高中数学2(必修)立体几何初步水平检测题

合集下载

(压轴题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)(3)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)(3)
20.在四棱锥 中,平面 平面 ,且 为矩形, , , , ,则四棱锥 的外接球的体积为________.
三、解答题
21.如图,在四棱锥 中, 平面 ,四边形 是直角梯形, , , , .
(1)证明:平面 平面 ;
(2)求三棱锥 的体积.
22.如图(1)在 中, , 、 、 分别是 、 、 边的中点,现将 沿 翻折,使得平面 平面 .如图(2)
故选:A.
【点睛】
本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.
5.D
解析:D
【分析】
先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.
【详解】
由三视图可知几何体为图中的四棱锥 ,
由题得 ,所以几何体的高为 .
【详解】
如图, 是 的外心, 是球心, 平面 ,当 是 的延长线与球面交点时, 到平面 距离最大,
由 , ,得 ,则 ,
, ,
, ,
又 ,
所以最大的 .
故选:A.
【点睛】
本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时 点在球面上的位置,根据球的性质易得结论.当底面 固定, 是 外心,当 平面 ,且球心 在线段 上时, 到平面 距离最大.
圆锥的体积 .
当且仅当 ,即 时取等号.
该圆锥体积的最小值为 .
内切球体积为 .
该圆锥体积与其内切球体积比 .
故选:A.
【点睛】
方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)

一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.古代数学名著《数学九章》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈即10尺)( ) A .30尺 B .32尺 C .34尺 D .36尺 3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 4.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+5.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β6.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM的距离为( )A .6aB .6aC .2aD .12a 7.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.3P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( )A .73 B 287 C 1919 D .193π 9.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 10.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622+. 其中正确结论的个数是( )A .1B .2C .3D .412.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B .455C 5D .2513.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m 14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个 二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线116.如图所示的四棱锥E-ABCD中,底面ABCD为矩形,AE=EB=BC=2,AD⊥平面ABE,且CE上的点F满足BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥C-AEB的体积.17.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=∠=,ADC︒C,105 ==,现将四边形ABCD沿BD折起,使得平面ABD⊥平面BDC (如图乙),设2AB BD点E,F分别是棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)求三棱锥A BEF -的体积.18.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.19.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.20.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 21.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.24.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.C解析:C【分析】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长,画出图形,即可求出葛藤长.【详解】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长. 如图所示矩形ABCD 中,30AD =尺,2816AB =⨯=尺, 所以葛藤长2222301634AC AD AB =+=+=尺.故选:C .【点睛】本题考查圆柱的侧面展开图,考查学生的空间想象能力,属于基础题. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN . 在1H C G 中,2212222C G =+=2212222C H =+=22GH =,所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】 本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.5.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.6.A解析:A 【分析】根据等体积法有11A CDM C A DM V V --=得解. 【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h , 在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为3a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.7.D解析:D 【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出11222HI CD a == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上, 正方体1111ABCD A B C D -中的棱长为a , 1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题.8.B解析:B 【分析】根据三棱锥的体积求出S △ABC 33,在三角形ABC 中,根据余弦定理和正弦定理求出△ABC 外接圆的半径r 的最小值,从而可求出外接球半径的最小值和外接球体积的最小值. 【详解】设AB =c ,BC =a ,AC =b 313×S △ABC ×2,解得S △ABC 33. 因为∠ABC =120°,S △ABC 3312ac sin 120°,所以ac =6, 由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =2.设△ABC 外接圆的半径为r ,则sin120b=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6.如图,设O 1为△ABC 外接圆的圆心,D 为PA 的中点,R 为球的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,易得OO 1=1,R 2=r 2+OO =r 2+1,当r min =6时,2min R =6+1=7,R min =7,故球O 体积的最小值为43π3min R =437)3287. 故选:B 【点睛】本题考查了三棱锥的体积公式,考查了球的体积公式,考查了正弦定理,考查了余弦定理,属于中档题.9.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=6R =, 故截面面积的最大值为2263πππ2R ==⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,122OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.10.C解析:C 【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果. 【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误; 对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C . 【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD =+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.12.C解析:C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.13.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.B解析:B 【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假. 【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①. 所以一共两个命题正确. 故选:B 【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2)85【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果. 【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =, 所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN , 所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅17554417252+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解. 【详解】 (1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG , ∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点, ∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又BF ⊥平面ACE ,则AE ⊥BF , ∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△.【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). 17.(1)证明见解析;(2)312. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ; (2)利用等体积法进行转化计算即可. 【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥,图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =, ∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥, 又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=, 又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ; (2)因为点E ,F 分别是棱AC ,AD 的中点, 所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.18.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =,由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.19.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.20.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又tan tan AD BC ABD BAC AB AB∠==∠== ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()(),,0,2,0,0,0,B C D P t ,则()BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =, 则00n BD n DP ⎧⋅=⎨⋅=⎩,即2020y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为1,3,n t ⎛= ⎪ ⎪⎝⎭,所以cos ,48PC n PC n PC n⋅==因为22144515175t t +++=≥,当且仅当t = 所以5c 3353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题21.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.22.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案;【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA .∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥,又二面角E GH B --的大小为90°,∴90AOE ∠=︒,即EO AO ⊥,∴EO ⊥平面ABCD ,∴EO BD ⊥,又AB BC =,∴AO BD ⊥, AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF ,由(1)知BD ⊥平面EOA ,∴BD QF ⊥,∴QF ⊥平面EBD ,∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,10EB =,2BM =,6EM =,30AE =, 由()222222(2)22QB AE AB BE QB +=+⇒=, 62QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形,所以//AG MN .又因为22213PM PA AM =+=+=22123MC MB BC =+=+= 所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥.又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD .(2)设点B 到平面MNC 的距离为h ,因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】 关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键.24.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 ,又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中121,2C C OC ==∴在1Rt C OC ∆中,11tan 2C C C OC OC∠== 故二面角1C BD C --的正切值为2 .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题. 25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。

(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(3)

(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(3)
18.如下图所示,三棱锥 外接球的半径为1,且 过球心, 围绕棱 旋转 后恰好与 重合.若 ,则三棱锥 的体积为_____________.
19.若三棱锥 的底面是以 为斜边的等腰直角三角形, , ,则该三棱锥的外接球的表面积为__________.
20.水平放置的 的斜二测直观图如图所示,已知 ,则 中 边上的中线的长度为_______ .
A.点 在某个定球面上运动;
B. 与水平地面所成锐角记为 ,直线 与水平地面所成角记为 ,则 为定值;
C.可能在某个时刻, ;
D.直线 与平面 所成角的正弦值的最大值为 .
2.已知三棱柱 的所有顶点都在球O的表面上,侧棱 底面 ,底面 是正三角形, 与底面 所成的角是45°.若正三棱柱 的体积是 ,则球O的表面积是()
一、选择题
1.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点 处,“大摆锤”启动后,主轴 在平面 内绕点 左右摆动,平面 与水平地面垂直, 摆动的过程中,点 在平面 内绕点 作圆周运动,并且始终保持 , .设 ,在“大摆锤”启动后,下列结论错误的是()
【详解】
由三视图可知原几何体是三棱锥:
底面 是等腰直角三角形,底 ,高 ,平面 平面 , ,
由三视图知 中, , 是等腰直角三角形,所以 ,
是等腰直角三角形, , ,

所以等腰直角三角形 的面积为 ,
等腰直角三角形 的面积为 ,
等边 的面积为 ,
等边 的面积为 ,
所以该几何体的表面积是 ,
故选:A.
A. B. C. D.
3.已知 , 是两条直线, , 是两个平面,则下列命题中错误的是()

人教版高中数学必修第二册第三单元《立体几何初步》测试题(答案解析)(1)

人教版高中数学必修第二册第三单元《立体几何初步》测试题(答案解析)(1)

一、选择题1.在下列四个正方体中,能得出直线AB 与CD 所成角为90︒的是( )A .B .C .D .2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .17]B .[2,3]C .6,22]D .[17,5] 4.如图,在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别是棱BC ,1CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面AEF ,则线段1A P 长度的取值范围是( )A .[2,3]B .5,22⎡⎤⎢⎥⎣⎦C .325,42⎡⎤⎢⎥⎣⎦D .51,2⎡⎤⎢⎥⎣⎦ 5.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 6.如图,在长方体1111ABCD A B C D -中,若,,,E F G H 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 9.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .3B .2C .3D .310.在长方体1111ABCD A B C D -中,23AB AD ==12CC =1C BD C --的大小是( )A .30ºB .45ºC .60ºD .90º 11.αβ、是两个不同的平面,m n 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个12.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32 )A .75518πB .62516πC .36πD .34π13.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或514.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能二、解答题15.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为1515,试确定点E 的位置,并求三棱锥C-VDE 的体积. 16.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 17.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S .18.如图甲,平面四边形ABCD 中,已知45A ︒∠=,90︒∠=C ,105ADC ︒∠=,2AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.如图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的体积及表面积.20.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.21.如图,在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面是正三角形)中,16AC CC ==,M 是棱1CC 的中点.(1)求证:平面1AB M ⊥平面11ABB A ;(2)求1A M 与平面1AB M 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,1AC CC =,AC BC ⊥,D 为1BC 中点,1AC 与1A C 交于点O .(1)求证://OD 平面111A B C ;(2)求证:平面1AC B ⊥平面1A BC .23.如图,AB 是圆O 的直径,CA 垂直圆O 所在的平面,D 是圆周上一点.(1)求证:平面ADC ⊥平面CDB ;(2)若1AC =,12AD =,BD AD =,求二面角A BC D --的余弦值. 24.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .(1)求证://EF MN ;(2)求证:平面CDH ⊥平面ABC .25.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =,6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ;(2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线面垂直的性质以及判定定理判断A ,平移直线结合异面直线的定义,判断BCD.【详解】对于A ,如下图所示,连接,AE GB由于,CD BE CD BG ⊥⊥,根据线面垂直判定定理得CD ⊥平面AEBG ,再由线面垂直的性质得出AB CD ⊥,则A 正确;对于B ,如下图所示,连接,BF AF因为ABF 为正三角形,//CD AF ,所以直线AB 与CD 所成角为60︒,则B 错误; 对于C ,如图所示,连接HD因为在CDH △中,45HDC ∠=︒,//AB HD ,所以直线AB 与CD 所成角为45︒,则C 错误;对于D ,如下图所示,连接GB因为//AG CD ,所以直线AB 与CD 所成角为90GAB ∠≠︒,则D 错误;故选:A【点睛】本题主要考查了求异面直线的夹角,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.C解析:C【分析】分别取111,BB B C 的中点,N M ,可得平面1//A MN 平面AEF ,从而点P 的轨迹为线段MN ,然后计算出线段1A P 的范围.【详解】分别取111,BB B C 的中点,N M ,则1//A M AE ,1A M ⊄平面AEF ,AE ⊂平面AEF ,则1//A M 平面AEF . //EF NM ,MN ⊄平面AEF ,EF ⊂平面AEF ,则//MN 平面AEF又1MN A M M ⋂=,所以平面1//A MN 平面AEF又平面1A MN ⋂面11BCC B MN =所以点P 的轨迹为线段MN当P 为线段MN 的端点M (或N )时,1A P 最长,此时1122111522P M A B A BB A ⎛⎫==+= ⎪⎝⎭当P 为线段MN 的中点时,1A P 最短,此时22111322P A N MN A ⎛⎫=-= ⎪⎝⎭所以325,42AP ⎡⎤∈⎢⎥⎣⎦, 故选:C .【点睛】本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.5.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI , 得到1//B F 面1A BE ,则F 落在线段HI 上,求出1122HI CD ==【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 6.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 10.A解析:A【分析】取BD 中点为O ,1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,易知CO BD ⊥,再利用线面垂直证明1BD C O ⊥,得到1COC ∠即二面角1C BD C --,再计算二面角大小即可.【详解】由题意,作出长方体1111ABCD A B C D -的图象,取BD 中点为O ,连接CE 、1C E ,因为1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,又BD ⊂平面ABCD ,所以1CC BD ⊥, 因为23AB AD ==ABCD 是正方形,O 为BD 中点,所以CO BD ⊥,又1CO CC C =,所以BD ⊥平面1COC ,又1C O ⊂平面1COC ,所以1BD C O ⊥,1COC ∠即二面角1C BD C --, 又12CC =()()2223236CO +==所以123tan 36COC ∠==,130COC ∠=.故选:A【点睛】本题主要考查二面角的求法和线面垂直的判定定理和性质,考查学生空间想象能力,属于中档题.11.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.12.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =, ∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.13.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6,∴2AB =,22BC =,球O 的直径为4484++=;或26AB =,3BC =,球O 的直径为2424351++=.故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 14.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A AAD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.二、解答题15.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 22. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB 平面ABC ,所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.16.(1)证明见解析;(2)7【分析】(1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =, 所以1,3BC AB == 由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键.17.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA 1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,13h A E ∴==3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.18.(1)证明见解析;(2. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=, ()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.体积V ;表面积(21π+.【分析】由已知计算出圆柱的底面半径,代入圆柱表面积和体积公式,即可得到答案.【详解】解:设圆柱的底面半径为r ,高为'h ,圆锥的高h ='3h =,1'2h h ∴=,则122r =,1r ∴=. ∴圆柱的体积2V r h π'==;表面积(22221S r rh πππ=+='. 【点睛】本题考查的知识点求圆柱的表面积和体积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.20.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos AQ PAQ AP ∠==AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =,12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 2PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 21.(1)证明见解析;(210 【分析】(1)连接1A B 交1AB 于O ,连接MO ,证明1MO AB ⊥,1MO A B ⊥,然后得到MO ⊥平面11ABB A 即可;(2)首先证明1A O ⊥平面1AB M ,然后可得1A MO ∠即为1A M 与平面1AB M 所成的角,然后利用111sin A O MO MA A ∠=算出答案即可. 【详解】(1)证明:连接1A B 交1AB 于O ,连接MO ,易得O 为1A B ,1AB 的中点∵1CC ⊥平面ABC ,AC ⊂平面ABC∴1CC AC ⊥又M 为1CC 中点,16AC CC == ∴223635AM =+=同理可得135B M =∴1MO AB ⊥连接MB ,同理可得135A M BM ==1MO A B ∴⊥又11AB A B O ⋂=,1AB ,1A B ⊂平面11ABB A∴MO ⊥平面11ABB A又MO ⊂平面1AB M∴平面1AB M ⊥平面11ABB A(2)解:易得11A O AB ⊥又由(1)平面1AB M ⊥平面1ABB A平面1AB M 平面111ABB A AB =,1AO ⊂平面11ABB A ∴1A O ⊥平面1AB M∴1A MO ∠即为1A M 与平面1AB M 所成的角在11Rt AA B △中,22111663222AB AO ==+=在1Rt AOM 中,1113210sin 35AO MO A A M ∠=== 故1A M 与平面1AB M 10【点睛】方法点睛:几何法求线面角的步骤:(1)作:作出辅助线,构成三角形;(2)证:利用线面角的定义证明作出的角即为所求角;(3)求:在直角三角形中求解即可. 22.(1)证明见解析;(2)证明见解析.(1)连接1B C ,可知点D 为1B C 的中点,利用中位线的性质可得出11//OD A B ,利用线面平行的判定定理可证得结论成立;(2)证明出四边形11AAC C 为菱形,可得出11AC AC ⊥,证明出BC ⊥平面11AAC C ,可得出1AC BC ⊥,利用线面垂直和面面垂直的判定定理可证得结论成立.【详解】(1)如下图所示,连接1B C ,在三棱柱111ABC A B C -中,11//BB CC 且11BB CC =,则四边形11BB C C 为平行四边形, D 为1BC 的中点,则D 为1B C 的中点,同理可知,点O 为1A C 的中点,11//OD A B ∴, OD ⊄平面111A B C ,11A B ⊂平面111A B C ,因此,//OD 平面111A B C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,11//AA CC 且11AA CC =, 所以四边形11AAC C 为平行四边形,1AC CC =,所以,平行四边形11AAC C 为菱形,则11AC AC ⊥,1CC ⊥平面ABC ,BC ⊂平面ABC ,1BC CC ∴⊥,BC AC ⊥,1AC CC C =,BC ∴⊥平面11AAC C ,1AC ⊂平面11AAC C ,1AC BC ∴⊥,1AC BC C =,1AC ∴⊥平面1A BC ,1AC ⊂平面1AC B ,因此,平面1AC B ⊥平面1A BC .【点睛】方法点睛:证明面面垂直的常用方法:(1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,可假设两个平面垂直成立,利用面面垂直的性质定理转化为线面垂直,即可找到所要证的线面垂直,然后组织论据证明即可.23.(1)证明见解析;(2)105.(1)证明,BD AC BD AD ⊥⊥后得BD ⊥平面ADC ,然后可得面面垂直;(2)连结OD ,作OE BC ⊥于E ,连结DE ,证得OED ∠为二面角A BC D --的平面角,在三角形中可得其余弦值.【详解】证明:(1)∵CA ⊥平面ADB ,BD ⊂平面ADB ,∴CA BD ⊥,.又D 是圆周上一点,AB 是圆O 的直径,DA DB ⊥,又CA ⊂平面CAD ,DA ⊂平面CAD ,ADCA A =,∴BD ⊥平面CAD ,而BD ⊂平面ACD ,∴平面ADC ⊥平面CDB ;(2)连结OD ,作OE BC ⊥于E ,连结DE ,∵CA ⊥平面ADB ,CA ⊂平面ABC ,∵平面ABC ⊥平面ADB ,∵BD AD =,∴⊥OD AB ,又∵OD ⊂平面ADB ,∵平面ABC平面ADB AB =, ∴OD ⊥平面ABC ,∵BC ⊂面ABC ,∴BC OD ⊥.又∵BC OE ⊥,OE DE E =,∴BC ⊥平面ODE ,∴BC DE ⊥,∴OED ∠为二面角A BC D --的平面角.又1AC =,12AD =,BD AD =, ∴2OD =,3OE =,30DE =,所以cos OE OED DE ∠==10所以二面角A BC D --的余弦值为105. 【点睛】方法点睛:本题考查证明面面垂直,求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角(并证明)然后在相应三角形中求角.(2)向量法:建立空间直角坐标系,用二面角的两个面的法向量的夹角与二面角相等或互补计算.24.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.25.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD 的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又3tan ,tan 33AD BC ABD BAC AB AB ∠==∠==, ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y 轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()()23,0,0,23,6,0,0,2,0,0,0,B C D P t ,则()23,2,0BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =,则00n BD n DP ⎧⋅=⎨⋅=⎩,即232020x y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为231,3,n t ⎛⎫= ⎪ ⎪⎝⎭, 所以22226333cos ,1214448451PC nPC n PC n t t t t ⋅===++++, 因为22221441445151275t t t t +++=≥,当且仅当23t =时等号成立, 所以5c 33353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点,点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB ,∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥.底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=,∴BC ⊥平面PDC ,∴DE BC ⊥,又PC BC C ⋂=,∴DE ⊥平面PBC ,∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。

高中数学必修二第八章立体几何初步专项训练题(带答案)

高中数学必修二第八章立体几何初步专项训练题(带答案)

高中数学必修二第八章立体几何初步专项训练题单选题1、直角三角形的三边满足a<b<c,分别以a,b,c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,则()A.V c<V b<V a B.V a<V b<V c C.V c<V a<V b D.V b<V a<V c答案:A解析:求出V a=b×13abπ,V b=a×13abπ,V c=abc×13abπ,推导出abc<a<b,从而得到V c<V b<V a.∵直角三角形的三边满足a<b<c,分别以a、b、c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,∴V a=13×π×b2×a=13πab2=b×13abπ,V b=13×π×a2×b=13πa2b=a×13abπ,该直角三角形斜边上的高ℎ满足12ab=12cℎ,可得ℎ=abc,V c=13×π×(abc)2×c=13π⋅a2b2c=abc×13abπ,∵abc −a=ab−acc<0,abc−b=ab−bcc<0,∴abc<a<b,∴V c<V b<V a,故选:A.小提示:关键点点睛:本题考查旋转体体积的大小比较,解题的关键就是确定旋转体的形状,并据此求出对应的旋转体的体积,结合作差法比较即可.2、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD −BHC 及直三棱柱DGC −AEB 组成,作HM ⊥CB 于M ,如图,因为CH =BH =3,∠CHB =120∘,所以CM =BM =3√32,HM =32, 因为重叠后的底面为正方形,所以AB =BC =3√3,在直棱柱AFD −BHC 中,AB ⊥平面BHC ,则AB ⊥HM ,由AB ∩BC =B 可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 3、直三棱柱ABC −A 1B 1C 1中,若∠BAC =90°,AB =AA 1=1,AC =2,E 是棱A 1C 1上的中点,则点A 到平面BCE 的距离是( )A .1B .√23C .√63D .√33答案:C分析:作出草图,根据题意易证A 1C 1⊥平面AA 1BB 1,可得A 1C 1⊥BA 1,再根据勾股定理分别求出A 1B ,BE ,CE,BC的值,再根据V A−BCE=V E−ABC,即可求出点A到平面BCE的距离.如图,在直三棱柱ABC−A1B1C1中,连接BA1,CE,AE,BE,由题知,AA1⊥平面A1B1C1,AA1⊥A1C1,AA1⊥A1B1,又∠CAB=∠C1A1B1=90°,∴B1A1⊥A1C1又AA1∩B1A1=A1,所以A1C1⊥平面AA1BB1,所以A1C1⊥BA1,由于AB=AA1=CC1=1,A1C1=AC=2,E点是棱AC上的中点,根据勾股定理,A1B=√AB2+AA12=√12+12=√2,BE=√A1B2+A1E2=√(√2)2+12=√3 CE=√(C1C)2+(C1E)2=√12+12=√2,BC=√AB2+AC2=√12+22=√5,所以BE2+CE2=BC2,即BE⊥CE.设E到平面ABC的距离为d,则d=1,设点A到平面BCE的距离为ℎ,在四面体A−BCE中,V A−BCE=V E−ABC,V E−ABC=13×S△ABC×d=13×(12×1×2)×1=13V A−BCE=13×S△BCE×ℎ=13×(12×√3×√2)×ℎ=√66ℎ则√66ℎ=13,解得ℎ=√63.故选:C.4、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面PAD,得到△PAB为直角三角形,判定D正确;可证明平面PBC⊥平面PDC,若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC,矛盾,可判断A图1中AD⊥PC,则图2中PD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,则AB⊥PA,即△PAB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.由于BC⊥平面PDC,又BC⊂平面PBC∴平面PBC⊥平面PDC若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC由于AB//平面PDC ,则平面PAB 与平面PDC 的交线//AB显然AB 不与平面PBC 垂直,故A 错误故选:A5、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A −BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =4,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A .√32B .√34C .√33D .√24答案:C分析:画出图形,取AC 的中点N ,连接MN ,BN ,可得MN //CD ,则所求为∠BMN ,易证△BMN 是直角三角形,则可得BM ,进而求解.如图,取AC 的中点N ,连接MN ,BN ,由题,AB =BC =CD =4,M 为AD 的中点,所以MN //CD ,MN =2,则∠BMN 为所求,由AB ⊥平面BCD ,则AB ⊥CD ,又BC ⊥CD ,AB ∩BC =B ,所以CD ⊥平面ABC ,则MN ⊥平面ABC ,所以△BMN 是直角三角形,即∠MNB =90°,又BM =12AD =12√AB 2+BD 2=2√3,所以cos∠BMN =MN BM =2√3=√33, 故选:C6、若直线a //平面α,A ∉α,且直线a 与点A 位于α的两侧,B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF 的长为( )A .3B .32C .34D .23 答案:B分析:根据线面平行可得线线平行,从而可求EF =32. ∵BC //α,BC ⊂平面ABC ,平面ABC ∩α=EF ,∴EF //BC ,∴AF AC =EF BC ,即35+3=EF 4,∴EF =32. 故选:B.7、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .MN//平面ABEB .MN//平面ADEC .MN//平面BDHD .MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH的中点O,连接ON,BO,可以证明MN‖BO,利用BO与平面ABE的关系可以判定MN与平面ABE的关系,进而对选择支A作出判定;根据MN与平面BCF的关系,利用面面平行的性质可以判定MN与平面ADE的关系,进而对选择支B作出判定;利用线面平行的判定定理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE 的关系,进而对D作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.8、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.多选题9、如图,在菱形ABCD中,AB=2,∠BAD=60°,将△ABD沿对角线BD翻折到△PBD位置,连结PC,则在翻折过程中,下列说法正确的是()A.PC与平面BCD所成的最大角为45°B.存在某个位置,使得PB⊥CDC.当二面角P﹣BD﹣C的大小为90°时,PC=√6D.存在某个位置,使得B到平面PDC的距离为√3答案:BC分析:A,取BD的中点O,连接OP、OC,则OP=OC=√3.可得PC与平面BCD所成的角为∠PCO,当PC=√3时∠PCO=60°>45°,即可判断;B,当点P在平面BCD内的投影为△BCD的重心点Q时,可得PB⊂平面PBQPB⊥CD,即可判断;C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,即可得△POC为等腰直角三角形,即可判断;D,若B到平面PDC的距离为√3,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.解:选项A,取BD的中点O,连接OP、OC,则OP=OC=√3.由题可知,△ABD和△BCD均为等边三角形,由对称性可知,在翻折的过程中,PC与平面BCD所成的角为∠PCO,当PC=√3时,△OPC为等边三角形,此时∠PCO=60°>45°,即选项A错误;选项B,当点P在平面BCD内的投影为△BCD的重心点Q时,有PQ⊥平面BCD,BQ⊥CD,∴PQ⊥CD,又BQ∩PQ=Q,BQ、PQ⊂平面PBQ,∴CD⊥平面PBQ,∵PB⊂平面PBQ,∴PB⊥CD,即选项B正确;选项C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,∵PB=PD,∴OP⊥BD,∵平面PBD∩平面BCD=BD,∴OP⊥平面BCD,∴OP⊥OC,又OP=OC=√3,∴△POC为等腰直角三角形,∴PC=√2OP=√6,即选项C正确;选项D,∵点B到PD的距离为√3,点B到CD的距离为√3,∴若B到平面PDC的距离为√3,则平面PBD⊥平面PCD.平面CBD⊥平面PCD,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.故选:BC.10、如图是正方体的平面展开图,在这个正方体中,下列结论正确的是()A.BM与ED平行B.CN⊥AFC.CN与BM成60°D.四条直线AF、BM、CN、DE中任意两条都是异面直线答案:BCD分析:还原成正方体之后根据正方体性质分析线线位置关系.根据展开图还原正方体如图所示:BM与ED不平行,所以A错误;正方体中CN⊥DM,DM//FA,所以CN⊥AF,所以B正确;CN//EB,CN与BM成角就是∠EBM,△EBM是等边三角形,所以∠EBM=60°,所以C正确;由图可得四条直线AF、BM、CN、DE中任意两条既不想交也不平行,所以任意两条都是异面直线. 故选:BCD11、下图是一个正方体的平面展开图,则在该正方体中()A.AE//CD B.CH//BE C.DG⊥BH D.BG⊥DE答案:BCD分析:由平面展开图还原为正方体,根据正方体性质即可求解.由正方体的平面展开图还原正方体如图,由图形可知,AE⊥CD,故A错误;由HE//BC,HE=BC,四边形BCHE为平行四边形,所以CH//BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,所以DG⊥平面BHC,所以DG⊥BH,故C正确;因为BG//AH,而DE⊥AH,所以BG⊥DE,故D正确.故选:BCD填空题12、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④13、中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=√5,ED=√3,若鳖臑P−ADE 的外接球的体积为9√2π,则阳马P−ABCD的外接球的表面积等于______.答案:20π解析:求出鳖臑P−ADE的外接球的半径R1,可求出PA,然后求出正方形ABCD的外接圆半径r2,利用公式R2=√(PA2)2+r22可求出阳马P−ABCD的外接球半径R2,然后利用球体的表面积公式可得出答案.∵四边形ABCD是正方形,∴AD⊥CD,即AD⊥CE,且AD=√5,ED=√3,所以,ΔADE的外接圆半径为r1=AE2=√AD2+ED22=√2,设鳖臑P−ADE的外接球的半径R1,则43πR13=9√2π,解得R1=3√22.∵PA⊥平面ADE,∴R1=√(PA2)2+r12,可得PA2=√R12−r12=√102,∴PA=√10.正方形ABCD的外接圆直径为2r2=AC=√2AD=√10,∴r2=√102,∵PA⊥平面ABCD,所以,阳马P−ABCD的外接球半径R2=√(PA2)2+r22=√5,因此,阳马P−ABCD的外接球的表面积为4πR22=20π.所以答案是:20π.小提示:本题考查球体表面积和体积的计算,同时也涉及了多面体外接球问题,解题时要分析几何体的结构特征,考查分析问题和解决问题的能力,属于中等题.14、词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC,其中PA⊥平面ABC,PA=AC=2,BC=2√2,则四面体PABC的外接球的表面积为______.答案:16π分析:确定外接球球心求得球半径后可得表面积.由于PA⊥平面ABC,因此PA与底面上的直线AC,AB,BC都垂直,从而AC与AB不可能垂直,否则△PBC是锐角三角形,由于AC<BC,因此有AC⊥BC,而PA与AC是平面PAC内两相交直线,则BC⊥平面PAC,PC⊂平面PAC,所以BC⊥PC,所以PB的中点O到P,A,B,C四个点的距离相等,即为四面体PABC的外接球球心.PB2=PA2+AB2=PA2+AC2+BC2=22+22+(2√2)2=16,PB=4,)2=4π×22=16π.所以所求表面积为S=4π×(PB2所以答案是:16π.解答题15、如图,四边形ABCD是一个半圆柱的轴截面,E,F分别是弧DC,AB上的一点,EF//AD,点H为线段AD 的中点,且AB=AD=4,∠FAB=30°,点G为线段CE上一动点.(1)试确定点G的位置,使DG//平面CFH,并给予证明;(2)求三棱锥E−CFH的体积.答案:(1)点G为线段CE中点,证明见解析;.(2)8√33分析:(1)点G为线段CE中点,取CF中点M,证明DG//HM,再利用线面平行的判定推理作答.(2)根据给定条件,证得CE⊥平面ADEF,再结合等体积法即可求出三棱锥E−CFH的体积作答.(1)当点G为线段CE中点时,DG//平面CFH,取CF中点M,连接HM,GM,如图,则GM//EF,GM=12EF,因E,F分别是弧DC,AB上的一点,EF//AD,则EF是半圆柱的一条母线,即EF=AD,而点H为线段AD的中点,于是得GM//DH,GM=DH,即四边形DGMH为平行四边形,则DG//HM,而DG⊄平面CFH,HM⊂平面CFH,所以DG//平面CFH.(2)依题意,AB是半圆柱下底面半圆的直径,则∠AFB=90∘,而∠FAB=30°,有AF=√32AB=2√3,BF=12AB=2,显然CD是半圆柱上底面半圆的直径,则CE⊥DE,由(1)知EF是半圆柱的一条母线,则EF⊥平面CDE,而CE⊂平面CDE,即有CE⊥EF,DE∩EF=E,DE,EF⊂平面ADEF,因此,CE⊥平面ADEF,而EF//BC,EF=BC,即四边形BCEF是平行四边形,CE=BF=2,又点H为线段AD的中点,则S△EFH=12AD⋅AF=4√3,所以三棱锥E−CFH的体积V E−CFH=V C−EFH=13⋅S△EFH⋅CE=13×4√3×2=8√33.。

高中数学必修二立体几何测试

西安市第一中学高一年级第二次月考数学试题(立体几何初步)班级 姓名 考号一、选择题(共12个小题,每小题4分,共计48分)1.线段AB 在平面α内,则直线AB 与平面α的位置关系是( ) A 、ABα B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2.下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 4. 正方体////D C B A ABCD -中,下列几种说法正确的是( )A 、AD C A //⊥ B 、AB C D //⊥C 、/AC 与DC 成45°角D 、//C A 与C B /成60°角5. 若直线l ∥平面α,直线a α,则直线l 与直线a 的位置关系是( ) A 、直线l ∥直线a B 、直线l 与直线a 异面 C 、直线l 与直线a 相交 D 、直线l 与直线a 没有公共点6. 下列命题中,①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两个直线平行;④垂直于同一平面的两个平面平行。

其中正确的个数有( ) A 、 1 B 、 2 C 、 3 D 、47. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 能相交于P ,那么( )A 、点P 不在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外7题图 9题图8. 已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A 、22 B 、332 C 、324 D 、334 9. 正方体////D C B A ABCD -中,E 、F 、G 、H 分别为/AA 、AB 、/BB 、//C B 的中点,则异面 直线EF 与GH 所成的角等于( )A 、45°B 、60°C 、90°D 、120°10. a 、b 、c 表示直线,M 表示平面,给出下列四个命题:① 若a ∥M ,b ∥M ,则a ∥b ; ②若b M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b.其中正确命题的个数有( )A 、0个B 、1个C 、2个D 、3个 11. 已知m 、n 为直线,α、β为平面,有以下命题:①n n m m ⇒⎩⎨⎧⊥α⊥∥α; ②n n m ⇒⎩⎨⎧β⊥β⊥∥m ;③α⇒⎩⎨⎧β⊥α⊥m m ∥β; ④⇒⎪⎩⎪⎨⎧βαβ⊆α⊆平行n m m ∥n ; 其中正确命题的个数有( )A 、1个B 、2个C 、3个D 、4个 12. 如图直三棱柱111C B A ABC -的体积为V ,点P 、Q 分 别在侧棱1AA 和1CC 上,并且Q C AP 1=, 则四棱锥B-APQC 的体积为( ) A 、2V B 、3VC 、4V D 、5V 二、填空题(4个小题,每小题4分,共计16分)13. 正方体////D C B A ABCD -中,平面//D AB 和平面D BC /的位置关系为14.正方体的内切球和外接球的半径之比为15.一几何体的三视图如图所示,俯视图是边长为2的正方形,主视图和左视图是直角边长为2的等腰直角三角形, 则此几何体的体积为16.在直四棱柱1111D C B A ABCD -中,当底面四边形ABCD 满足条件 时,有111D B C A ⊥.(注:填上你认为正确的的一种条件即可,不必考虑所有可能的情形。

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)(2)

A. 平面 B.平面 与平面 不垂直
C.平面 与平面 可能平行D.直线 与直线 可能不平行
11.如图为水平放置的 的直观图,则原三角形的面积为()
A.3B. C.6D.12
12.边长为2的正方形 沿对角线 折叠使得 垂直于底面 ,则点 到平面 的距离为()
A. B. C. D.
13.如图,正方体 的棱长为2,点 为底面 的中心,点 在侧面 的边界及其内部运动.若 ,则 面积的最大值为()
一、选择题
1.D
解析:D
【分析】
由线面和面面平行和垂直的判定定理和性质定理即可得解.
【详解】
解:对于①,由面面平行的判定定理可得,若 、 互为异面直线, , ,则 或相交,又因为 , ,则 ,故①正确;
对于②,若 , , ,则 或 , 相交,故②错误,
对于③,若 , ,则 ;故③正确,
对于④,若 , , ,则 或 ,故④错误,
, 平面 , 平面 ,则 平面
又 ,所以平面 平面
又平面 面
所以点 的轨迹为线段
当 为线段 的端点 (或 )时, 最长,此时
当 为线段 的中点时, 最短,此时
所以 ,
故选:C.
【点睛】
本题考查利用向量法解决线面平面的探索问题,本题也可以构造面面平面得出动点的轨迹,从而求解,属于中档题.
7.A
解析:A
当 时, 不一定成立,
即“ ”是“ ”的充分不必要条件,
故选:B.
【点睛】
本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.
6.C
解析:C
【分析】
分别取 的中点 ,可得平面 平面 ,从而点 的轨迹为线段 ,然后计算出线段 的范围.

人教版高中数学必修第二册第三单元《立体几何初步》检测题(包含答案解析)(1)

对于B,α⊥β,设α∩β=m,则在平面α内存在不同于直线m的直线l,满足l∥m,
根据线面平行的判定定理可知,l∥β,正确;
对于C,过直线l上任意一点作直线m⊥γ,根据面面垂直的性质定理可知,
m既在平面α又在平面β内,所以直线l与直线m重合,即有l⊥γ,正确;
对于D,若α⊥β,l∥α,则l⊥β不一定成立,D错误.
【详解】
在正四面体 中,设棱长为2,
设 为底面三角形 是中心,则 平面 .
取 边的中点 ,连结 ,如图.
则易证 ,又 .
所以 平面 ,又 平面 ,
所以 .
所以异面直线 与 所成的角为 .
又 平面 .
所以直线 与平面 所成的角为
在 中, ,
所以 .
取边 的中点 ,连结 ,
则有 ,
所以二面角 的平面角为 ,
(1)证明: ;
(2)求二面角 的大小;
(3)求点 到平面 的距离.
19.如图,在四棱锥 中, 平面 , , , , .
(1)求证:平面 平面 ;
(2) 长为何值时,直线 与平面 所成角最大?并求此时该角的正弦值.
20.如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直, .
(1)求证: 平面BDE;
在 中,
由余弦定理有: ,
即 ,
所以 ,
故选:D.
【点睛】
本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题.
3.D
解析:D
【分析】
根据题意得到三棱柱的高是内切球的直径,也是底面三角形内切圆的直径,根据等边三角形的性质得到内切球和外接球的半径,计算表面积的比值.
A.若 , ,则 B.若 , ,则

新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)(4)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.已知三棱锥A BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为()A.13B.3C.33D.1163.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:3cm)为()A.43B.2C .4D .64.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .125.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .676.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2 B .255C .32D .2777.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .77D .211118.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .1479.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 10D .直线1AC 与平面BDM 相交10.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 11.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .312.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .3二、填空题13.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.14.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 16.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.17.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________. 18.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______19.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD20.将底面直径为8,高为23为______.三、解答题21.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.22.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ;(3)求三棱锥C AEF -的体积24.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,则253 23x x-=,解得3x=,则1AO=,底面边长为23,则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.B解析:B【分析】取AC中点F,连接,EF DF,证明FED∠是异面直线AB与DE所成角(或其补角),然后在三角形中求得其余弦值即可得.【详解】取AC中点F,连接,EF DF,∵E是BC中点,∴//EF AB,12EF AB=,则FED∠是异面直线AB与DE所成角(或其补角),设1AB=,则12EF=,32DE DF==,∴在等腰三角形DEF中,11324cos3EFFEDDE∠===.所以异面直线AB与DE3故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.4.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7. 所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而OP所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,AP ∴=, 又1212OA =⨯=,sin OAOPA OP∴∠===故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.7.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以PB==cos11BCPCBPC∠===,所以异面直线PC与AD所成角的余弦值为11.故选:D.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A【分析】利用正弦定理求出ABC的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC的外接圆的圆心为D,半径为r,在ABC中,cos ABC∠==sin4ABC∴∠=,由正弦定理可得28sinACrABC==∠,即4r=,则3OD==,11133324O ABC ABCV S OD-∴=⨯⨯=⨯⨯=故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.9.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =22BD =5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC =直线BM 与平面11BDD B 所成角为θ210sin 5d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为2R==R=,DE DF====EF=在DFE△中,222cos2DE EF DFDEFDE EF+-∠===⨯,所以DEF∠为锐角,所以sin DEF∠==,DEF的外接圆的半径为2sinDFrDEF===∠则球心到DEF23,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+23.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC,且2AD BC=,可得点,B C分别是,AG DG的中点,又点E是PD的中点,PC∴和GE是△PGD的中线,∴点F是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC +=②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+因为2210,因此,小虫爬行的最短路程为22 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PAAB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由23,2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===, 由3PE =,23PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确; 对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF ,易得1//,//GE AC EF BC根据线面平行判定定理证得平面1//AB C 平面EFG所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹, 因为1223GE EF GF ==== 所以动点P 的运动轨迹周长为232GE EF GF ++==2【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.16.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =8AC =,AB BC ⊥, 所以42AB =4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.17.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ;由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH ,所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥,所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角,所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+,当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛: 求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果. 18.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC 的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.19.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题. 20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423h r -=,解得323h =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ5 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).22.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.23.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案. 【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD = 又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG因为BG ⊂平面,ABP EF 不在平面ABP 内,所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====,所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥又因为,,AB AD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD .(3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△, 即三棱锥C AEF -的体积为98 【点睛】 关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .24.(1)证明见解析;(232211【分析】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学2(必修)立体几何初步水平检测题一、选择题(本大题共12个小题,每小题5分,共60分)1.下列说法中正确的是 ( ) A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等2.( )A.圆柱B.圆锥C.圆台D.球 3.圆柱的侧面展开图是边长为4的正方形,则圆柱的体积是 ( ) A.π15B.π16C.π17D.π184.圆锥的底面半径为r ,高是h ,在这个圆锥内部有一个内接正方体,则此正方体的棱长等于 ( )A.hr rh + B.hr rh +2 C.hr rh 222+ D.hr rh +25.在ABC ∆中,0120,5.1,2=∠==ABC BC AB (如下图), 若将ABC ∆绕直线BC 旋转一周,则所形成的旋转体的体积是 ( ) A.29π B.27π C.25π D.23π6.下面4个命题:①若直线b a 与异面,c b 与异面,则c a 与异面 ②若直线b a 与相交,c b 与相交,则c a 与相交 ③若直线c b b a //,//,则c b a ////④若直线c b a b a 与直线则,,//所成的角相等其中真命题的个数是 ( ) A.4 B.3 C.2 D.17.空间四边形的两对角线的位置关系是 ( ) A.相交 B.平行 C. 异面 D.或相交或平行或异面正视图 侧视图 俯视图 ACB D 01208.表示直线、表示平面,、、n m γβα,下列说法中可以判定βα//的是 ( ) ①γβγα⊥⊥,②由α内不共线的三点作平面β的垂线,各点与垂足间线段的长度都相等 ③βα⊥⊥n m n m ,,// ④内两条直线,且是、αn m ββ////n m ,A.①②B.②C.③④D.③ 9.菱形ABCD 在平面α内,BD PA PC 与对角线则,α⊥的位置关系是 ( ) A.平行 B.相交但不垂直 C.垂直相交 D. 异面垂直10.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则,56==的距离为 ( )A.54B.3C.33D.32 11.下面四个命题:①分别在两个平面内的直线平行②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行其中正确的命题是 ( ) A.①② B.②④ C.①③ D.②③ 12.已知直线b a ,和平面α,有以下四个命题:①若αα//,//,//b b a a 则 ②若b a A b a a 与,则,=⊂ α异面 ③若αα⊥⊥a b b a 则,,// ④若αα//,,b a b a 则⊥⊥其中真命题的个数为 ( ) A.0 B.1 C.2 D.3 二、填空题(本大题共14个小题,每小题4分,共16分,将答案直接写在横线上)13. 湖面上漂着一球,湖结冰后将球取出,冰面上留下了一个直径为cm 24,深为cm 8的空穴,则该球的体积为_________。

14.在正方体1111D C B A ABCD -中,若过1B C A 、、三点的平面与底面1111D C B A 的交线为l ,则AC l 与的位置关系是_________。

15.若3223===⊥BC AB PA ABCD ABCD PA ,,是矩形,若,且平面,则二面角A BD P --的正切值为_________。

16.在空间四边形ABCD 中,DA CD BC AB H G F E 、、、分别是、、、的中点,若060所成的角为与,且BD AC a BD AC ==,则四边形EFGH 的面积是_________。

三、解答题17.(本小题满分12分)在全面积为2a π的圆锥中,当底面半径为何值时圆锥体积最大,最大体积是多少?18.(本小题满分12分)在正方体1111D C B A ABCD -中,G F E 、、分别是棱1DD DC DA 、、的中点,试找出过正方体的三个顶点且与平面EFG 平行的平面,并证明。

19.(本小题满分12分)太阳光照射高为m 3的竹竿时,它在水平地面上的射影为m 1;同时,照射地面上一圆球时,如下图所示,其影子长度cm AB 33=20.(本小题满分12分)正方形ABCD 的边长为1,分别取边CD BC 、的中点F E 、,连结AF EF AE 、、,以AF EF AE 、、为折痕,折叠这个正方形,使点D C B 、、重合于一点P ,得到一个四面题,如下图所示。

(1)求证:EF AP ⊥;(2)求证:平面APF APE 平面⊥。

21.(本小题满分14分)在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 平面F PB PB EF PC E DC PD ABCD 于点交中点,作是⊥=,,。

(1)证明:EDB PA 平面//; (2)证明:EFD PB 平面⊥;(3)求二面角D PB C --的大小。

A BC D E FE FPAABCDPE F高中数学2(必修)立体几何初步水平检测题答案一、选择题1.B ;点拨:棱柱侧面都是四边形,排除A ;球的表面不能展成平面,排除C ;棱柱的侧棱与底面边长可以不相等,排除D 。

2.A ;点拨:俯视图为圆,正视图、侧视图为全等矩形,故直观图为圆柱。

3.B ;点拨:因为πππππ164)2(,4,2,422=⋅⋅=∴==∴==V l r l r 。

4.C ;点拨:作正方体一对角面的轴截面,如右图所示,设正方体棱长为rh rh a h a h r a a 222,:)(2:2,+=∴-=则。

5.D ;点拨:,1)3(312ππ=⋅⋅=BD V 小锥,2525)3(312ππ=⋅⋅=DCV 大锥=∴旋转体V 25π23ππ=-。

6.C ;点拨:③④正确。

7.C ;点拨:空间四边形的四个顶点不共面。

8.D ;点拨:相交与或βαβαγβγα//,⇒⊥⊥,排除A ;若α内不共线的三点分别在平面β两侧,则相交与βα,排除B ;若内两条平行直线是、αn m ,则有可能相交与βα,排除C 。

9.D ;点拨:因为A B C D 是棱形,BD AC ⊥∴,又因为BD PC ABCD PC ⊥∴⊥,面,PA BD PAC BD ⊥∴⊥∴,面。

10.A ;点拨:取BC 的中点D ,连结,、PD AD 因为⊥∴⊥⊥BC BC PA BC AD ,,平面544822=+=∆∴⊥∴PD PAD Rt PD BC PAD 中,在,,。

11.B ;点拨:②④正确。

12.B ;点拨:③正确。

二、填空题 13.π38788;点拨:设球的半径为R ,则221334,13),82(812⋅⋅=∴=-⋅=πV R R =π38788。

14.平行;点拨:因为平面l AC D C B A ABCD //,//1111∴平面。

15.3;点拨:过PE E BD AE A ,连结于作⊥,因为BD BD PA BD AE ∴⊥⊥,, PAE 平面⊥,A BD P PAE BD AE PE BD --∠∴⊥⊥∴为二面角,, 的平面角,在PEA Rt ∆中,ra h a2333tan ===∠AEPA PEA 。

16.283a ;点拨:因为DA CD BC AB H G F E 、、、分别是、、、的中点,所以易证四边形EFGH 为平行四边形。

又==∴====FG EF a BD AC BD FG AC EF ,,21,21a 21,所以四边形EFGH为棱形。

由EFG BD FG AC EF ∠∴,//,//是异面直线BD AC 与所成的角,则28360sin 212160a a a S EFG EFGH =⋅⋅=∴=∠,。

三、解答题17.解:设全面积为2a π的圆锥的底面半径为r ,高为h ,则2222a hr r r πππ=++,即22421ra a rh -=,422422422231213131ra ra r a rrr h r V -=-==∴πππ)(圆锥,当2,442242a r aaar===即时,圆锥V 取到最大值3122a π。

18.证明:过正方体的三个顶点1D C A 、、的平面与平面EFG 平行。

由G F E 、、分别是棱1DD DC DA 、、的中点可得:CD GF AD GE ////1,。

又EFG GF EFG GE 平面,平面⊂⊂,EFG CD EFG AD 平面,平面////11∴, 又111D CD AD = ,∴平面EFG //平面1ACD 。

19.解:设球的半径为rm ,光线倾斜角为θ,则313tan ==θ,30260==∠∴=∴θθOAB ,,330tan 0==∴AB r ,)(3633433cm V ππ=⋅=∴球,即球的体积为336cm π。

20.证明:(1)因为P PF PE APF APE ==∠=∠ ,900,PEF PA 平面⊥∴,又PEF EF 平面⊂,EF PA ⊥∴。

(2)因为P PF AP EPF APE ==∠=∠ ,900,APF PE 平面⊥∴, 又APE PE 平面⊂,APF APE 平面平面⊥∴。

21.证明:(1)连结EO O BD AC ,连结于交。

因为底面ABCD 是正方形,所以AC O 是的中点。

在PAC ∆中,EO 是中位线,所以EO PA //。

而EDB PA EDB EO 平面且平面⊄⊂,EDB PA 平面//∴。

(2)因为ABCD DC ABCD PD 底面且底面⊂⊥,DC PD ⊥∴,又DC PD =, P D C ∆∴是等腰直角三角形,而DE 是斜边PC 的中线,PC DE ⊥∴ ① 同理可得BC PD ⊥。

因为底面ABCD 是正方形,有BC DC ⊥,PDC BC 平面⊥∴。

而PDC DE 平面⊂,DE BC ⊥∴ ②由①和②推得:PBC DE 平面⊥。

而PBC PB 平面⊂,DE PB ⊥∴,又E EF DE PB EF =⊥ 且,EFD PB 平面⊥∴。

(3)由(2)知D PB C EFD DF PB --∠⊥是二面角故,的平面角。

由(2)知DB PD EF DE ⊥⊥,。

设正方形ABCD 的边长为a DC PD a ==,则,a BDPDPB a BD 3222=+==,,a PC DE a DCPDPC 2221,222===+=,在a aa a PBBD PD DF PDB Rt 3632,=⋅=⋅=∆中,在23sin ==∠∆DFDE EFD EFD Rt 中,,33ππ的大小为,二面角D PB C EFD --=∠∴。

相关文档
最新文档