2019最新九年级数学上册 第二十五章 概率初步章末小结教案

合集下载

九年级数学人教版(上册)第25章小结与复习

九年级数学人教版(上册)第25章小结与复习

乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率



步 列举法求


用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12

2019秋九年级数学上册25概率初步教案(新版)新人教版

2019秋九年级数学上册25概率初步教案(新版)新人教版

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

2019最新九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案

2019最新九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案

25.1.1 随机事件01 教学目标1.理解必然事件、不可能事件和随机事件的特点,并会判断.2.了解和体会随机事件发生的可能性是有大小的.02 预习反馈1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.2.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点数小于9;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中摸出白球.其中必然事件有②,不可能事件有④,随机事件有①③.4.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性>摸到K的可能性.(填“<”“>”或“=”)03 新课讲授类型1 事件的分类例1(教材P127问题1变式)五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个大小相同的签,每个签上面分别标有表示出场顺序的数字1,2,3,4,5,在看不到数字的情况下,小军先抽,他任意(随机)从盒中抽取一个签.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字大于0吗?是什么事件?(3)抽到的数字会是6吗?是什么事件?(4)抽到的数字会是3吗?是什么事件?【解答】(1)1,2,3,4,5,共5种.(2)必然大于0;是必然事件.(3)不可能是6;是不可能事件.(4)可能是3,也可能不是3;是随机事件.思考:确定性事件和随机事件的特点各是什么呢?确定性事件:在发生之前可以预测结果.随机事件:事先不能预料事件是否发生,即事件的发生具有不确定性.【跟踪训练1】下列事件中,是必然事件的是(B)A.购买一张彩票,中奖B.通常温度降到0 ℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【跟踪训练2】不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是(C)A.随机摸出1个球,是白球B.随机摸出2个球,都是黄球C.随机摸出1个球,是红球D.随机摸出1个球,是红球或黄球类型2 事件发生的可能性大小例2(教材P129练习2变式)一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(3)能否通过改变某种颜色球的数量,使“摸到红球”和“摸到白球”的可能性大小相同?【解答】(1)从袋子中任意摸出一个球,可能是红球,也可能是绿球或白球.(2)∵白球最多,红球最少,∴摸到白球的可能性最大,摸到红球的可能性最小.(3)拿出3个白球,或放入3个红球即可.思考:我们如何比较随机事件发生的可能性大小呢?事件发生的可能性大小往往是由发生事件的条件来决定的,因此我们可以通过比较各事件发生的条件及其对事件发生的影响来比较事件发生的可能性大小.【跟踪训练3】(25.1.1练习)如图,一个任意转动的转盘被均匀分成六份,随意转动一次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性(A)A.大B.小C.相等D.不能确定04 巩固训练1.下列事件是必然事件的是(D)A.打开手机就有未接电话B.乘坐公共汽车恰好有空座C.明天会下雨D.将油滴入水中,油会浮在水面上2.下列事件中,不可能事件是(C)A.两点确定一条直线B.五边形的内角和为540°C.实数的绝对值小于0D.如果a2=b2,那么a=b3.下列事件中,是随机事件的为(B)A.水涨船高B.冬天下雪C.水中捞月D.冬去春来4.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).5.一个袋中装有10个红球,6个黄球,4个白球,每个球除颜色外都相同,搅匀后,任意摸出一个球,摸到红球的可能性最大.05 课堂小结事件⎩⎪⎨⎪⎧确定性事件⎩⎪⎨⎪⎧必然事件不可能事件随机事件随机事件的特点:(1)事先不能预料事件是否发生,即事件的发生具有不确定性;(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.。

第25章《概率初步》教案

第25章《概率初步》教案
教学目标 教学重点 教学难点
25.1.1 随机事件 1 通过对生活中各种事件的判断,归纳出必然事件,不可能事件 和随机事件的特点, 并根据这些特点对有关事件作出准确判断。 随机事件的特点 对生活中的随机事件作出准确判断 课 堂 教 学 程 序 设 计 讨论完善
一、创设情境,引入 1.问题情境 下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是 100℃; (3)a2+b2=-1(其中 a,b 都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程 x2+2x+3=0 无实数解。 2.引发思考 我们把上面的事件(1) 、 (4) 、 (5) 、 (7)称为必然事件, 把事件(2) 、 (3) 、 (6)称为不可能事件,那么请问:什么是 必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、引导两个活动,自主探索新知 活动 1:5 名同学参加演讲比赛,以抽签方式决定每个人 的出场顺序。签筒中有 5 根形状大小相同的纸签,上面分别 标有出场的序号 1,2,3,4,5。小军首先抽签,他在看不 到的纸签上的数字的情况从签筒中随机(任意)地取一根纸 签。请考虑以下问题: (1)抽到的序号是 0,可能吗?这是什么事件? (2)抽到的序号小于 6,可能吗?这是什么事件? (3)抽到的序号是 1,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? 根据学生回答的具体情况,教师适当地加点拔和引导。 活动 2:小伟掷一个质地均匀的正方形骰子,骰子的六 个面上分别刻有 1 至 6 的点数。请考虑以下问题,掷一次骰 子,观察骰子向上的一面:
第二十五章 概率初步第 3 页
得到结果 2 的组数
4、进行大量重复试验,验证猜测的正确性。 教师请同学们进行 400 次重复的“摸球”试验,教师提 问: 如果把刚才各小组的 20 次 “摸球”合并在一起是否等同 于 400 次“摸球”?这样做会不会影响试验的正确性? 待学生回答后,教师把结果统计在表中。 事件 A 发生的次数 事件 B 发生的次数 400 次摸球 5、对表中的数据进行分析,得出结论。 提问:通过上述试验,你认为,要判断同一试验中哪个 事件发生可能性的较大,必须怎么做? 先让学生回答,回答时教师注意纠正学生的不准确的用 语,最后由教师总结:要判断随机事件发生的可能性大小, 必须经过大量重复试验。 6、对试验结果作定性分析。 在经过大量重复摸球以后,我们可以确定,事件 A 发生 的可能性大于事件 B 发生的可能性,请同学们分析一下其原 因是什么? 三、练习反馈 1、一个袋子里装有 20 个形状、质地、大小一样的球, 其中 4 个白球,2 个红球,3 个黑球,其它都是黄球,从中任 摸一个,摸中哪种球的可能性最大? 2、一个人随意翻书三次,三次都翻到了偶数页,我们能 否说翻到偶数页的可能性就大? 3、袋子里装有红、白两种颜色的小球,质地、大小、形 状一样,小明从中随机摸出一个球,然后放回,如果小明 5 次摸到红球,能否断定袋子里红球的数量比白球多?怎样做 才能判断哪种颜色的球数量较多? 4、已知地球表面陆地面积与海洋面积的比均为 3:7。 如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落 在陆地上”哪个可能性更大? 四、小结 作业设计 教 学 反 思

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。

人教版九年级数学上册《25章 概率初步 小结 构建知识体系》优质课教案_5

人教版九年级数学上册《25章 概率初步  小结  构建知识体系》优质课教案_5

中考总复习——概率(学案)一.考点聚焦1.理解随机事件,在具体情境中进一步了解概率的意义,体会概率描述不确定现象的数学模型。

2.掌握用列表法,、“树形图法”求随机事件的概率。

3.了解用频率来估计概率的意义,会用概率统计的方法解决具体的问题。

4.中考考查的热点有分析事件发生的可能性,并确定其概率的大小,通常以填空题、选择题、解答题的形式考查,考查的难度一般不大,用概率的数学思想解决现实生活中的实际问题将是今后中考的令一热点。

二.知识回顾不可能事件概率为:p(A)=事件必然事件概率为:p(A)=随机事件概率为:≤p(A) ≤随机事件发生的可能性大小概率直接求古典概型列举法列表法类型与算法树形图法频率估计概率三.典型例题解析考点一:事件发生的可能性例1.(2009年咸宁第6题)下列说法正确的是()A.某一种彩票中奖概率是11000,那么买1000张该种彩票就一定能中奖B.打开电视看CCTV—5频道,正在播放NBA篮球比赛是必然发生的事件C.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨D.在平面内,平行四边形的两条对角线一定相交【举一反三】下列事件中,属于随机事件的是().A.物体在重力的作用下自由下落 B.x为实数,x2<0C.在某一天内电话收到呼叫次数为0 D.今天下雨或不下雨考点二:简单事件概率的计算例2.(2010年广州中考数学模拟试题一)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.14B.15C.16D.320【举一反三】(2010年广西桂林适应训练)袋中有形状、大小相同的10个红球和5个白球,闭上眼睛从袋中随机取出一个球,取出的球是白球的概率为().(A)12(B)31(C)41(D)51考点三:用列举法求概率例3.两人要去某风景区游玩,每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度,也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:⑴三辆车按出现的先后顺序工有哪几种不同的可能?⑵你认为甲、乙两人采用的方案,哪一种方案使自己..乘上等车的可能性大? 为什么?【举一反三】(2010年咸宁第21题本题满分9分)某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.考点四:用频率估计概率例4.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).【举一反三】在一个有10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?考点五:概率知识的应用例5. (2010年河南省南阳市中考模拟数学试题)有A B ,两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字1-,2-和3-.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为()x y ,.(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线3y x =-上的概率.【举一反三】(2010年河南中考模拟题1)有一个可以自由转动的转盘, 被分成了4个相同的扇形,分别标有数1、2、3、4(如图所 示)另一个不透明的口袋装有分别标有数0、1、3的三个小球 (除数字不同外,其余都相同)。

2019九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版

2019九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(1)教案 (新版)新人教版

1
提炼课 用列表法列举所有可能的结果 题 教法学 法 指导 教具 课件 准备 教学过程提要 学生要解决的问 环节 题或完成的任务 一、复习 引 什么? 入 2、随机事件有什么特点? 新 3、概率的意义是什么? 课 4、等 可能时间的概率怎么计算?概率的取值范 围是什么? 学做基础 一、复习: 1、必然事件、不可能事件、随机事件的概念是 复习上节所 学、为本节教 师生活动 设计意图 合作探究法 引导启发法 练习法
m n
m 计算事件的概率. n

1、必做题:1-------7

2、选做题:8

5




第 成 形 终 最 的 场 市 界 世 和 命 革 业 工 次 两 17讲 练 标 达 下 课 8) 满 钟 45分 : 间 (时 8) 4分 小 每 12, 共 大 (本 题 择 选 、 一 () 了 映 反 这 术 技 新 用 雇 少 耗 消 本 入 投 多 能 可 发 开 来 汁 脑 尽 绞 都 业 行 各 是 于 。 宜 便 为 极 却 格 价 的 炭 煤 而 惊 得 高 平 水 资 人 工 象 现 种 一 成 形 渐 逐 国 英 , 期 8中 到 纪 6世 1. 成 形 始 初 的 断 垄 业 行 A. 赖 依 的 炭 煤 对 动 启 化 代 近 B. 锐 尖 渐 日 的 盾 矛 资 劳 C. 件 条 特 独 的 启 命 革 力 动 D. 误 B错 化 近 映 反 未 并 除 排 体 无 在 AC两 ; 确 正 项 故 件 条 特 独 其 有 启 命 革 力 见 可 生 而 运 应 明 汽 蒸 动 劳 替 代 器 机 源 能 以 后 此 术 技 新 佣 雇 少 耗 消 多 出 发 开 投 法 设 方 想 业 行 各 是 于 , 象 现 的 宜 便 为 极 却 格 价 炭 煤 、 惊 得 高 资 人 工 了 成 形 渐 逐 国 英 8期 到 纪 16世 中 料 材 D。 选 : 析 解 () 期 初 命 革 业 出 映 反 这 。 恩 尼 奥 · 得 彼 头 他 和 特 科 主 厂 法 拌 搅 铁 熟 产 生 兼 个 顿 普 伦 克 骡 , 工 织 是 原 斯 夫 里 格 哈 者 明 发 的 机 纱 纺 妮 珍 2. 合 结 正 真 未 尚 术 技 和 学 科 A. 现 新 的 学 科 于 赖 依 明 发 术 技 B. 术 技 新 了 断 垄 主 场 工 手 C. 衡 平 不 而 慢 缓 程 进 播 传 术 技 新 D. D 关 无 程 进 播 传 新 符 不 原 斯 夫 里 格 哈 机 妮 珍 C与 误 B错 系 联 接 直 太 有 没 并 ; 确 项 故 合 结 正 真 未 尚 学 了 映 反 人 熟 娴 术 技 是 都 大 者 明 发 命 革 业 次 一 第 知 可 , 息 信 等 头 的 他 和 特 科 主 厂 兼 纱 纺 ” 工 织 “ 料 材 据 A。 选 : 析 解 () 这 力 持 保 能 又 时 同 闲 休 何 任 让 不 换 更 流 里 大 卜 萝 麦 小 、 菁 芜 植 种 上 土 块 的 场 在 别 分 即 ” 制 作 轮 四 “ 做 叫 新 项 一 中 其 。 命 革 术 技 业 农 了 生 发 区 地 部 东 国 英 7, 至 代 160年 3. 程 进 市 城 和 化 业 工 国 英 动 推 A. 给 自 食 粮 现 实 国 英 成 促 B. 大 扩 距 差 济 经 部 西 东 国 英 致 导 C. 幕 序 动 运 地 圈 国 英 开 揭 D. D 关 无 产 生 目 题 与 力 劳 由 量 大 供 它 ” 人 吃 羊 “ 动 运 C圈 较 比 展 发 济 经 西 不 行 进 部 东 仅 误 B错 给 自 食 粮 明 说 未 并 ; 确 正 项 故 础 基 定 奠 化 为 率 用 利 地 土 了 高 提 法 做 一 这 , 术 技 农 前 命 革 业 工 国 英 是 的 映 反 中 料 材 A。 选 : 析 解 () 确 准 最 解 理 点 观 者 作 对 ” 。 卒 为 成 则 钟 时 而 , 狱 监 的 新 种 一 是 厂 工 “ : 说 曾 斯 德 兰 · 卫 大 人 国 英 4. 方 地 的 发 频 罪 犯 了 成 厂 工 A. 段 手 理 管 的 狱 监 仿 模 厂 工 B. 削 剥 的 人 个 对 织 组 断 垄 判 批 C. 活 人 工 了 化 异 产 生 器 机 D. 确 正 活 了 化 异 产 生 器 机 下 度 制 知 可 C据 织 组 断 垄 出 已 明 说 能 B还 段 手 理 管 仿 模 迫 压 削 剥 人 对 现 体 要 主 卒 为 成 则 钟 时 而 ; 误 错 故 , 符 不 思 意 ” 狱 监 的 新 种 一 是 厂 工 “ 料 材 与 A项 D。 选 : 析 解 () ” 身 脱 中 其 能 人 无 界 卷 席 已 日 今 纪 世 个 过 广 推 欧 西 由 , 态 形 济 经 代 现 新 全 这 。 面 两 的 体 一

人教版初中九年级数学上册《第二十五章概率》教案

人教版初中九年级数学上册《第二十五章概率》教案

第二十五章概率第一课时随机事件教学目标:1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.3.能根据随机事件的特点,辨别哪些事件是随机事件.4.引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点. <活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;作业:P131~132,1~3题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步
章末小结
※教学目标※ 【知识与技能】
掌握本章重要知识点,会求事件的概率,能用概率的知识解决实际问题. 【过程与方法】
通过梳理本章知识,回顾解决生活中的概率问题,培养学生的分析问题和解决问题的能力.
【情感态度】
在用本章知识解决具体问题的过程中,进一步增强数学的应用意识,感受数学的应用价值,激发学习兴趣. 【教学重点】
本章知识结构梳理及其应用. 【教学难点】
利用概率知识解决实际问题. ※教学过程※ 一、整体把握
二、加深理解
1.通过实例,体会随机事件与确定事件的意义,并能估计随机事件发生可能性的大小.
2.结合具体情境了解概率的意义,会用列举法(列表法和树状图法)求一些随机事件发生的概率.P (A )=
n
m
(n 是事件发生的所有的结果,m 是满足条件的结果). 3.对于事件发生的结果是不是有限个,或每种可能的结果发生的可能性不同的事件,我们可以通过大量重复试验时的频率估计事件发生的概率. 三、复习新知
例1 一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B ,C ,D 三人随机坐在其他三个座位上,求A 与B 不相邻的概率.
分析:按题意,可列举出各种可能的结果,再一次计算A 与B 不相邻的概率.
解:按顺时针方向依次对B ,C ,D 进行排位,如下:
三个座位被B ,C ,D 三人随机坐的可能性共有6种,由图可知:P (A 与B 不相邻)=
62=3
1. 例2 有两个可以自由转动的均匀转盘A 、B ,分别被分成4等份,3等份,并在每份内均标有数字,如图所示:
①分别转动转盘A 与B ②两个转盘停止后,将两个指针所指的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止).若和为0,则王洋获胜;若和不为0,则刘飞获胜.
问:(1)用树状图求王洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由. 解:(1)由题意可画树状图为:
A : 0 1 2 3
B :0 -1 -2 0 -1 -2 0 -1 -2 0 -1 -2
和:0,-1,-2 1,0,-1 2,1, 0 3, 2,1
这个游戏有12种等可能的结果,其中和为0的有三种.∴王洋获胜的概率为
31124
=. (2)这个游戏不公平.∵王洋获胜的概率为14,刘飞获胜的概率为3
4
.∴游戏对双方不
公平.
例3 一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.
(1)小王通过大量反复试验(每次取一个球,放回后搅匀再取第二个)发现,取出黑球的频率稳定在1
4
左右,请你估计袋中黑球的个数.
(2)若小王取出的第一个球是白球,将它放在桌上,闭上眼睛从袋中余下的球中再任意取一个球,取出红球的概率是多少?
分析:利用频率估计概率,建立方程.
解:(1)设黑球的个数为x 个,则
1
204
x =,解得5x =.所以袋中黑球的个数为5个. (2)小王取出的第一个球是白球,剩下19个球中有6个红球.∴P (红球)619
=
. 四、巩固练习
1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,是一个“赵爽弦图”飞镖板,其直角三角形两直角边分别是2和4,小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( ) A.12 B.14 C.15 D.110
2.如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这是,某个扇形会恰好停止在指针所指的位置,并相应得到这个扇形扇形上的数(若指针恰好指在等分线上,当作指向右边的扇形).
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数字相同,则称两人“不谋而合”.用列表法(或树状图法)求两人“不谋而合”的概率
.
答案:1.C 2.解:(1)1
3

共9种等可能的结果,其中数字相同的结果有3种,故其概率为1
3
.
五、归纳小结
本堂课你对本章内容有一个全面的了解与掌握吗?你有哪些疑问? ※布置作业※
从教材复习题25中选取. ※教学反思※
本节课一方面对全章知识进行系统归纳与总结后,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学的意识.同时学生通过本节课的复习,掌握运用概率知识的一些基本方法和步骤.。

相关文档
最新文档