九年级数学-锐角三角函数全章教案
初中锐角三角函数教案

初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。
2. 掌握30°、45°、60°角的正弦、余弦和正切值。
3. 能够运用锐角三角函数解决实际问题。
教学重点:1. 锐角三角函数的定义和意义。
2. 30°、45°、60°角的正弦、余弦和正切值。
教学难点:1. 理解锐角三角函数的概念。
2. 运用锐角三角函数解决实际问题。
教学准备:1. 教师准备PPT课件。
2. 学生准备笔记本和文具。
教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
2. 学生分享对锐角三角函数的理解,教师总结并板书。
二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。
2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。
3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。
三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡回指导,解答学生疑问。
四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习心得,教师给予鼓励和指导。
五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。
教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。
在课堂练习环节,学生能够独立完成练习题,巩固所学知识。
总体来说,本节课达到了预期的教学目标。
在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。
同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。
人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。
【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。
【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。
二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。
三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。
【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。
【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。
【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。
九年级数学锐角三角函数教案

一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
九年级数学锐角三角函数教案

九年级数学锐角三角函数教案1.锐角三角函数第一课时 锐角三角函数(一)教学目标使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。
并能应用这些概念解决一些实际问题。
教学过程一、复习由上节课例题若加改变得,若AC =160cm ,∠C =31°,那么,AB 的长度为多少呢?同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。
二、新课1.明确直角三角形边角关系的名称。
直角三角形ABC 可以简记为Rt △ABC ,我们已经知道∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示。
如右图,在Rt △EFG 中,请同学们分别写出∠E 、∠F的对边和邻边。
2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
问题1如右图,△ABC 和△A 1B 1C 1中,若∠C =∠C 1=∠90°, ∠A =∠A 1,那么△ABC 和△A 1B 1C 1相似吗?与相等吗? BC AB 和B 1C 1A 1B 1相等吗? 显然△ABC ∽△A 1B l C l ,BC AB =B 1C 1A 1B 1,这说明在Rt △ABC 中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。
这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
3.锐角三角函数的概念。
Rt △ABC 中(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边同学们想一想,在Rt△ABC中,∠B的正弦、余弦、正切、余切是哪一边与那一边的比值。
人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案教学目标:本课程旨在通过探究锐角三角函数,使学生掌握当锐角固定时,对边与斜边的比值是固定值的概念,并能正确进行计算。
同时,通过研究锐角三角函数,培养学生观察、比较、分析、概括等逻辑思维能力,以及独立思考、勇于创新的精神和良好的研究惯。
教学重点:理解认识正弦(sinA)概念,掌握当锐角固定时,对边与斜边的比值是固定值的概念。
教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
教学过程:一、复旧知、引入新课老师通过一个实际问题的引入,让学生了解锐角三角函数的实际应用。
例如,测量旗杆高度的问题。
二、探索新知通过问题引入的方式,让学生探索锐角三角函数的概念和应用。
活动一:问题的引入老师通过引入实际问题,让学生思考如何应用锐角三角函数来解决问题。
例如,在绿化荒山的问题中,通过计算斜坡与水平面所成角的度数和出水口的高度,求解需要准备多长的水管。
活动二:问题的探索老师通过问题的探索,让学生比较、分析并得出结论。
例如,在任意画一个Rt△ABC,使∠C=90o,∠A=45o的问题中,让学生计算∠A的对边与斜边的比,从而得出结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于2.活动三:问题的拓展老师通过问题的拓展,让学生进一步探索锐角三角函数的应用。
例如,在∠A取其他一定度数的锐角时,让学生比较、分析并得出结论:对任意锐角,它的对边与斜边的比值是固定值。
三、总结归纳老师通过总结归纳,让学生掌握锐角三角函数的概念和应用,以及对边与斜边的比值是固定值的事实。
同时,让学生反思并总结研究锐角三角函数的方法和策略,以便更好地掌握和应用相关知识。
四、作业布置老师布置相关作业,让学生巩固和拓展所学知识。
例如,让学生通过计算和实际应用,进一步掌握锐角三角函数的概念和应用。
同时,让学生思考如何将锐角三角函数与其他数学知识和实际问题相结合,更好地应用所学知识。
九年级数学下册《锐角三角函数》教案、教学设计

2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。
锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。
九年级数学锐角三角函数教案

九年级数学锐角三角函数教案1.锐角三角函数第一课时 锐角三角函数(一)教学目标使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。
并能应用这些概念解决一些实际问题。
教学过程一、复习由上节课例题若加改变得,若AC =160cm ,∠C =31°,那么,AB 的长度为多少呢?同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。
二、新课1.明确直角三角形边角关系的名称。
直角三角形ABC 可以简记为Rt △ABC ,我们已经知道∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示。
如右图,在Rt △EFG 中,请同学们分别写出∠E 、∠F的对边和邻边。
2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
问题1如右图,△ABC 和△A 1B 1C 1中,若∠C =∠C 1=∠90°, ∠A =∠A 1,那么△ABC 和△A 1B 1C 1相似吗?与相等吗? BC AB 和B 1C 1A 1B 1相等吗? 显然△ABC ∽△A 1B l C l ,BC AB =B 1C 1A 1B 1,这说明在Rt △ABC 中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。
这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
3.锐角三角函数的概念。
Rt △ABC 中(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边同学们想一想,在Rt△ABC中,∠B的正弦、余弦、正切、余切是哪一边与那一边的比值。