高数公式定理大全
高等数学公式、定理 最全版

高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根高等数学定理大全第一章 函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
成考专升本高数公式大全

成考专升本高数公式大全高等数学是考研和专升本考试中必备的一门科目,掌握好高等数学的公式和定理对于高分通过考试非常重要。
下面是一些常用的高等数学公式和定理的汇总,供参考。
1.数列的常用公式:-等差数列通项公式:$a_n=a_1+(n-1)d$-等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)$-等比数列通项公式:$a_n=a_1 \cdot q^{n-1}$-等比数列前n项和公式:$S_n=\frac{a_1(q^n-1)}{q-1}$2.三角函数的基本公式:- 正弦函数的基本公式:$\sin(\alpha \pm \beta)=\sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$- 余弦函数的基本公式:$\cos(\alpha \pm \beta)=\cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$- 正切函数的基本公式:$\tan(\alpha \pm \beta)=\frac{\tan\alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$3.极限的常用公式:- 求和的极限公式:$\lim_{n \to \infty}\sum_{k=1}^{n}a_k = \lim_{n \to \infty}(a_1+a_2+...+a_n) = \lim_{n \to \infty}S_n$- 积分的定义公式:$\int_{a}^{b}f(x)dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n}f(\xi_i)\Delta x_i$4.微分的常用公式:- 导数的定义公式:$f'(x)=\lim_{\Delta x \to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$- 常见函数的导数公式:$(x^n)'=nx^{n-1}$,$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$,$(e^x)'=e^x$,$(\lnx)'=\frac{1}{x}$- 导数的四则运算公式:$(u \pm v)'=u' \pm v'$,$(cu)'=cu'$,$(uv)'=u'v+uv'$,$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$5.积分的常用公式:- 基本积分公式:$\int{x^n}dx=\frac{1}{n+1}x^{n+1}+C$,$\int{\frac{1}{x}}dx=\ln,x,+C$,$\int{e^x}dx=e^x+C$- 三角函数的积分公式:$\int{\sin x}dx=-\cos x + C$,$\int{\cos x}dx=\sin x+C$,$\int{\tan x}dx=\ln,\sec x,+C$ - 分部积分公式:$\int{uv}dx=uv-\int{u'v}dx$。
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高等数学公式、定理最全版

高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数中物理应用常见公式

高数中物理应用常见公式高等数学中物理应用的常见公式非常多,下面列举了一些常见的公式及其应用:1. 牛顿第二定律:F = ma这是质点运动学的基本定律,描述了一个质点受到的力与它的加速度和质量的关系。
2.圆周运动的速度和加速度:速度公式:v=ωr加速度公式:a=ω²r这些公式用于描述物体在圆周运动中的速度和加速度与角速度、半径的关系。
3.牛顿万有引力定律:F=Gm₁m₂/r²这个公式描述了两个物体之间的引力与它们的质量和距离的关系,是解释行星运动、万有重力等现象的基础。
4.动能定理:ΔK=W这个公式描述了物体动能变化与外力所做的功之间的关系。
5. 阻力公式:F = kv这个公式描述了一个物体受到的空气阻力与它的速度的关系,其中k 为阻力系数。
6.万有引力势能:U=-Gm₁m₂/r这个公式描述了两个物体之间的引力势能与它们的质量和距离的关系。
7.能量守恒定律:E=K+U这个公式描述了一个系统的总能量,其中E为系统的总能量,K为动能,U为势能。
8.简谐振动的周期和频率:周期公式:T=2π√(m/k)频率公式:f=1/T这些公式用于描述质点在简谐振动中的周期和频率与质量和弹性系数的关系。
9.热传导定律:q=kAΔt/Δx这个公式描述了传热过程中热量的传导与温度差、传导系数、传导路径的关系。
10.雷诺数:Re=ρvL/η这个公式描述了流体流动中惯性力与黏性力的关系,其中ρ为流体密度,v为流速,L为特征长度,η为动力黏度。
这只是部分高等数学中物理应用的常见公式,还有很多其他的公式和应用。
在物理学中,公式只是数学描述实际规律的工具,更重要的是理解其背后的物理原理和概念。
专升本高数公式大全总结

专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。
- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。
2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。
- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。
3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。
- 余弦定理:$c^2=a^2+b^2-2abcosC$。
- 正弦二倍角公式:$sin2x=2sinxcosx$。
- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。
4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。
- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。
- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。
5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。
高等数学十大定理公式

高等数学十大定理公式高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。
1、有界性|f(x)|≤K2、最值定理m≤f(x)≤M3、介值定理若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ4、零点定理若f(a)⋅f(b)<0∃ξ∈(a,b) ,使f(ξ)=05、费马定理设f(x)在x0处:1,可导2,取极值,则f′(x0)=06、罗尔定理若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则∃ξ∈(a,b) ,使得f′(ξ)=07、拉格朗日中值定理若f(x)在[a,b] 连续,在(a,b) 可导,则∃ξ∈(a,b) ,使得f(b)−f(a)=f′(ξ)(b−a)8、柯西中值定理若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则∃ξ∈(a,b) ,使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)9、泰勒定理(泰勒公式)n阶带皮亚诺余项:条件为在$x_0$处n阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$ n阶带拉格朗日余项:条件为n+1阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0 )^{n+1}\ ,x\xrightarrow{} x_0$10、积分中值定理(平均值定理)若f(x)在[a,b] 连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)。