安阳市滑县2019届九年级上期末考试数学试题含答案(扫描版)

合集下载

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019-2020学年度人教版九年级数学第一学期期末测试题含答案

2019~2020 学年度第一学期期末考试九年级数学试卷题 号一二17 18 19三 2021 22 23总分得 分一、选择题(本题共 8 小题,每小题 3 分,共 24 分)1.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称的卡 片的概率是【 】A.14B.1 2C.3 4D. 12.已知一个直角三角形的两条直角边的长恰好是方程x 上的中线长是【 】-3x =4(x -3)的两个实数根,则该直角三角形斜边A. 3B. 4C.6D. 2.53.某商品原价每盒 28 元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒 16 元, 设该药品平均每次降价的百分率为 x ,由题意,所列方程正确的是【 】A.28 (1-2x )=16B. 16(1-2x )=28C. 28 (1-x ) =16D. 16(1-x ) =28 4.将二次函数 y =x 的图象向右平移一个单位长度,再向上平衡 3 个单位长度所得的图象解析式为【 】A. y =(x -1)+3 B. y =(x +1) +3 C. y =(x -1) -3 D. y =(x +1) -3 5.如图,PA ,PB 切⊙O 于点 A ,B ,点 C 是⊙O 上一点,且∠P =36°,则∠ACB =【 】 PA. 54°B. 72°C. 108°D. 144°6.在体检中,12 名同学的血型结果为:A 型 3 人,B 型 3 人,AB 型 4 人,AB·OCO 型 2 人,若从这 12 名同学中随机抽出 2 人,这两人的血型均为 O 型的概率为【】A.1 66B.1 33C.15 7 D.22 22︵7.如图,已知 AB 是⊙O 的直径,AD 切⊙O 于 A ,点 C 是E B 的中点,则下列结论不成立的是【 】A. OC ∥AEB. EC =BCC. ∠DAE =∠ABED. AC ⊥OE8.如图,抛物线 y =ax +bx +c (a ≠0)的对称轴为直线 x =1,与 x 轴的一个 交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b ;②方程 ax +bx +c =0 的两个根是 x =-1,x =3;③3a +c >0; 12y3-1 O1 x④当 y >0 时,x 的取值范围是-1≤x <3;⑤当 x <0 时,y 随 x 增大而增大。

2019年九年级上册期末考试数学试卷含答案 (29)

2019年九年级上册期末考试数学试卷含答案 (29)

2019年九年级(上)期末数学试卷一、选择题(共10题;共30分)1.下列方程一定是一元二次方程的是()A. x2+ ﹣1=0B. 2x2﹣y﹣3=0C. ax2﹣x+2=0D. 3x2﹣2x﹣1=02.⊙O1的半径为1, ⊙O2的半径为8,两圆的圆心距为7,则两圆的位置关系为( )A. 相交B. 内切C. 相切D. 外切3.△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A. 2,5B. 1,5C. 4,5D. 4,104.如图所示的5个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EB1、B1FC1、C1GB的路线爬行,乙虫沿ACB的路爬行,则下列结论正确的是()A. 甲先到B点B. 乙先到B点C. 甲、乙同时到B点D. 无法确定5.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A. 30°B. 45°C. 60°D. 90°6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A. 3πB. 6πC. 5πD. 4π7.在△ABC中,AB=3,AC= .当∠B最大时,BC的长是()A. B. C. D. 28.圆锥的底面半径为2,母线长为4,则它的侧面积为()A. 8πB. 16πC. 4πD. 4π9.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A. 第3.3sB. 第4.3sC. 第5.2sD. 第4.6s10.下列各式无意义的是()A. ﹣B.C.D.二、填空题(共8题;共24分)11.如图,该图形至少绕圆心旋转________度后能与自身重合.12.已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是________.13.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为________14.方程(x+1)2﹣2(x﹣1)2=6x﹣5的一般形式是________15.若是二次函数,则m=________.16.若⊙O的半径为6cm,则⊙O中最长的弦为 ________厘米.17.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .18.请你写出一个二次函数,其图象满足条件:①开口向上;②与y轴的交点坐标为(0,1).此二次函数的解析式可以是________.三、解答题(共6题;共36分)19.公园里有一人设了个游戏摊位,游客只需掷一枚正方体骰子,如果出现3点,就可获得价值10元的奖品,每抛掷1次骰子只需付1元的费用.小明在摊位前观察了很久,记下了游客的中奖情况:游客 1 2 3 4 5 6 7抛掷次数 30 20 25 6 16 50 12中奖次数 1 0 0 1 0 2 0看了小明的记录,你有什么看法?20.一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.21.如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.22.在函数y=(a为常数),的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),试确定函数值y1,y2,y3的大小关系.23.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.24.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为xm,绿化带的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、综合题(共10分)25.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.九年级(上)期末数学试卷参考答案与试题解析一、选择题1.【答案】D【考点】一元二次方程的定义【解析】【解答】解:A、x2+ ﹣1=0是分式方程;B、2x2﹣y﹣3=0是二元二次方程;C、ax2﹣x+2=0中若a=0时是一元一次方程;D、3x2﹣2x﹣1=0是一元二次方程;故选:D.【分析】根据一元二次方程的定义判断即可.2.【答案】B【考点】圆与圆的位置关系【解析】【分析】设两圆的圆心距O1O2为d,根据d=R-r时,两圆内切,即可求得答案.【解答】设两圆的圆心距O1O2为d,⊙O1的半径为r,⊙O2的半径为R,则r=1,R=8,d=7,∵7=8-1,∴d=R-r,∴这两圆的位置关系是内切.故选B.【点评】此题考查了圆与圆的位置关系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).3.【答案】A【考点】三角形的内切圆与内心【解析】【解答】解:∵62+82=102,∴△ABC为直角三角形,∴△ABC的内切圆的半径==2,△ABC的外接圆的半径==5.故选A.【分析】先利用勾股定理的逆定理得到△ABC为直角三角形,然后利用直角边为a、b,斜边为c的三角形的内切圆半径为计算△ABC的内切圆的半径,利用斜边为外接圆的直径计算△ABC的外接圆的半径.4.【答案】C【考点】弧长的计算【解析】【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1B1+B1C1+C1B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】π(AA1+A1B1+B1C1+C1B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题主要考查了弧长的计算公式.5.【答案】A【考点】直线与圆的位置关系,切线的性质【解析】【解答】根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.【分析】根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.本题考查了直线与圆的位置关系、切线的性质.此题属于操作题,在点P的运动过程中,∠OAP取最大值时,AP正好是⊙O的切线.6.【答案】B【考点】扇形面积的计算,旋转的性质【解析】【解答】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积.即可求解.7.【答案】C【考点】切线的性质【解析】【解答】解:以A为圆心,依据AC为半径作⊙A,当BC为⊙A的切线时,即BC⊥AC时,∠B最大,此时BC= = = .故答案为:C.【分析】“∠B最大”也就是以AC为半径的⊙A上找一点,使∠B最大,则AC BC 时,即BC与⊙A相切时,∠B最大,由勾股定理可求出BC长度.8.【答案】A【考点】圆锥的计算【解析】【解答】解:底面半径为2,底面周长=64,侧面积=×4π×4=8π,故选A.【分析】圆锥的侧面积=底面周长×母线长÷2.9.【答案】D【考点】二次函数的应用【解析】【解答】解:∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为x=4.5.∵4.6s最接近4.5s,∴当4.6s时,炮弹的高度最高.故选:D.【分析】由炮弹在第3.2秒与第5.8秒时的高度相等可知这两点关于对称轴对称,故此可求得求得抛物线的对称轴.10.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:∵32=9,∴﹣有意义;∵﹣32=﹣9,∴无意义;∵(﹣3)2=9,∴有意义;∵|﹣3|=3,∴有意义;故选:B.【分析】根据乘方的定义和绝对值的定义进行计算,再由二次根式的定义即可得出结果.二、填空题11.【答案】40【考点】旋转对称图形【解析】【解答】解:该图可以平分成9部分,则至少绕圆心旋转=40°后能与自身重合.故答案为:40.【分析】该图可以平分成9部分,因而每部分被分成的圆心角是40°,因而旋转40度的整数倍,就可以与自身重合.12.【答案】-4【考点】根与系数的关系【解析】【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=﹣2﹣3+1=﹣4.故答案为:﹣4.【分析】由根与系数的关系可得x1+x2=3、x1•x2=﹣2,将其代入(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1中,即可求出结论.13.【答案】5【考点】二次函数的性质【解析】【解答】解:∵y=(x﹣2)2+1=x2﹣4x+4+1=x2﹣4x+5,∴c的值为5.故答案是:5.【分析】把配方后的函数解析式转化为一般形式,然后根据对应项系数相等解答.14.【答案】x2﹣4=0【考点】一元二次方程的定义,一元二次方程的应用【解析】【解答】解:方程整理得:x2+2x+1﹣2x2+4x﹣2=6x﹣5,即x2﹣4=0,故答案为:x2﹣4=0【分析】方程整理为一元二次方程的一般形式即可.15.【答案】﹣2【考点】二次函数的定义【解析】【解答】解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.【分析】先根据二次函数的定义列出关于m的不等式组,求出m的值即可.16.【答案】12【考点】圆的认识【解析】【解答】解:∵⊙O的半径为6cm,∴⊙O的直径为12cm,即圆中最长的弦长为12cm.故答案为12.【分析】根据直径为圆的最长弦求解.17.【答案】6【考点】切线的性质,相切两圆的性质【解析】【解答】设边长为a,连接NO2=2,AO2=5;作O2E垂直AB于E则Rt△AEO2,AO2="5" O2E=a-2,AE=,则52=()2+(a-2)2解上式即可得,a=6.【分析】在图中构造直角三角形,利用勾股定理中的相等关系作为等量关系列方程求解即可.18.【答案】y=x2+1【考点】二次函数的性质【解析】【解答】解:答案不唯一,如:y=x2+1,故答案为:y=x2+1.【分析】二次函数的解析式是y=ax2+bx+c(a、b、c为常数,a≠0),根据开口向上得出a为正数,根据与y轴的交点坐标为(0,1)得出c=1,写出一个符合的二次函数即可.三、解答题19.【答案】解:对于一个普通的正方体骰子,3点出现的概率应为,小明记录的抛掷次数为159次,中奖的次数应为27次左右,而实际中奖次数只有4次,于是可以怀疑摆摊人所用的骰子质量分布不均匀,要进一步证实这种怀疑,可以通过更多的试验来完成.【考点】利用频率估计概率【解析】【分析】先根据正方体骰子的特点计算出3出现的概率,再与小明实际记录的中奖次数相比较即可得出结论.20.【答案】解:(1)设绿球的个数为x.由题意,得解得x=1,经检验x=1是所列方程的根,所以绿球有1个;(2)根据题意,画树状图:由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿),(绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1).∴P(两次都摸到红球)==;或根据题意,画表格:第1次第2次红1 红2 黄绿红1 (红2,红1)(黄,红1)(绿,红1)红2 (红1,红2)(黄,红2)(绿,红2)黄(红(红(绿,1,黄)2,黄)黄)绿(红1,绿)(红2,绿)(黄,绿)由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,∴P(两次都摸到红球)==。

2019-2020学年人教版初三数学上册期末测试(二)(有答案)【精品版】

2019-2020学年人教版初三数学上册期末测试(二)(有答案)【精品版】

期末测试(二)(满分:120分 考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.下列说法正确的是(D)A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球B .天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C .某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1 000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上 2.用配方法解方程x 2+1=8x ,变形后的结果正确的是(C)A .(x +4)2=15B .(x +4)2=17C .(x -4)2=15D .(x -4)2=173.关于x 的一元二次方程ax 2-x +1=0有实数根,则a 的取值范围是(A)A .a ≤14且a ≠0B .a ≤14C .a ≥-14且a ≠0D .a ≥-144.把抛物线y =-12x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为(B)A .y =-12(x +1)2+1B .y =-12(x +1)2-1C .y =-12(x -1)2+ 1D .y =-12(x -1)2-15.下列图形:从中任取一个是中心对称图形的概率是(C)A.14B.12C.34 D .1 6.若正六边形的半径长为4,则它的边长等于(A)A .4B .2C .2 3D .4 37.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为(D)A .(2,23)B .(-2,4)C .(-2,22)D .(-2,23)8.如图,从一块直径为24 cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(B)A .2 3 cmB .3 2 cmC .6 cmD .12 cm9.如图,平面直角坐标系中,⊙P 与x 轴分别交于A 、B 两点,点P 的坐标为(3,-1),AB =2 3.将⊙P 沿着与y 轴平行的方向平移多少距离时⊙P 与x 轴相切(D)A .1B .2C .3D .1或310.抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2.正确结论的个数是(C)A .1B .2C .3D .4提示:①②③正确.二、填空题(每小题3分,共15分)11.已知抛物线y =x 2-3x +m 与x 轴只有一个公共点,则m =94.12.在国家政策的宏观调控下,某市的商品房成交价由去年10月份的7 000元/m 2下降到12月份的5 670元/m 2,则11、12两月平均每月降价的百分率是10%.13.如图,在⊙O 中,AB 为直径,CD 为弦,已知∠CAB =50°,则∠ADC =40°.14.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为716.15.如图,在△ABC 中,∠C =90°,AC =BC =2,将△ABC 绕点A 按顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本大题共2小题,每小题5分,共10分)解方程: (1)3x 2+2x -5=0;解:x 1=1,x 2=-53.(2)(1-2x)2=x 2-6x +9. 解:x 1=43,x 2=-2.17.(本题6分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A(-4,3),B(-1,2),C(-2,1).(1)画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出点B 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°得到的△A 2B 2C 2,并写出点A 2的坐标.解:(1)△A 1B 1C 1如图所示,B 1(1,-2). (2)△A 2B 2C 2如图所示,A 2(3,4).18.(本题7分)小明遇到这样一个问题:已知:b -c a =1.求证:b 2-4ac ≥0.经过思考,小明的证明过程如下: ∵b -c a=1,∴b -c =a.∴a -b +c =0.接下来,小明想:若把x =-1代入一元二次方程ax 2+bx +c=0(a ≠0),恰好得到a -b +c =0.这说明一元二次方程ax 2+bx +c =0有根,且一个根是x =-1.所以,根据一元二次方程根的判别式的知识易证:b 2-4ac ≥0.根据上面的解题经验,小明模仿上面的问题自己编了一道类似的题目:已知:4a +c b =-2.求证:b 2≥4ac.请你参考上面的方法,写出小明所编题目的证明过程.证明:∵4a +cb =-2,∴4a +c =-2b , ∴4a +2b +c =0.∵把x =2代入一元二次方程ax 2+bx +c =0(a ≠0),恰好得到4a +2b +c =0, ∴一元二次方程ax 2+bx +c =0有根,且一个根是x =2, ∴Δ=b 2-4ac ≥0,即b 2≥4ac.19.(本题8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是12;(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.解:用树状图表示所有可能的情形如下:一共有12种情形,2名教师来自同一所学校的情形有4种,于是2名教师来自同一所学校的概率是412=13.20.(本题10分)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB.连接AC ,AD ,OD ,其中AC =CD.过点B 的切线交CD 的延长线于E. (1)求证:DA 平分∠CDO ;(2)若AB =12,求图中阴影部分的周长之和(参考数据:π≈3.1,2≈1.4,3≈1.7).解:(1)证明:∵CD ∥AB ,∴∠CDA =∠BAD. 又∵AO =OD ,∴∠ADO =∠BAD. ∴∠ADO =∠CDA ,即DA 平分∠CDO.(2)连接BD.∵AB 是直径,∴∠ADB =90°. ∵AC =CD ,∴∠CAD =∠CDA. 又∵∠CDA =∠BAD.∴∠CDA =∠BAD =∠CAD.∴AC ︵=DC ︵=BD ︵. 又∵∠AOB =180°,∴∠DOB =60°.∵OD =OB ,∴△DOB 是等边三角形.∴BD =OB =12AB =6.∵AC ︵=BD ︵,∴AC =BD =6.∵BE 切⊙O 于B ,∴BE ⊥AB.∴∠DBE =∠ABE -∠ABD =30°. ∵CD ∥AB ,∴BE ⊥CE.∴DE =12BD =3,BE =BD 2-DE 2=62-32=3 3.又∵lBD ︵=60π×6180=2π,∴图中阴影部分的周长之和为2π+6+2π+3+33=4π+9+33≈4×3.1+9+3×1.7=26.5.21.(本题8分)一幅长20 cm ,宽12 cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2,设竖彩条的宽度为x cm ,图案中三条彩条所占面积为y cm 2. (1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.解:(1)根据题意可知:横彩条的宽度为32x cm.∴y =20×32x +2×12·x -2×32x·x.整理,得y =-3x 2+54x.(2)根据题意可知:y =25×20×12=96.∴96=-3x 2+54x.整理,得x 2-18x +32=0.解得x 1=2,x 2=16(舍去).∴32x =3.答:横彩条的宽度为3 cm ,竖彩条的宽度为2 cm.22.(本题12分)给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,连接AD ,DC ,CE.已知∠DCB =30°. ①求证:△BCE 是等边三角形;②求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.解:(1)正方形、矩形、直角梯形(任写两个). (2)①证明:∵△ABC ≌△DBE ,∴BC =BE. ∵∠CBE =60°,∴△BCE 是等边三角形. ②证明:∵△ABC ≌△DBE ,∴AC =DE.∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°. ∵∠DCB =30°,∴∠DCE =90°. ∴在Rt △DCE 中,DC 2+CE 2=DE 2.∴DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.23.(本题14分)综合与探究:如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y =-x 2+4x 刻画,斜坡可以用一次函数y =12x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O ,A 得△POA ,求△POA 的面积;(4)在OA 上方的抛物线上存在一点M(M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.解:(1)由题意,得y =-x 2+4x =-(x -2)2+4, 故二次函数图象的最高点P 的坐标为(2,4). (2)解方程-x 2+4x =12x ,得x 1=0,x 2=72.当x =72时,y =12×72=74.∴点A 的坐标为(72,74).(3)作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B.S △POA =S △POQ +S 梯形PQBA -S △BOA =12×2×4+12×(74+4)×(72-2)-12×72×74=4+6916-4916=214.(4)过P 作OA 的平行线,交抛物线于点M ,连接OM ,AM ,则△MOA 的面积等于△POA 的面积. 设直线PM 的解析式为y =12x +b.∵点P 的坐标为(2,4),∴4=12×2+b ,解得b =3.∴直线PM 的解析式为y =12x +3.解方程-x 2+4x =12x +3,得x 1=2,x 2=32.当x =32时,y =12×32+3=154.∴点M 的坐标为(32,154).。

2019九年级上册期末测试题及答案精品教育.doc

2019九年级上册期末测试题及答案精品教育.doc

2019年九年级上册期末测试题及答案2019年九年级上册期末测试题一、选择题(每小题3分,共36分.下列各题的选项中只有一个正确,请将正确答案选出来,并将其字母填入后面的括号内)1.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )2.一元二次方程根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.方程x2-3x=0的根为 ( )A.x=3B.x=-3C.x1=-3, x2=0D.x1=3 ,x2=04.抛物线的顶点坐标是( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)5. 在双曲线的任一分支上,y都随x的增大而增大,则k的值可以是( )A.﹣2B.0C.2D.16. 下列成语中,属于随机事件的是( )A.水中捞月B.瓮中捉鳖C.守株待兔D.探囊取物7. 如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠ACB的度数为( )A.130°B.100°C. 80°D. 50°8 .下列四个命题中,正确的个数是( )①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆;③三角形的内心是三角形三条角平分线的交点;④三角形的外心到三角形三个顶点的距离都相等;⑤三角形的外心一定在三角形的外部.A.4个B.3个C.2个D.1个9.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为( )A. 0.5B.1.5C.D. 110.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉 40只黄羊,发现其中两只有标志.从而估计该地区有黄羊( )A.200只B.400只C.800只D.1000只11.某种药品原价为49元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是( )A.49(1﹣x)2=49﹣25B.49(1﹣2x)=25C.49(1﹣x)2=25D.49(1﹣x2)=2512.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )二、填空题(本题6个小题,每小题3分,共18分)13.有一个边长为3的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是14.已知一个布袋里装有4个红球、3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,摸红球的概率为,则a等于15.如图,过反比例函数y= (x>0)的图象上一点A 作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为16.已知函数 ( 为常数)的图象经过点A(1, ),B(2, ),C(-3, ),则 , , 从小到大排列顺序为17.如图,一男生推铅球,铅球行进高度 (米)与水平距离 (米)之间的关系是,则铅球推出距离米.18.有一半径为1m的圆形铁片,要从中剪出一个最大的圆心角为90°的扇形ABC,用来围成一个圆锥,该圆锥底面圆的半径是三、解答题( 本题4个小题,每小题6分,共24分)19. 解方程:(1) (2)20. 如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1),B(n,-2)两点,与x轴交于点C.(1)求反比例函数解析式和点B坐标;(2)当x的取值范围是时,有 .21. 如图.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D求证:AC=BD四、(本小题8分)22.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点,将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出 ;(2)在旋转过程中点B所经过的路径长为 ;(3)在旋转过程中线段AB、BO扫过的图形的面积之和为五、(本小题7分)23. 甲乙两同学用一副扑克牌中牌面数字分别是3,4,5,6的4张牌做抽数字游戏,游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,抽出的牌不放回,然后将剩下的牌洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请利用树状图或列表法说明理由.六、(本题9分)24.某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施. 经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?(2)要使商场平均每天的盈利最多,请你为商场设计降价方案.七、(本题9分)25. 已知:AB是⊙O的直径,BD是⊙O的弦,延长BD 到点C,使AB=AC;,连结AC,过点D作DE ⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线八、(本题9分)26.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.2019年九年级上册期末测试题答案一、选择1 2 3 4 5 6 7 8 9 10 11 12C AD D C C A B D B C D二、填空13. 3 ; 14. 5 ; 15. 4 ; 16. y117. 10 ; 18 . m三、解答题19.(1)解:x2+4x+2=0x2+4x=-2x2+4x+4=2----------2分(x-2)2=2x-2=± ---------4分x=2+ 或x=2- .--------6分(2)解:x(x﹣3)=-x+3x(x﹣3)+x﹣3=0(x﹣3)(x+1)=0---------4分解得:x=-1或x=3.--------6分备注:上述两题解法不做要求,做对即可加分。

2019年初三上册数学期末试卷及答案

2019年初三上册数学期末试卷及答案

2019年初三上册数学期末试卷及答案一、选择题(本题共10小题,每小题3分,共30分)1.下列各式中,准确的是()A. =﹣3 B.(﹣)2=9 C.± =±3 D. =﹣22.方程(x﹣1)(x+3)=12化为ax2+bx+c=0的形式后,a、b、c的值为()A.1、2、﹣15 B.1、﹣2、﹣15 C.﹣1、﹣2、﹣15 D.﹣1、2、﹣153.已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A.﹣3 B.﹣2 C.﹣1 D.34.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB 于E,且CD=2,DE=1,则BC的长为()A.2 B. C.2 D.45.一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,则m等于()A.﹣6或1 B.1 C.﹣6 D.26.已知x1、x2是方程x2﹣5x﹣6=0的两个根,则代数式x12+x22的值是()A.37 B.26 C.13 D.107.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是()A. B. C. D.8.如图,已知△ABC中,AB=AC=5,BC=8.则cosB的值是()A.1.25 B.0.8 C.0.6 D.0.6259.如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能满足△ADC与△ACB相似的条件是()A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④10.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米 B.8.9米 C.8.0米 D.5.8米二、填空题(本题共6小题,每小题3分,共18分)11.将方程x2+6x﹣3=0的左边配成完全平方后所得方程为.12.若 = ,且ab≠0,则的值是.13.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是.14.如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC= .15.如图,在△ABC中,点D,E分别在边AB,AC上,且 = = ,则S△ADE:S四边形BCED的值为.16.直角△ABC中,斜边AB=5,直角边BC、AC之长是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,则m的值为.三、解答题(本题共6小题,共52分)17.计算:(1)﹣3 ×(﹣)(2)﹣(3)sin230°+2sin60°+tan45°﹣tan60°+cos230°.18.先化简,再求值:﹣÷(x+1﹣),其中x满足x(x+2)=2+x.19.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生实行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.20.如图,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD与AC相交于点E,AB=9,BC=4,DC=3.(1)求BE的长度;(2)求△ABE的面积.21.如图,在△ABC中,AD是△ABC的中线,tanB= ,cosC= ,AC=2 ,求sin∠ADC的值.22.某工程队修建一条总长为1860米的公路,在使用旧设备施工17天后,为尽快完成任务,工程队引进了新设备,从而将工作效率提升了50%,结果比原计划提前15天完成任务.。

2019年人教版九年级上册数学期末考试卷(含答案)

2019年人教版九年级上册数学期末考试卷(含答案)

2019年人教版九年级上册数学期末考试卷(含答案)一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D2、下列方程是一元二次方程的是( )A 、20ax bx c ++=B 、2221x x x +=-C 、(1)(3)0x x --=D 、212x x -=3、用配方法解一元二次方程2x +8x+7=0,则方程可变形为( )A 、 2(4)x -=9B 、2(4)x +=9C 、2(8)x -=16D 、2(8)x +=574、抛物线223y x =-的顶点在( )A 、第一象限B 、 第二象限C 、 x 轴上D 、 y 轴上 5、一元二次方程0332=+-x x 的根的情况是 ( ).A 、有两个相等的实数根B 、有两个不相等的实数根C 、只有一个相等的实数根D 、没有实数根6、把抛物线2y x =-向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )A 、2(1)3y x =--+B 、2(1)3y x =-+C 、2(1)3y x =-++D 、2(1)3y x =++7.圆心在原点O ,半径为5的⊙O 。

点P (-3,4)与⊙O 的位置关系是( ).A. 在OO 内B. 在OO 上C. 在OO 外D. 不能确定 8.下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 9.一元二次方程x 2﹣x ﹣2=0的解是( )A 、x 1=1,x 2=2B 、x 1=1,x 2=﹣2C 、x 1=﹣1,x 2=﹣2D 、x 1=﹣1,x 2=210.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率。

设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A 、 100)1(1442=-x B 、 144)1(1002=-x C 、100)1(1442=+x D 、 144)1(1002=+x二、填空题11.一元二次方程22(1)3x x --=+化成一般形式20ax bx c ++=后,若a=2 ,则b+c 的值是 12.抛物线y =2(x+1)2-3,的顶点坐标为__ ___。

2019九年级上期末试卷--数学(解析版) (19)

2019九年级上期末试卷--数学(解析版) (19)

九年级数学期末考试答案一:DBDDA DCDAC AB二:13 90°14 -4 15 12 16 (x<﹣4或0<x<2)178 18 (36,0)三:19:(1)解:5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;---------5分(2)解:原式=()2+﹣×=+﹣1=.----------5分20:解:(1)120÷40%=300,----------2分a%=1﹣40%﹣30%﹣20%=10%,∴a=10,---------1分10%×300=30,故答案为:300,10;图形如下:----------1分(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;-----------2分(3)画树状图为:----------2分共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率==.------1分21:解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.---------5分(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).--------5分22:(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;----------4分(2)证明:∵AB为直径,∴∠ACB=90°,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;------------4分(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=4,∴BC=4,∴BE=4.---------4分23解:(1)观察表中数据可知:每过一天,销售单价降低1元/件、销量增加5件,∴m=49﹣(x﹣1)=﹣x+50,n=45+5(x﹣1)=5x+40.故答案为:m=﹣x+50;-----2分n=5x+40.--------2分(2)根据题意得:(﹣x+50)(5x+40)=3600,整理得:x2﹣42x+320=0,解得:x1=10,x2=32.∵32>30,∴x=32舍去.答:第10天的日销售额为3600元.----------4分(3)设日销售额为w元,根据题意得:w=(﹣x+50)(5x+40)=﹣5x2+210x+2000=﹣5(x﹣21)2+4205.∵a=﹣5<0,∴抛物线开口向下.又∵对称轴为直线x=21,∴当1≤x≤14时,w随x的增大而增大,∴当x=14时,w取最大值,最大值为3960.答:在儿童节前(不包括儿童节当天)销售该商品第14天时该商品的日销售额最多,商场可捐款3960元.---------4分24:解:(1)由题意,∠C=90°,AC=8,BC=6,∴AB=10∵AP=DE=x,∴AD=PE=x,PD=x,点E落在边BC上,PE∥AB,∴=,∴=,∴x=;---------5分(2)∵△EDB为等腰三角形①若DE=EB(如图)作EM⊥AB于M,则DM=DB=PE=AD=,∴x=,∴x=,∴AP=.----------2分②若BD=DE(如图)x=10﹣x,解之x=,∴AP=.---------2分③若BE=BD(如图)∵DE∥AC,∴DE⊥BC,又∵BE=BD,∴DN=DE=AP=x∵Rt△ADP∽Rt△DNB∴=,即=,∴x=,∴AP=,---------3分综上,当AP=、、时,△EDB为等腰三角形.25:解:(1)不一定,---------1分设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,-----2分②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;---------2分(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;----------3分(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.----------5分。

最新2019—2020九年级数学(上)期末试卷及答案

最新2019—2020九年级数学(上)期末试卷及答案

最新2019—最新2019—2020九年级数学(上)期末试卷及答案说明:1、本卷共有6个大题,24个小题,全卷满分120分,考试时间120分钟.2、不要答在试题卷上,请将答案写在所给的答题卡相应位置,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分)1.下列电视台的台标,是中心对称图形的是A .B. C.D.2.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上B.可能有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上3.用配方法解方程x2-2x-3=0时,配方后所得的方程为A、(x-1)2=4B、(x-1)2=2C、(x+1)2=4D、(x+1)2=24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意列出方程为A、错误!x(x-1)=2070B、错误!x(x+1)=2070C、x(x+1)=2070D、x(x-1)=20705.小明想用一个圆心角为120°,半径为6cm的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为A、4 cmB、3 cmC、2 cmD、1 cm6.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是A B C D二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2=x的解为.8.如图,若AB是⊙O的直径,AB=10,∠CAB=30°,则BC=.9.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为. A O BC10.某品牌手机两年内由每台2500元降低到每台1600元,则这款手机平均每年降低的百分率为 .11.若正方形的边长为6cm ,则其外接圆半径是 . 12.林业工人为调查树木的生长情况,常用一种角卡工具,可以很快测出大树的直径,其工作原理如图所示,已知AC和AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树 的直径为 .13.将二次函数y =-2(x -1)2 +3的图象关于原点作对称变换,则对称后得到的二次函数的解析式为 .14.如图,矩形ABCD 内接于⊙O ,∠OAD =30°,若点P 是⊙O 上一点,且OP ⊥OA ,则∠OPB 的度数为 . 三、(本大题共4小题,每小题6分,共24分)15.已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8).求该抛物线的解析式.16.如图,在10×10的正方形格纸中,小正方形的顶点称为格点,用尺规完成下列作图(保留作图痕迹,不要求写作法).(1)在图1的方格纸中,画出一个经过E 、F 两点的圆弧,并且使得半径最小,请在图中标出圆心O 并直接写出该圆的半径长度.(2)在图2的方格纸中,画出一个经过E 、F 两点的圆弧,并且使圆心是格点,请在图中标出圆心O 并直接写出该圆的半径长度.17.在体育课上,老师向排好队列的学生讲解行进间传球的要领时,叫甲、乙、丙、丁四位是年级球队队员的同学出列,配合老师进行传球示范.(1)首先球在老师手里时,直接传给甲同学的概率是多少?(2)当老师传给甲后,老师叫四位同学相互传球,其他人观看体会,当甲第一个传出,求甲传给下一个同学后,这个同学又再传回给甲的概率.18.已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.图1 E F 图2E F C A B ·O A D B C·O四、(本大题共3小题,每小题8分,共24分)19.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.20.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=1.(1)求∠C的大小;(2)求阴影部分的面积.21.在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算错误!.五、(本大题共2小题,每小题9分,共18分)22.某校七年级学生准备去购买《英汉词典》一书,此书标价为20元.现A、B两书店都有此书出售,A店按如下方法促销:若只购一本,则按标价销售;若一次性购买多于一本,但不多出20本时,每多购一本,每本销售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买三本价优惠4%,以此类推);若购买多于20本时,每本售价为12元.B 店一律按标价的7折销售.(1)试分别写出在两书店购此书的总价y A、y B与购本书数x之间的函数关系式.(2)若某班一次性购买多于20本时,那么去哪家书店购买更合算?为什么?若要一次性购买不多于20本时,先写出y(y=y A-y B)与购书本数x之间的函数关系式,并在图中画出其函数图象,再利用函数图象分析去哪家书店购买更合算.y23.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.六、(本大题共12分)24.如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1,L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.(1)如图2,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x 增大而增大的自变量的取值范围;(3)若抛物y=a1 (x-m) 2+n的任意一条友好抛物线的解析式为y=a2 (x-h) 2+k,请写出a1与a2的关系式,并说明理由.xyCOL3xAyL2BO参考答案一、选择题1、A2、B3、A4、D5、C6、D二、填空题7、x 1=0,x 2=1; 8、5 9、72° 10、20% 11、3,2 cm 12、错误!错误! 13、y =2(x +1)2 -3 14、15°或75°三~六15、y =2x 2+2x -416、解:(1)作图如图1,半径等于10. (2)作图如图2,半径等于5或 5. 17、解:(1)当球在老师手里时,先直接传给甲同学的概率是错误!;…………………2分(2)当甲传出球后,经两次传球的情况可用如下树状图表示:…………………4分∴再传回甲的概率为错误!=错误!.………………………………………6分18、(1)将x =1代入方程x 2+ax +a -2=0得,1+a +a -2=0,解得,a =错误!; 方程为x 2+错误!x -错误!=0,即2x 2+x -3=0,设另一根为x 1,则x 1=-错误!.(2)∵△=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4>0,…3分图1 E F 图2 FE O O O O O∴不论a取何实数,该方程都有两个不相等的实数根.……………6分19、(1)画图正确.…………2分(2)画图正确.………………4分(3)BB1=,22+22 =2,2 ;……5分弧B1B2的长=错误!=错误!.……7分点B所走的路径总长=2,2 +错误!.……8分20、(1)证明:由CD⊥AB,得⌒,AD=⌒,DB;∴∠AOD=2∠C由AO⊥BC,易得∠C=30°.…………4分(2)错误!π-错误!………………8分21、(1)证明:连接OD,∵△ABC为等边三角形,∴∠ABC=60°,又∵OD=OB,∴△OBD为等边三角形,∴∠BOD=60°=∠ACB,∴OD∥AC,又∵DE⊥AC,∴∠ODE=∠AED=90°,∴DE为⊙O的切线;………………4分(2)解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,又∵△ABC为等边三角形,∴AD=BD=错误!AB,在Rt△AED中,∠A=60°,∴∠ADE=30°,∴AE=错误!AD=错误!AC,CE=AC-AE=错误!AC,∴错误!=3.………………8分22、解:(1)设购买x本,则在A书店购书的总费用为20x[1-2%(x-1)](0<x≤20)12x,(x>20)………………3分在B书店购书的总费用为y B=20×0.7x=14x ………5分(2)当x>20时,显然y A<y B,去A店买更合算.当0<x≤20时,y=y A-y B=-错误!x2+错误!x=-错误!(x-8)2+25.6当-错误!(x-8)2+25.6=0时,x=0或16.………7分由图象可得:当0<x<16时,y>0;当x=16时,y=0;当16<x≤20时,y<0.综上所述,若购书少于16本时,到B书店购买;若购买16本,到A、B书店费用一样;A DB Cy A=若超过16本,则到A 书店购买合算.…………9分23、(1)(Ⅰ)如图1,连结BD , 易得圆的最小直径为5,10 cm ;……………1分(Ⅱ)如图2,易得A ,B ,C 三点在以O 为圆心,OA 为半径的圆上.利用勾股定理求得OA =5,2 ,所以圆的最小直径为10,2 cm.…………3分(Ⅲ)如图3,由垂径定理可知,OA 为最小圆的半径, 易得OA =5,2 ,所以圆的最小直径为10,2 cm.…………5分(2)如图④为盖住三个正方形时直径最小的放置方法:……6分 连接OB ,ON ,延长OH 交AB 于点P , 则OP ⊥AB ,P 为AB 中点设OG =x ,则OP =10-x , 则有:x 2+52=(10-x ) 2+( 错误!)2. 解得:x =错误!; 则ON =错误!,…………8分所以直径为错误!.…………9分24、(1)点D 坐标(4,4)…………3分(2)L 4的解析式y =-2(x -4) 2+4…………6分由图象可知,当2≤x ≤4时,抛物线L 3与L 4中y 同时随x 增大而增大.……8分(3)a 1与a 2的关系式为a 1+a 2=0或a 1=-a 2.…………9分理由如下:∵抛物线y =a 1 (x -m ) 2+n 的一条“友好”抛物线的解析式为y =a 2 (x -h ) 2+k , ∴y =a 2 (x -h ) 2+k 过点(m ,n ),且y =a 1 (x -m ) 2+n 过点(h ,k ),即 k =a 1 (h -m ) 2+n …………①;n =a 2 (m -h ) 2+k …………② …………10分 由①+②得(a 1+a 2) (h -m ) 2=0. …………11分 又“友好”抛物线的顶点不重合,∴h ≠m ,∴a 1+a 2=0或a 1=-a 2. …………12分A B COA B D A O E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BCO
S ACO S ABC S ∆+∆=∆九年级数学参考答案
一、选择题(共8小题,每小题3分,满分24分) 1~8 CDBACADB
二、填空题(共7小题,每小题3分,满分21分)
9、9104.1⨯ 10、1.5 cm 11、2019 12、4cm
13、-2 -1 14、 π6 15、x y 6=
三、解答题
16.解:x 1=﹣2
1,x 2 = 3.................6分 17.解: (1)?A 1B 1C 1如图所示;.............................................................................3分
(2)?A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2). -----------9分
18.解:(1)把)4,2(-B 代入x m y =
得m=-8 则反比例函数解析式为x y 8-=
.............................2分 把x=-4代入x
y 8-=
得n=2,即A(-4,2) .............................3分 将A(-4,2) )4,2(-B 坐标代入b kx y +=得 -4k+b=2 解得 k=-1 2k+b=-4 b=-2
则一次函数解析式为2--=x y ............................5分
(2)因为直线AB 为2--=x y ,当y=0时,x=-2,即C (-2,0).......................6分
=21×2×2+2
1×2×4=6. ...........................8分 (3) x 1=-4 x 2=2 ........................10分
(4) -4<x <0, x >2 ..........................12分
19. (1)证明(略). .........................4分
(2)解:∵ AD 是∠BAC 的平分线 ∠C=90° DE ⊥AB 于点E
∴DE=DC=3,在Rt?BED 中,BE=4352222=-=-DE BD
易证Rt?BED ∽Rt?BCA
∴3543+==AC BC AC BE DE 即 ∴AC=6 ........................9分 20.(1)图略. ......................................4分
(2)不公平,因为甲胜的概率为94,而乙胜的概率为95,
即他们获胜的概率不相等,所以不公平。

........................8分
21.证明:∵E 为平行四边形ABCD 的对角线AC 上一点,
AE ∶EC=1∶3
∴AF ∶BC=1∶3 ...............................2分
又∵BC=AD ,
∴ AF ∶AD=1∶3 ..............................3分
∵AD=AF+FD
∴AF ∶FD=1∶2 ...............................6分
∵AB ∥DG
∴BF ∶FG=AF ∶FD=1∶2. ..............................8分 22.解:(1)若设第二个月的销售定价每套增加x 元,填写下表:
时间
第一个月 第二个月 销售定价(元)
52 52+x 销售量(套) 180 180﹣10x
......................................................................4分
(2)若设第二个月的销售定价每套增加x 元,根据题意得:
(52+x ﹣40)(180﹣10x )=2000, ...........................................6分
解得:x 1=﹣2(舍去),x 2=8
当x=8时,52+x=60.
答:第二个月销售定价每套应为60元.......................................................................8分
(3)设第二个月利润为y 元.
由题意得到:y=(52+x ﹣40)(180﹣10x ) ......................................9分
=﹣10x 2+60x+2160
=﹣10(x ﹣3)2+2250
所以涨价3元,达到52+3=55元时,第二个月有最大利润,为2250元.........................11分
23.解:(1)抛物线解析式为y =-4
1x 2+4.…………………………………… 3分 (2)PD -PF= 1 . ………………………………… 5分
证明:
设P(x , -41x 2+4),则PF =4-(-41x 2+4)=4
1x 2. ………………………6分 过点P 作PM ⊥y 轴于点M,则 PD 2=PM 2+DM 2=(-x )2+[3-(-
41x 2+4)]2=2224)141(121161+=++x x x ∴PD =14
12+x ∴PD -PF =224
1141x x -+=1 ∴结论仍然成立. ……………………8分 (3)在点P 运动时,DE 大小不变,∴PE 与PD 的和最小时,△PDE 的周长最小. ∵PD -PF =1,∴PD =PF +1.∴PE +PD =PE +PF +1.
当P ,E ,F 三点共线时,PE +PF 最小.
此时点P ,E 的横坐标都为-2.
将x =-2代入y =-44
12+x ,得y =3. ∴P (-2,3) ………………………………… 11分 此时△PDE 的周长最小,是135+ ....................................12分。

相关文档
最新文档