∴∠P′OB′=45°,∴∠OPB=∠OBP=60°而∠POP’=又OP′=P′B,∴∠B′=45°,∴RT△A′B′O是等腰三角形。

即OB′=OA′,设OA′=x,则x2+ x2=42,解得x=22, AA′=23-22。

相关文档
最新文档