1。6积分基本定理
人教版高中数学第一章1.6微积分基本定理

的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 下列积分值为 2 的是( )
A.∫50(2x-4)dx C.∫311xdx
B.∫0π cos xdx D.∫0π sin xdx
解析:∫50(2x-4)dx=(x2-4x)|50=5,∫0π cos xdx=sin
x|π0 =0,∫311xdx=ln x|31=ln 3,∫π0 sin xdx=-cos x|0π =2.
x 的原函数为
F(x)
π
=12x-12sin x,所以 sin2 x2dx=12x-12sin x|20=π4-12=
π-2 4. π-2 答案: 4
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
=sin 1-23. 答案:sin 1-23
类型 3 微积分基本定理的综合应用(互动探究)
微积分基本定理

或记作
f ( x)dx F ( x) F (b) F (a).
b a b a
说明:
牛顿-莱布尼茨公式提供了计算定积分的简便 的基本方法,即求定积分的值,只要求出被积
函数 f(x)的一个原函数F(x),然后计算原函数
在
计算定积分归结为求原函数的问题。
1、已知f ( x)是一次函数,其图象过点(3,4), 且
1
0
f ( x)dx 1, 求f ( x)的解析式
2、已知f (a) (2ax a x)dx, 求f (a)的最大值。
2 2 0
1
练一练:已知f(x)=ax² +bx+c,且f(-1)=2,f’(0)=0,
1
0
f ( x)dx 2, 求a, b, c的值
' ' -1
+1
'
'
'
'
'
问题:通过计算下列定积分,进一步说明其定
积分的几何意义。通过计算结果能发现什么结 论?试利用曲边梯形的面积表示发现的结论.
2
sin xdx
2
0
sin xdx
我们发现:
(1)定积分的值可取正值也可取负值,还可以是0; (2)当曲边梯形位于x轴上方时,定积分的值取正值; (3)当曲边梯形位于x轴下方时,定积分的值取负值; (4)当曲边梯形位于x轴上方的面积等于位于x轴下方 的面积时,定积分的值为0.
得到定积分的几何意义:曲边梯形面积的代数和。
例3:计算 解
2
0
2 x , 0 x 1 f ( x)dx,其中 f ( x) 5, 1 x 2
积分基本定理

积分基本定理
积分基本定理是微积分中的基本定理之一,它描述了一个函数的积分与其原函数的关系。
该定理的一个表述是:设函数 f(x) 在闭区间 [a,b] 上连续,函数 F(x) 在开区间(a,b) 上可导并且 f(x) 是 F(x) 的导函数,则有:
∫[a, b] f(x)dx = F(b) - F(a)
其中∫表示对函数 f(x) 在闭区间 [a, b] 上的积分,f(x)dx 表示积分元,F(x)表示f(x) 的一个原函数。
这个定理意味着,对于一个连续函数 f(x) 而言,求解其在闭区间上的定积分可以通
过求解其在该闭区间上的一个原函数值的差来实现。
我们可以通过找到 f(x) 的一个原函
数 F(x),并计算 F(b) - F(a) 来求解∫[a, b] f(x)dx。
积分基本定理是微积分中非常重要的一个基础定理,它建立了定积分与原函数之间的
联系,为计算定积分提供了一个有效的方法。
在实际应用中,积分基本定理可以用于求解
曲线下面的面积、计算物理量等问题。
需要注意的是,以上是积分基本定理的一般表述,实际上它有多个等价的形式和扩展。
在高等数学中,还有其他与积分基本定理相关的重要定理,如牛顿—莱布尼茨公式等。
积分基本定理是微积分中一个重要且基础的定理,它将积分与导数联系起来,为计算
定积分提供了一个简洁而有效的方法。
2015高中数学-1.6微积分基本定理-课件(人教A版选修2-2)

[解]
∵f(x)=- x
(12t+
a
4a)dt
= (6t2+ 4at)|x- a = 6x2+ 4ax- (6a2- 4a2 )
= 6x2+ 4ax- 2a2,
∴ F(a)=01[f(x)+ 3a2 ]dx=01(6x2+ 4ax+ a2)dx
= (2x3+ 2ax2+ a2 x)|10= a2+ 2a+ 2 = (a+ 1)2+ 1≥ 1,
4
4.02(x2-23x)dx= ____3____.
第一章 导数及其应用
B.01 (x+ 1)dx D.0112dx
第7页,共30页。
栏目 导引
第一章 导数及其应用
求简单函数的定积分
计算下列定积分:
(1)121xdx;(2)02πsin xdx;(3)13(2x-x12)dx;
(4)0-
(cos
9+2× 3
93- 2
(4+2× 3
43)= 2
27-(4+16)=53.
33
第11页,共30页。
栏目 导引
第一章 导数及其应用
计算分段函数的定积分
计算下列定积分:
(1)若 f(x)=x2
x≤ 0
cos x-1 x>0
,求- π2
f(x)dx;
1
(2)12
[解]
|3- (1)
2x|dx.
- π2
第一章 导数及其应用
1.6 微积分基本定理
第1页,共30页。
第一章 导数及其应用
学习导航
学习 目标
1.了解微积分基本定理的内容与含义. 2.会利用微积分基本定理求函数的定积分. (重点、难点)
通过探究变速直线运动物体的速度与位移的关系,直观 学法 了解微积分基本定理的含义.微积分基本定理不仅揭示 指导 了导数和定积分之间的内在联系,而且还提供了计算定
人教版数学高二选修2-2讲义1.6微积分基本定理

1.6微积分基本定理1.了解导数与定积分的关系以及微积分基本定理的含义.(重点、易混点) 2.掌握微积分基本定理,会用微积分基本定理求定积分.(重点、难点)[基础·初探]教材整理1微积分基本定理阅读教材P51~P53“例1”以上内容,完成下列问题.1.内容:如果f(x)是区间[a,b]上的__________函数,并且F′(x)=f(x),那么b f(x)d x=__________.⎠⎛a这个结论叫做微积分基本定理,又叫做____________.2.表示:为了方便,常常把F(b)-F(a)记成__________,即b f(x)dx=⎠⎛a______________=______________.【答案】 1.连续F(b)-F(a)牛顿-莱布尼茨公式2.F(x)|b a F(x)|b a F(b)-F(a)1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f(x)是原函数F(x)的导数.()(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.()(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.()【答案】(1)√(2)√(3)√2.若a=1(x-2)d x,则被积函数的原函数为()⎠⎛A.f(x)=x-2 B.f(x)=x-2+CC.f(x)=12x2-2x+C D.f(x)=x2-2x【答案】 C3.⎠⎜⎛π2cos x d x=________.【解析】⎠⎜⎛π2cos x d x=sin x⎪⎪⎪⎪π2=sinπ2-sin 0=1.【答案】 1教材整理2 定积分与曲边梯形面积的关系阅读教材P53“例2”以下部分~P54的内容,完成下列问题.设曲边梯形在x轴上方的面积为S上,在x轴下方的面积为S下,则(1)当曲边梯形在x轴上方时,如图1-6-1①,则⎠⎛ab f(x)d x=__________.(2)当曲边梯形在x轴下方时,如图1-6-1②,则⎠⎛ab f(x)d x=________.①②③图1-6-1(3)当曲边梯形在x轴上方、x轴下方均存在时,如图1-6-1③,则⎠⎛ab f(x)d x=______________.特别地,若S上=S下,则⎠⎛ab f(x)d x=______.【答案】(1)S上(2)-S下(3)S上-S下1.如图1-6-2,阴影部分的面积为________.图1-6-2【解析】根据定积分的几何意义知S阴影=-⎠⎜⎛π232πcos x d x=-sin x⎪⎪⎪⎪32ππ2=-⎝⎛⎭⎪⎫sin32π-sinπ2=2.【答案】 22.如图1-6-3,定积分⎠⎛ab f(x)d x的值用阴影面积S1,S2,S3表示为⎠⎛ab f(x)d x=________.图1-6-3【解析】根据定积分的几何意义知⎠⎛ab f(x)d x=S1-S2+S3.【答案】S1-S2+S3[小组合作型]利用微积分基本定理求定积分⎠⎛xA.e+2 B.e+1C.e D.e-1(2)求下列定积分.①⎠⎛12(x2+2x+3)d x;②⎠⎛π2sin2x2d x.【自主解答】(1)⎠⎛1(2x+e x)d x=(x2+e x)⎪⎪⎪1=(12+e)-(02+e0)=1+e-1=e.【答案】 C(2)①⎠⎛12(x2+2x +3)d x =⎠⎛12x2d x +⎠⎛122x d x +⎠⎛123d x =x 33⎪⎪⎪ 21+x 2⎪⎪⎪ 21+3x ⎪⎪⎪21=253.②sin 2x 2=1-cos x 2,而⎝ ⎛⎭⎪⎫12x -12sin x ′=12-12cos x =sin 2x 2, ∴⎠⎜⎛0π2sin 2x 2d x =⎝ ⎛⎭⎪⎫12x -12sin x ⎪⎪⎪π20=π4-12=π-24.求简单的定积分关键注意两点1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解.2.精确定位积分区间,分清积分下限与积分上限.[再练一题]1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4(2)⎠⎛12x -1x 2d x =________. 【导学号:62952051】【解析】 (1)⎠⎛1(kx +1)d x =⎝⎛⎭⎪⎫12kx 2+x ⎪⎪⎪10=12k +1=2,∴k =2. (2)⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎪⎫1x -1x 2d x=⎝ ⎛⎭⎪⎫ln x +1x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12. 【答案】 (1)B (2)ln 2-12求分段函数的定积分计算下列定积分.(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )d x ; (2)⎠⎛02|x 2-1|d x . 【精彩点拨】 (1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分. 【自主解答】(1)⎠⎛04f (x )d x =⎠⎛0π2sin x d x +⎠⎜⎛π221d x +⎠⎛24(x -1)d x =(-cos x )⎪⎪⎪π20+x ⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝ ⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪ 10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解.[再练一题]2.计算定积分:⎠⎛-33(|2x+3|+|3-2x|)d x.【解】设f(x)=|2x+3|+|3-2x|,x∈[-3,3],则f(x)=⎩⎪⎨⎪⎧-4x,-3≤x<-32,6,-32≤x≤32,4x,32<x≤3.所以⎠⎛-33(|2x+3|+|3-2x|)d x=⎠⎜⎛-3-32(-4x)d x+⎠⎜⎛-3232 6 d x+⎠⎜⎛3234x d x=-2x2⎪⎪⎪-32-3+6x⎪⎪⎪⎪32-32+2x2⎪⎪⎪⎪332=-2×⎝⎛⎭⎪⎫94-9+6×⎝⎛⎭⎪⎫32+32+2×⎝⎛⎭⎪⎫9-94=45.[探究共研型]利用定积分求参数探究⎠⎛【提示】令y=⎠⎛1(x2+cx+c)2d x,则y=⎠⎛1(x4+2cx3+c2x2+2cx2+2c2x+c2)d x=⎝⎛⎭⎪⎫15x5+c2x4+c2+2c3x3+c2x2+c2x⎪⎪⎪1=15+76c +73c 2=73⎝ ⎛⎭⎪⎫c +142-73×116+15.∵73>0,∴当c =-14时,⎠⎛01(x 2+cx +c )2d x 最小.已知f (x )是一次函数,其图象过点(1,4),且⎠⎛01f (x )d x =1,求f (x )的解析式.【精彩点拨】 设出函数解析式,由题中条件建立两方程,联立求解. 【自主解答】 设f (x )=kx +b (k ≠0),因为函数的图象过点(1,4),所以k +b =4.①又⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx ⎪⎪⎪10=k 2+b ,所以k 2+b =1. ②由①②得k =6,b =-2,所以f (x )=6x -2.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[再练一题]3.上例中,若把“已知f (x )是一次函数”改为“已知f (x )=ax 2+bx (a ≠0)”,其余条件不变,求f (x )的解析式.【解】 ∵函数的图象过点(1,4),∴a +b =4, ①又⎠⎛01f (x )d x =⎠⎛01(ax 2+bx )d x =⎝ ⎛⎭⎪⎫a 3x 3+b 2x 2⎪⎪⎪10=a 3+b 2,∴a 3+b2=1,②由①②得a =6,b =-2,所以f (x )=6x 2-2x .1.下列值等于1的是( ) A.⎠⎛01x d x B.⎠⎛01(x +1)d x C.⎠⎛011d x D.⎠⎛0112d x 【解析】 选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x ,所以⎠⎛01x d x =x 22⎪⎪⎪10=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)d x =⎝ ⎛⎭⎪⎫x 22+x ⎪⎪⎪10=32;选项C ,因为x ′=1,所以⎠⎛011d x =x ⎪⎪⎪10=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112d x =12x ⎪⎪⎪10=12.【答案】 C2.⎠⎜⎛-π2π2 (sin x +cos x )d x 的值是( ) A .0 B.π4 C .2 D .4【解析】 ⎠⎜⎛-π2π2 (sin x +cos x )d x =⎠⎜⎛-π2π2sin x d x +⎠⎜⎛-π2π2cos x d x =(-cos x )| π2-π2+sin x⎪⎪⎪⎪π2-π2=2.【答案】 C3.计算⎠⎛01x 2d x =________.【导学号:62952052】【解析】 由于⎝ ⎛⎭⎪⎫13x 3′=x 2,所以⎠⎛01x 2d x =13x 3⎪⎪⎪10=13.【答案】 134.已知2≤⎠⎛12(kx +1)d x ≤4,则实数k 的取值范围为________.【解析】 ⎠⎛12(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪21=(2k +2)-⎝ ⎛⎭⎪⎫12k +1=32k +1,所以2≤32k +1≤4,解得23≤k ≤2.【答案】 ⎣⎢⎡⎦⎥⎤23,25.已知f (x )=ax +b ,且⎠⎛-11 f 2(x )d x =1,求f (a )的取值范围.【解】 由f (x )=ax +b ,⎠⎛-11 f 2(x )d x =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0,所以-22≤b ≤22,所以f (a )=a 2+b =-3b 2+b +32=-3⎝ ⎛⎭⎪⎫b -162+1912,所以-22≤f (a )≤1912.。
微积分基本定理教案

平湖市新华爱心高级中学教学案之教案课 题1.6微积分基本定理 课型:新授课 主备教师:刘素梅 总课时: 第 课时学习目标通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的积教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点 了解微积分基本定理的含义教学过程1、复习:定积分的概念及用定义计算2、引入新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()ba f x dx Fb F a =-⎰若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,备课札记所以00sin (cos )|(cos )(cos0)2xdx x πππ=-=---=⎰, 22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰, 2200sin (cos )|(cos 2)(cos0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;图1 . 6 一 3 ( 2 )(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.例3.汽车以每小时32公里速度行驶,到某处需要减速停车。
【数学】1.6《微积分基本定理(第2课时)》课件(人教A版选修2-2) (2)

π
πБайду номын сангаас
(cosx-e )dx= cosxdx- exdx (3)-π -π -π
1 =sinx|-π-e |- π= π-1. e
0 x0
0
(2)0 (sinx-cosx)dx=0 sinxdx- 0 cosxdx
π π =(-cosx)|0 -sinx|0 =2. 0 0 x
变式训练 1 计算下列定积分: ∫105x4dx; (1) 2 3 ( x+ 1 )26xdx. (2)1 x
解:(1)∵(x5)′=5x4, ∫105x4dx=x5|10=105-25=99968. ∴ 2 2 3 3 1 2 ( x+ ) 6xdx= (x+1+2)6xdx (2)1 1 x x =1(6x2+6+12x)dx=(2x3+6x+6x2)|3 1 =(54+18+54)-(2+6+6)=112.
0 0
【解】
2
(1)1(x2+2x+3)dx
2 2
2
=1x2dx+12xdx+13dx x 2 25 22 2 = |1+x |1+3x|1= . 3 3
π
3
(2)0 (sinx-cosx)dx=0 sinxdx- 0 cosxdx
π π =(-cosx)|0 -sinx|0 =2. 0 0 x
0 b
3.定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上, x 轴下 在 方的面积为 S 下,则 (1)当曲边梯形在 x 轴上方时,如图①,则 a
b
S上 f(x)dx=_____
(2)当曲边梯形在 x 轴下方时,如图②,则a f(x)dx=______. -S下
b
(3)当曲边梯形在 x 轴上方、x 轴下方均存在时, b S上-S下 如图③,则 f(x)dx=____________.
1.5.3_定积分的概念_1.6_微积分基本定理

c,都有[F(x)+c]′=F′(x)+c′=f(x).
梳理
(1)微积分基本定理
①条件:f(x)是区间[a,b]上的连续函数,并且 F′(x)=f(x) ;
②结论:ʃ b af(x)dx= F(b)-F(a) ; ③符号表示:ʃ b af(x)dx=
F(x)|b a = F(b)-F(a) .
类型一 求定积分
1 2 =(-cos x) | +x | +(2x -x)|4 2 2 π π =1+(2-2)+(4-0)=7-2.
2 (2)求定积分 ʃ 2 | x 0 -1|dx.
解
2 1 - x ,x∈[0,1, 2 ∵|x -1|= 2 x -1,x∈[1,2],
3 x3 x 又(x- 3 )′=1-x2,( 3 -x)′=x2-1, 2 1 2 2 2 ∴ʃ 2 | x - 1|d x = ʃ | x - 1|d x + ʃ 0 0 1|x -1|dx 2 2 2 =ʃ 1 (1 - x )d x + ʃ 0 1(x -1)dx
答案
1 1 由定积分的几何意义知,ʃ 0(2x+1)dx= ×(1+3)×1=2, 2
F(1)-F(0)=2,故 ʃ 1 0(2x+1)dx=F(1)-F(0).
引申思考:f(x)与F(x)之间有关系吗?
思考2
对一个连续函数 f(x) 来说,是否存在唯一的 F(x) ,使得 F′(x) = f(x)? 答案 不唯一.根据导数的性质,若F′(x)=f(x),则对任意实数
ʃ2 x=2,y=0,f(x)=x+1 围成的梯形 1(x+1)dx 的值与直线 x=1, 面积有何关系?
答案 相等.
梳理
从几何上看,如果在区间[a,b]上函数f(x)连续且恒有 f(x)≥0,那么定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新授课
1.6微积分基本定理
知识与技能:通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分
过程与方法:通过实例体会用微积分基本定理求定积分的方法 情感、态度与价值观:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
重点与难点
重点:能够运用积分基本定理计算简单的定积分 难点:积分基本定理的含义
一体化设计:
教学过程:
1、复习:
定积分的概念及用定义计算 2、引入新课
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔[,]a b 内经过的路程可用速度函数表示为
,即
()b
a
s v t dt =⎰
另一方面,这段路程还可以通过位置函数S (t )在[,]a b 上的增量
s =()()S b S a -来表达,即
()b
a
v t dt ⎰
=()()S b S a -
而()()S t v t '=。
亦可如右解释:
对于一般函数()f x ,设()()F x f x '=,是否也有
()()()b
a
f x dx F b F a =-⎰
若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则
()()()b
a
f x dx F b F a =-⎰
证明:因为()x Φ=
()x
a
f t dt ⎰
与()F x 都是()f x 的原函数,故
()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。
令x a =得()F a -()a Φ=C ,且()a Φ=
()a
a
f t dt ⎰
=0
即有C=()F a ,故()F x =()x Φ+()F a
∴ ()x Φ=()F x -()F a =()x
a
f t dt ⎰
令x b =,有
()()()b
a
f x dx F b F a =-⎰
此处并不要求学生理解证明的过程
为了方便起见,还常用()|b
a F x 表示()()F
b F a -,即
()()|()()b
b a a
f x dx F x F b F a ==-⎰
该式称之为微积分基本公式或牛顿—莱布尼兹公式。
它指出了求连
续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
例1.计算下列定积分:
(1)2
11dx x ⎰; (2)3211
(2)x dx x
-⎰。
解:(1)因为'
1(ln )x x
=,
所以22
111ln |ln 2ln1ln 2dx x x
==-=⎰。
(2))因为2'
'211()2,()x x x x
==-,
所以333221111
1(2)2x dx xdx dx x
x -=-⎰⎰⎰
O A(a ) B(b )
v(t)
23
3111122||(91)(1)33
x x =+=-+-=。
练习:计算1
20
x dx ⎰
解:由于
3
13x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 12
0x dx ⎰=3101|3
x =33111033⋅-⋅=13 例2.计算下列定积分:
220
sin ,sin ,sin xdx xdx xdx π
ππ
π
⎰
⎰⎰。
由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。
解:因为'
(cos )sin x x -=, 所以
sin (cos )|(cos )(cos 0)2xdx x π
π
π=-=---=⎰, 2
2
sin (cos )|(cos 2)(cos )2xdx x π
π
ππππ=-=---=-⎰, 2
2
sin (cos )|(cos 2)(cos 0)0xdx x π
π
π=-=---=⎰
. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:
( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;
图1 . 6 一 3 ( 2 )
(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;
( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。
设汽车
以等减速度a =1.8米/秒2
刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。
当t=0时,汽车速
度0v =32公里/小时=
321000
3600
⨯米/秒≈8.88米/秒,刹车后汽车减速行驶,
其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从
(t)=8.88-1.8t=0v 解得8.88
t=
4.931.8
≈秒 于是在这段时间内,汽车所走过的距离是
4.93
4.93
(t)(8.88 1.8t)s v dt dt ==-⎰
⎰
= 4.93
20
1
(8.88 1.8t )
21.90
2-⨯≈米,即在刹车后,汽车需走过21.90米才能停住.
微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果. 四:课堂小结:
本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习! 五:教学后记:
作业 板书设计
教学反思:。