2020届高三模拟考试数学文科试卷
2020届高三模拟考试文科数学试题

2020届高三第一次模拟考试文科数学 2020.6全卷满分150分,时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设集合{}|0A x x =>,集合{}|1B x y x ==-,则A B =( )A .{}|0x x >B .{}|01x x <≤C .{}|01x x ≤<D .{}|1x x ≥2.已知i 为虚数单位,下列各式的运算结果为纯虚数的是( )A .(1)i i +B .2(1)i i - C .22(1)i i + D .234i i i i +++3.已知,a b R ∈,则a b <“”是22log log a b <“”的( )条件。
A .充分而不必要 B .必要而不充分 C .充要 D .既不充分也不必要 4.已知数据122020,,,x x x 的方差为4,若()()231,2,,2020i i y x i =--=,则新数据122020,,,y y y 的方差为( )A. 16B. 13C. 8-D. 16-5.函数||xx y xπ=的图象大致形状是( )AB C D6.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑.在一座宫殿中,有一件特别的“柱脚”的三视图如图所示,则该几何体的体积为( )A .843π+ B .883π+ C .84π+ D .88π+7.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2a =,3c =, 且满足2cos cos a c B b C -=(),则BC AB ⋅的值为( ) A. 2B. 3C.1-D.3-8.已知函数||()||x f x e x =+,则满足1(21)()3f x f -<的x 取值范围是( )A.1233(,)B. 1233[,)C. 1223(,)D. 12[23,)9.已知是抛物线的焦点,过焦点的直线交抛物线的准线于点,点在抛物线上,且,则直线的斜率为( )A .B .C .D .10.空间中,m,n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A. 若//,//m n αα,则//m n B. 若//,,m n αβαβ⊂⊂,则//m n C. 若=,,m n n m αβα⊂⊥,则n β⊥ D. 若,//,m m n n αβ⊥⊂,则αβ⊥11.函数()2sin()0,||2f x x πωϕωϕ=+><()的最小正周期为π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象( )A. 关于点03π(,)对称 B. 在22ππ(-,)上单调递增C. 关于直线3x π=对称 D. 在6x π=处取最大值12.已知函数()ln x f x e x=,若关于x 的方程()()210f x mf x -+=恰好有四个不相等的实数根,则实数m 的取值范围是( ) A .()2,+∞B .()1,+∞C .()1,2D .()2,4二、填空题:本题共4小题,每小题5分,共20分。
2020高考模拟考试文科数学含答案

2020年高考虽然延期一个月,但是练习一定要跟上,加油!(第Ⅰ卷选择题部分,共60分)一、 选择题:(本大题共12小题,每个小题5分,共60分,在每小题给出的四个选项中,只有一个是符合要求的)1、已知全集R ,集合},0)2)(2)(1(|{=-+-=x x x x A },0|{≥=y y B 则BC A R ⋂为 A.}2,2,1{- B.{1,2} C. }2{- D. }2,1{--2、在等差数列{}n a 中,57915a a a ++=,579535a a a +++、、成等比数列, 则等差数列的公差是( ) A 、–5或1 B 、1 C 、 –3 D 、–3或33、甲、乙各掷一次飞镖,假设二人击中目标的概率均为0.6,则至少有一人击中目标的概率为A 0.36B 0.16C 0.48D 0.84 4、给出下列条件(其中l 和a 为直线,α为平面)①α⊥l 内的一凸五边形的两条边,②α⊥l 内三条不都平行的直线, ③α⊥l 内无数条直线,④α⊥l 内正六边形的三条边。
其中是α⊥l 的充分条件的所有序号是( )A ②B ①③C ②④D ③④ 5、不等式5||6||>+x x 的解集是( ) A.)2,2(- B. ⋃-)2,2(⋃+∞),3()3,(--∞ C. )3,(--∞),3(+∞⋃ D. )3,(--∞(3,1)⋃--⋃)1,1(-),2(+∞⋃6、样本(0,2,4,6,8)是随机地从总体M 中抽取的,则总体的方差是( )A.8B.6C.4.D.107、已知正三棱柱ABC-A 1B 1C 1中,E 是BC 的中点,D 是AA 1上的一个动点,且m AA AD =1,若AE ∥平面DB 1C ,则m 的值等于 1112 (4323)A B C D8、53)(x y +展开式的第三项为10,则y 关于x 的函数图象的大致形状为9、用0、1、2、3、4的五个数组成无重复数字的五位数,奇数数字相邻,偶位数也全相邻的有 A 、32个 (B )24个(C )20个 (D )36个10、两个正数m,n 的等差中项是5,等比中项是4,且m>n ,则椭圆122=+ny m x 的离心率e 等于 A .25 B. 21C. 22D. 2311、已知二次函数2()(,,0)f x ax bx c a b c a =++≠其中是常数,且在点0x 处的切线为y kx m =+,设函数.)(m kx x g +=若()()g x f x ≥恒成立,则A .0a >B .0a <C .240b ac ∆=-≥;D .240b ac ∆=-< 12、若右图,定圆的半径为a ,圆心为(b,c)则直线0ax by c ++=与直线10x y --=的交点在A.第一象限B.第二象限C.第三象限D. 第四象限(D)xyOxyOxy O(B)(A) xyO(C)第Ⅱ卷(非选择题部分,共90分)二、填空题:(本题共4个小题,每小题4分,共16分。
2020届高三毕业班摸底测试高三数学测试(文科)含答案

新都区2020届高三毕业班摸底测试数学试题(文)本试卷分选择题和非选择题两部分,满分 150分,考试时间120分钟。
注意事项:1 .答题前,务必将姓名、考场号、座位号填写在答题卡规定的位置上,并将考生条 形码粘贴在规定的位置上。
2 .答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦擦干净后,再选涂其他答案标号。
3 .答非选择题时,必须使用 0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的 位置上。
4 .所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
一、单选题(本大题共12小题,每小题5分,共60分。
每小题有且只有一个正确选项。
)1.已知全集 U= R,集合 A={x0 xx<2), B={x x 2 -x >0},则图中的阴影部分表示的集合为()A. (*,1]R2,fB. (*,0) = (1,2)C. [1,2) 1 —i , .2 .设 z=」+2i,则 z +z =()1 +iA. -1-i B.1 iC. 1 -iD. -1 i3.已知数列{an }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则2S 7=()A. 2B. 7C. 14D. 282-csin u +cosa =—,则 sin 2ct =(5 .已知定义在R 上的函数f (x )在(0,收)单调递减,且满足对 V x w R ,者B 有f (x) — f ( -x) =0 ,则符合上述条件的函数是 ( )A . f(x) = x 2+x+1B, f(x) = (1)区D. (1,2]4.已知 B.C.D.2 C. f(x) = lnx+1 D, f(x)=cosx6 .已知定义在R 上的函数f (x )满足f (3—x ) = f (3+x ),且函数f (x )在(0, 3)上为单调递减函数,若a =2©5,b = log 23,c = e ln4,则下面结论正确的是(B f(c):二 f (a):二 f (b). D. f(a):二 f(c):二 f (b)A. C. f (a):二 f(b):二 f(c) f(c):二 f(b)7.已知 a >0, b >0 ,若不等式3 1 —+— a bn > ------ 值成立,则a 3bn 的最大值为(D. 208.函数|x|y =3cosx -e9 .在由正数组成的等比数列{a n }中,若a 3a 4a 53 7a的值为()C.10 .八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图 八边形ABCDEFGH ,其中|OA|=1,则给出下列结论:—— < /2 ①OA ・OD =———;2AH 在AB 向量上的投影为 我其中正确结论的个数为( ) B. 2C. D.2x 11 .已知定义在 R 上的函数f (x )=〈2一2,x2x ,x且 f (x + 2)= f (x ),若方程B. 12C. 163电 3a 烟图I2中的正GHf (x )-kx -2 =0有两个不相等的实数根,则实k的取值集合是(数1 11 , 、 1A. {-1}B. {-,--} 。
2020届高考模拟数学文科试题及答案

2020届数学文科高考模拟试题1、设集合22{|40},{|log 1}M x x N x x =-≤=<,则M N ⋂=( )A. ∅B. (0,2)C. (2,2)-D. [2,2)-2、已知复数312z i=- (i 是虚数单位),则z 的实部为( ) A. 35- B. 35 C. 15- D. 153、等比数列{}n a 中,若4568a a a ⋅⋅=,且5a 与62a 的等差中项为2,则公比q =( )A.2B.12C.2-D.12-4、在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是( )A.14 B. 13 C. 12 D. 345、已知α为第二象限角,且1sin cos 5αα+=,则sin2α= ( )A. 1225B. 2425C. 1225-D. 2425-6、执行如图所示程序框图,输出的S = ( )A. 25B. 9C. 17D. 207、函数2ln(1)3()x x x f x ++-=的图像大致为( ) A. B.C. D.8、若,x y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23z x y =-的最大值为9,则正实数m的值为( )A.1B.2C.4D.8 9、在△ABC 中, 3A π=,若2?a =,则△ABC 面积的最大值为( )A.2 B. 2 C. 6 D. 310、长方体1111ABCD A B C D -,11,2,3AB AD AA ===,则异面直线11A B 与1AC 所成角的余弦值为( )A. 1414B. 8314C. 1313D. 1311、双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 3的直线与双曲线的左右两支分别交于点,?P Q ,若2QP QF =,则双曲线 C 的离心率为( )A. 7B. 6C.1312D. 131212、已知奇函数() f x 的导函数为()'f x ,当0x ≠时, ()()0xf x f x +>',若()()11,,1a f b ef e c f ee ⎛⎫==--= ⎪⎝⎭,则,,a b c 的大小关系正确的是( ) A. a b c << B. b c a << C. a c b << D. c a b << 二、填空题13、已知函数()2ln 24f x x x x =+-,则函数() f x 的图象在1?x =处的切线方程为__________.14、已知向量a r 与b r的夹角是3π,且1,2a b ==r r,若)b a λ+⊥r r ,则实数λ=__________.15、已知抛物线28y x =的焦点F ,过F 的直线与抛物线交于,A B 两点,则||4||FA FB +的最小值是 .16、若对任意[1,2]t ∈,函数22()(1)f x t x t x a =-++总有零点,则实数a 的取值范围是__________. 三、解答题17、在等差数列{}n a 中,n S 为其前n 项和(n *∈N ),且23a =,416S =. (1).求数列{}n a 的通项公式; (2).设11n n n b a a +=,求数列{}n b 的前n 项为n T .18、某商场营销人员进行某商品M 市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:(1)经分析发现,可用线性回归模型拟合当地该商品一天销量y (百件)与该天返还点数 x 之间的相关关系.请用最小二乘法求y 关于 x 的线性回归方程y bx a =+,并预测若返回6个点时该商品当天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:将对返点点数的心理预期值在[1,3)和[11,13]的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程y bx a =+,其中ni ii=1n22ii=1x y -nxyb=,a=y-bx x-nx∑∑;②5i ii=1x y =18.8∑.)19、如图,在ABC △中,BC AC ⊥,,D E 分别为,AB AC 的中点,将ADE △沿DE 折起到PDE △的位置.(1)证明:BC PEC ⊥平面;(2)若7,3BP PC BC CD ===,,求四棱锥P BCED -的体积.20、在直角坐标系 xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在 x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点()1,3M 的直线与椭圆E 交于不同的,?A B 两点,交直线14y x =-于点N ,若,NA mAM NB nBM ==u u u r u u u u r u u u r u u u u r ,求证: m n +为定值,并求出此定值21、已知函数()()()e ,2ln ,R xf x xg x a x x a ==+∈.(1)求()f x 单调区间;(2)若()()f x g x ≥在[)1+∞,上恒成立,求a 的取值范围.22、在直角坐标系 xOy 中,曲线1C 的参数方程为22cos {2sin x y ϕϕ=+= (ϕ为参数).以原点 O 为极点, x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0π)θαα=<<,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且,A B 均异于原点 O ,AB =α的值.23、已知函数2()23f x x a =+.(1).当0a =时,求不等式()23f x x +-≥的解集;(2).若对于任意实数x ,不等式21()2x f x a +-<恒成立,求实数a 的取值范围.答案以及解析1答案及解析:答案:B解析:24,22x x-≤∴-≤≤Q,[2,2]M∴=-,log21,02xx∴<<<∴,(0,2)N∴=,(0,2)M N∴⋂=,故选B.2答案及解析:答案:B解析:∵()()()312i336i 12i12i12i55z+===+--+,∴z的实部为35.故选B.3答案及解析:答案:B解析:根据题意,等比数列{}n a中,若4568a a a⋅⋅=,则35()8a=,解可得52a=,又由5a与62a的等差中项为2,则56()(2)4a a+=,解可得:61a=,则6512a q a ==; 故选B .4答案及解析: 答案:A解析:在1,2,3,6这组数据中随机取出三个数,基本事件总数 ()1,2,3,()1,2,6,()1,3,6,()2,3,6共4个,则数字2是这三个不同数字的平均数所包含的基本事件只有()1,2,31个.因此,数字2是这三个不同数字的平均数的概率是14.故应选A.5答案及解析: 答案:D解析:由1sin cos 5αα+=,两边平方得:221sin cos 2sin cos 25αααα++=.242sin cos 25αα=-,即24sin 225α=-.故选D.6答案及解析: 答案:C解析:按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=;17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C.7答案及解析: 答案:A解析:22ln(1)3ln(1)3()()0x x x x x xf x f x++-+-++-=+=,即()()f x f x-=-,故()f x为奇函数,排除C,D选项;ln(21)3(1)0f+-=<,排除B选项,故选A.8答案及解析:答案:B解析:,x y满足约束条件2030x yx y mx-+≥⎧⎪+-≥⎨⎪-≤⎩的可行域如图,则23z x y=-的最大值为9,所以直线0x y m+-=,过直线239x y-=和直线3x=的交点(3,1)-,2m∴=,故选B.9答案及解析:答案:D解析:△ABC中,,23A aπ==,由余弦定理得,2222cos3a b c bc π=+-,即42bc bc bc ≥⋅=,∴4bc ≤,当且仅当b c =时“=”成立; ∴△ABC 面积的最大值为11sin 422S bc A =≤⨯=故选D.10答案及解析: 答案:A解析:∵1111//C D A B ,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠.在11Rt AC D ∆中, 111C D =,1AD ==1AC ==,∴11111cos C D AC D AC ∠===.故选A.11答案及解析: 答案:C解析:双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点1F的直线为:)2,y x c QP QF =+=,122,4PF a PF a ==, 1212π2,3F F c PF F =∠=,可得: 222π1644222cos 3a a c a c =+-⨯⨯,解得2b a =,所以230,1e e e --=>, 可得131e +=12答案及解析: 答案:C解析:令()()g x xf x =,则()()()''0g x f x xf x =+>,所以()g x 为递增函数, 因为11e e>>,∴()()11g e g g e ⎛⎫>> ⎪⎝⎭∴()()111ef e f f e e ⎛⎫>> ⎪⎝⎭, 又() f x 为奇函数,所以()()ef e ef e --=, ∴b c a >>13答案及解析: 答案:30x y --=解析:∵()2ln 24f x x x x =+-,∴()1'44f x x x=+-,∴()'11f =,又()12f =-,∴所求切线方程为()21y x --=-,即30x y --=.14答案及解析: 答案:3-解析:∵向量a r 与b r的夹角是3π,且1,2a b ==r r ,∴11212a b ⋅=⨯⨯=r r ,∵()3a b a λ+⊥r r r ,∴则()2330a b a a a b λλ+⋅=+⋅=r r r r r r,∴30λ+=, ∴3λ=-15答案及解析: 答案:18解析:抛物线28y x =的焦点(2,0)F ,设1122(,),(,)A x y B x y ,则1212||4||24(2)410FA FB x x x x +=+++=++, 当直线AB 斜率不存在时,1||4||2421020FA FB x +=++⨯+=, 当直AB 斜率存在时,设直线AB 的方程为,代入28y x =得222212(48)40,4k x k x k x x -++=∴=211144||4||41041018FA FB x x x x ∴+=++≥⨯=, 当且仅当11x =时取等号.||4||FA FB +的最小值是18.故答案为:18.16答案及解析: 答案:9(,]16-∞ 解析:∵函数22()(1)f x t x t x a =-++总有零点,22(1)40t at ∴∆=+-≥对任意[1,2]t ∈恒成立,∴22211()()222t a t t+1≤=+ 记11()22y t =+在[1,2]上单调递减, ∴211119()()2222216t +≥+=⨯ ∴916a ≤故答案为:9(,]16-∞17答案及解析:答案:(1).设等差数列{}n a 的公差是d ,由23a =,416S =,得113,4616,a d a d +=⎧⎨+=⎩解得11a =,2d =,∴21n a n =-,*N n ∈. (2).由(1).知,21n a n =-, ∴()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 12111111111123352121221n n T b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 即21n nT n =+,n *∈N .18答案及解析: 答案:(1)易知123450.50.61 1.4 1.73, 1.0455x y ++++++++====,522222211234555i i x ==++++=∑ , ni ii=1n222i i=1x y -nxy18.853 1.04b==0.325553x -nx-⨯⨯=-⨯∑∑, a=y-bx 1.040.3230.08=-⨯=则y 关于 x 的线性回归方程为0.320.08y x =+,当6x =时, 2.00y =,即返回6个点时该商品每天销量约为2百件. (2)设从“欲望膨胀型”消费者中抽取 x 人,从“欲望紧缩型”消费者中抽取y 人, 由分层抽样的定义可知6301020x y==,解得2,4x y ==在抽取的6人中,2名“欲望膨胀型”消费者分别记为12,A A ,4名“欲望紧缩型”消费者分别记为1234,,,B B B B ,则所有的抽样情况如下:共20种,其中至少有1名“欲望膨胀型”消费者的情况由16种记事件A 为“抽出的3人中至少有1名‘欲望膨胀型’消费者”,则16()0.820P A ==19答案及解析: 答案:(1)证明:∵,D E 分别为,AB AC 的中点 ∴//DE BC ∵BC AC ⊥∴,,DE AE DE EC ⊥⊥PE EC E =I ∴DE ⊥平面PEC∴BC ⊥平面PEC(2)在Rt BCP △中,由PC BP ==得2BC =∵12,12BC CD DE BC ====∴AE EC ==在PEC △中,PE EC PC === ∴点P 到EC 的距离为32d =∴113332P BCED BCED V S d -=⋅==20答案及解析:答案:(1)椭圆的标准方程为:2211612x y += (2)设1122001(,),(,),(,)4A x yB x y N x x -, 由,NA mAM =u u u r u u u u r 得1010111(,)(1,3)4x x y x m x y -+=--所以0011134,11m x m x x y m m -+==++,00134(,)11m x m x A m m -+∴++,因为2211612x y +=上,所以得到0220134()()1111612m x m x m m -++++=,得到220139964804m m x ++-=; 同理,由NB nBM =u u u r u u u u r 可得220139964804n n x ++-= 所以,m n 可看作是关于 x 的方程220139964804x x x ++-=的两个根,所以323m n +=-为定值答案:(1)()()e 1xf x x '=+由()0f x '>,得()1,x ∈-+∞ 由()0f x '<,得(),1x ∈-∞∴()f x 分别在区间()1,-+∞上单调递增,在区间(),1-∞上单调递减(2)令()()()()[)2ln e ,1,xh x g x f x a x x x x =-=+-∈+∞则()()()12e 21e 11xxa x h x a x x x x -⎛⎫'=+-+=+ ⎪⎝⎭由1知()e xf x x =在[)1+∞,上单调递增 ∴e e x x ≥ 当e2e,2a a ≤≤即时,2e 0x a x -≤, ∴()h x 在[)1+∞,上单调递减,()()max 12e h x h a ==- 令()max 0h x ≤,得e2a ≤ ②e 2e,2a a >>即时,存在()01,x ∈+∞,使002e 0xa x -= 当()01,x x ∈时,()0h x >;当()0,x x ∈+∞时,()0h x < ∴()h x 在()01,x x ∈上单调递增,在()0,x x ∈+∞上单调递减;()()()()000002ln e 2ln 21x man h x h x a x x x a a ==+-=- ∵e 2a >∴2ln 210a ->∴()()00man h x h x =≤不能恒成立综上:e ,2a ⎛⎤∈-∞ ⎥⎝⎦答案:(1)由22cos {2sin x y ϕϕ=+=消去参数ϕ,得1C 的普通方程为22(2)4x y -+=.∵24sin 4sin ρθρρθ=⇒=,又cos {sin x y ρθρθ==,∴2C 的直角坐标方程为22(2)4x y +-=(2)由(1)知曲线1C 的普通方程为22(2)4x y -+=,∴其极坐标方程为4cos ρθ=,∴π4sin cos 4A B AB ρρααα⎛⎫=-=-=-= ⎪⎝⎭∴又πππ3πsin 1ππ(Z)4424k k k ααα⎛⎫-=±⇒-=+⇒=+∈ ⎪⎝⎭, ∴0απ<<,∴34πα=.23答案及解析:答案:(1).当0a =时,()|2||2||2|3f x x x x +-=+-≥有0223x x x ≤⎧⎨--+≥⎩或02223x x x <<⎧⎨-+≥⎩或2223x x x ≥⎧⎨+-≥⎩解得13x ≤-或12x ≤<或2x ≥所以()|2|3f x x +-≥的解集为1(,][1,)3-∞-⋃+∞.(2)对于任意实数x ,不等式|21|()2x f x a +-<成立,即2|21||23|2x x a a +-+<恒成立。
2020届高考数学模拟考试试卷及答案(文科)(一)

2020届高考数学模拟考试试卷及答案(一)(文科)一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣22.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.535.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm36.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.167.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.169.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f (x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣2【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵=为纯虚数,∴,解得:a=1.故选:A.2.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}【考点】1E:交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣2≤x≤1,即B=[﹣2,1],∵A={0,1,2,3,4},∴A∩B={0,1},3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】根据∥,算出=(﹣2,﹣4),从而得出=(﹣4,﹣8),最后根据向量模的计算公式,可算出的值.【解答】解:∵且∥,∴1×m=2×(﹣2),可得m=﹣4由此可得,∴2+3=(﹣4,﹣8),得==4故选:B4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.53【考点】8G:等比数列的性质;8H:数列递推式.【分析】先利用数列{1+a n}是以3为公比的等比数列以及a1=2,求出数列{1+a n}的通项,再把n=4代入即可求出结论.【解答】解:因为数列{1+a n}是以3为公比的等比数列,且a1=2所以其首项为1+a1=3.其通项为:1+a n=(1+a1)×3n﹣1=3n.当n=4时,1+a4=34=81.∴a4=80.5.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm3【考点】L!:由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.6.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.16【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=16,i=9时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16【解答】解:模拟执行程序框图,可得i=1S=0满足条件,S=1,i=3满足条件,S=4,i=5满足条件,S=9,i=7满足条件,S=16,i=9由题意,此时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16,故选:D.7.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α【考点】LP:空间中直线与平面之间的位置关系.【分析】根据常见几何体模型举出反例,或者证明结论.【解答】解:(A)若m∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;(B)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面CDD′C′为平面β,直线BB′为直线m,直线A′B为直线n,则m⊥α,n∥β,α⊥β,但直线A′B与BB′不垂直,故B错误.(C)设过m的平面γ与α交于a,过m的平面θ与β交于b,∵m∥α,m⊂γ,α∩γ=a,∴m∥a,同理可得:m∥b.∴a∥b,∵b⊂β,a⊄β,∴a∥β,∵α∩β=l,a⊂α,∴a∥l,∴l∥m.故C正确.(D)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面ABB′A′为平面β,平面CDD′C′为平面γ,则α∩β=AB,α∩γ=CD,BC⊥AB,BC⊥CD,但BC⊂平面ABCD,故D 错误.故选:C.8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.16【考点】HW:三角函数的最值.【分析】y==()(cos2θ+sin2θ),由此利用基本不等式能求出y=的最小值.【解答】解:∵θ∈(0,),∴sin2θ,cos2θ∈(0,1),∴y==()(cos2θ+sin2θ)=1+9+≥10+2=16.当且仅当=时,取等号,∴y=的最小值为16.故选:D.9.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用所求表达式的几何意义求解即可.【解答】解:不等式表示的平面区域为如图所示△ABC,设Q(3,0)平面区域内动点P(x,y),则=kPQ,当P为点A时斜率最大,A(0,0),C(0,2).当P为点C时斜率最小,所以∈[﹣,0].故选:D.10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,再由椭圆的性质可得c>b,结合离心率公式和a,b,c的关系,即可得到所求范围.【解答】解:由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,可得||OA|=|OF|=c,由|OA|>b,即c>b,可得c2>b2=a2﹣c2,即有c2>a2,可得<e<1.故选:C.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【考点】3O:函数的图象;53:函数的零点与方程根的关系.【分析】根据定义求出f(x)解析式,画出图象,判断即可.【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)【考点】6A:函数的单调性与导数的关系.【分析】由已知条件判断出f′(x)≤0,据导函数的符号与函数单调性的关系判断出f(x)的单调性,利用单调性判断出f(a)与f(b)的关系,利用不等式的性质得到结论.【解答】解:∵f(x)是定义在(0,+∞)上的非负可导函数且满足xf′(x)≤f(x),令F(x)=,则F′(x)=,∵xf′(x)﹣f(x)≤0∴F′(x)≤0,∴F(x)=在(0,+∞)上单调递减或常函数∵对任意的正数a、b,a<b∴≥,∵任意的正数a、b,a<b,∴af(b)≤bf(a)故选:C.二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.【考点】J9:直线与圆的位置关系.【分析】求出圆的圆心坐标,利用点到直线的距离公式求解即可.【解答】解:圆(x+2)2+(y﹣2)2=2的圆心(﹣2,2),圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离d==.故答案为:.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用函数图象,计算函数的周期,再利用周期计算公式计算ω的值,最后将点(,0)代入,结合φ的范围,求φ值即可【解答】解:由图可知T=2()=π,∴ω==2∴y=sin(2x+φ)代入(,0),得sin(+φ)=0∴+φ=π+2kπ,k∈Z∵0<φ≤∴φ=故答案为15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f=f(1)=﹣f(1),代入函数的表达式求出函数值即可.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数,又∵f(x﹣2)=f(x+2),∴函数f(x)为周期为4是周期函数,∴f=f(1)=﹣f(﹣1)=﹣2﹣1﹣=﹣1,故答案为:﹣1.16.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形最小值的正弦值是.【考点】8F:等差数列的性质.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,求出a=c+4和b=c+2,由边角关系和条件求出sinA,求出A=60°或120°,再判断A的值,利用余弦定理能求出三边长,由余弦定理和平方关系求出这个三角形最小值的正弦值.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,可得b=c+2,a=c+4,∴A>B>C,∵最大角的正弦值为,∴sinA=,由A∈(0°,180°)得,A=60°或120°,当A=60°时,∵A>B>C,∴A+B+C<180°,不成立;即A=120°,则cosA===,化简得,解得c=3,∴b=c+2=5,a=c+4=7,∴cosC===,又C∈(0°,180°),则sinC==,∴这个三角形最小值的正弦值是,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.【考点】8E:数列的求和;84:等差数列的通项公式;85:等差数列的前n项和.【分析】(Ⅰ)设等差数列{a n}的公差为d,由于a3=7,a5+a7=26,可得,解得a1,d,利用等差数列的通项公式及其前n项和公式即可得出.(Ⅱ)由(I)可得b n==,利用“裂项求和”即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)===,∴T n===.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,即可求周期和对称中心.(2)x∈[﹣,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值.【解答】解:(1)函数f(x)=﹣2sin2x+2sinxcosx+1,化简可得:f(x)=cos2x﹣1+sin2x+1=sin2x+cos2x=2sin(2x+).∴f(x)的最小正周期T=,由2x+=kπ(k∈Z)可得对称中心的横坐标为x=kπ∴对称中心(kπ,0),(k∈Z).(2)当x∈[﹣,]时,2x+∈[,]当2x+=时,函数f(x)取得最小值为.当2x+=时,函数f(x)取得最大值为2×1=2.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由已知利用平均数公式能求出这5天的平均感染数.(2)利用列举法求出基本事件总数n=10,设满足|x﹣y|≥9的事件为A,设满足|x﹣y|≤3的事件为B,利用列举法能求出|x﹣y|≤3或|x﹣y|≥9的概率.【解答】解:(1)由题意这5天的平均感染数为:.(2)(x,y)的取值情况有:(23,32),(23,24),(23,29),(23,17),(32,24),(32,29),(32,17),(24,29),(24,17),(29,17),基本事件总数n=10,设满足|x﹣y|≥9的事件为A,则事件A包含的基本事件为:(23,32),(32,17),(29,17),共有m=3个,∴P(A)=,设满足|x﹣y|≤3的事件为B,由事件B包含的基本事件为(23,24),(32,29),共有m′=2个,∴P(B)=,∴|x﹣y|≤3或|x﹣y|≥9的概率P=P(A)+P(B)=.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.【考点】LW:直线与平面垂直的判定;MK:点、线、面间的距离计算.【分析】(I)根据正三角形三线合一,可得MD⊥PB,利用三角形中位线定理及空间直线夹角的定义可得AP⊥PB,由线面垂直的判定定理可得AP⊥平面PBC,即AP⊥BC,再由AC⊥BC结合线面垂直的判定定理可得BC⊥平面APC;(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.分别求出MD长,及△BCD和△MDC面积,利用等积法可得答案.【解答】证明:(Ⅰ)如图,∵△PMB为正三角形,且D为PB的中点,∴MD⊥PB.又∵M为AB的中点,D为PB的中点,∴MD∥AP,∴AP⊥PB.又已知AP⊥PC,PB∩PC=P,PB,PC⊂平面PBC∴AP⊥平面PBC,∴AP⊥BC,又∵AC⊥BC,AC∩AP=A,∴BC⊥平面APC,…解:(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.∵AB=10,∴MB=PB=5,又BC=3,BC⊥PC,∴PC=4,∴.又,∴.在△PBC中,,又∵MD⊥DC,∴,∴∴即点B到平面DCM的距离为.…21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.【考点】K4:椭圆的简单性质.【分析】(1)求得圆Q的圆心,代入椭圆方程,运用两点的距离公式,解方程可得a,b的值,进而得到椭圆方程;(2)讨论两直线的斜率不存在和为0,求得三角形MAB的面积为4;设直线y=kx+,代入圆Q的方程,运用韦达定理和中点坐标公式可得M的坐标,求得MP的长,再由直线AB的方程为y=﹣x+,代入椭圆方程,运用韦达定理和弦长公式,由三角形的面积公式,化简整理,由换元法,结合函数的单调性,可得面积的范围.【解答】解:(1)圆Q:(x﹣2)2+(y﹣)2=2的圆心为(2,),代入椭圆方程可得+=1,由点P(0,)到椭圆C的右焦点的距离为,即有=,解得c=2,即a2﹣b2=4,解得a=2,b=2,即有椭圆的方程为+=1;(2)当直线l2:y=,代入圆的方程可得x=2±,可得M的坐标为(2,),又|AB|=4,可得△MAB的面积为×2×4=4;设直线y=kx+,代入圆Q的方程可得,(1+k2)x2﹣4x+2=0,可得中点M(,),|MP|==,设直线AB的方程为y=﹣x+,代入椭圆方程,可得:(2+k2)x2﹣4kx﹣4k2=0,设(x1,y1),B(x2,y2),可得x1+x2=,x1x2=,则|AB|=•=•,可得△MAB的面积为S=•••=4,设t=4+k2(5>t>4),可得==<=1,可得S<4,且S>4=综上可得,△MAB的面积的取值范围是(,4].22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(1)求导数,利用导数的正负,求f(x)的单调区间;(2)g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,确定当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.当x∈(0,+∞)时,0<<1,即可证明结论.【解答】解:(1)求导数得f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).证明:(2)因为g(x)=xf′(x).所以g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,求导得h′(x)=﹣lnx﹣2=﹣(lnx﹣lne﹣2),所以当x∈(0,e﹣2)时,h′(x)>0,函数h(x)单调递增;当x∈(e﹣2,+∞)时,h′(x)<0,函数h(x)单调递减.所以当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.又当x∈(0,+∞)时,0<<1,所以当x∈(0,+∞)时,h(x)<1+e﹣2,即g(x)<1+e﹣2.综上所述,对任意x>0,g(x)<1+e﹣2。
2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。
2020最新高考模拟数学考试(文科)含答案

65C . -33D . - 63,第Ⅰ卷(选择题,共 60 分)一、选择题:本大题共 l2 小题,每小题 5 分.共 60 分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设集合 A = {x || x - 2 |≤ 2, x ∈ R }, B = { y || y = - x 2,-1 ≤ x ≤ 2}, 则等于()A .RB . {x | x ∈ R 且x ≠ 0}C .{0}D . ∅R(A∩B )2 . 已 知 cos(α - β ) =3 ,sin β = - 5 , 且α ∈ (0, π ), β ∈ (- π ,0), 则 s in α =51322()A . 3365B . 63653.对于平面α 和共面的直线m ,n 下列命题中真命题是()A .若 m ⊥ α , m ⊥ n , 则n // αC .若 m ⊂ α,n // α,则m // nB .若 m // α,n // α,则m // nD .若 m ,n 与α所成的角相等,则m // n4.数列{a }中,若 a = 1 , a =n12n1 1 - an -1(n ≥ 2, n ∈ N ) 则 a2007的值为A -1B1 C 1D225.如果 f '(x) 是二次函数, 且 f '(x) 的图象开口向上,顶点坐标为(1,-那么曲线 y=f(x)上任一点的切线的倾斜角α的取值范围是()3),A. (0, 2π 3 ]B. [0, π 2π π 2π )∪[ , π)C. [0, ]∪[ 2 3 2 3, π) D.π 2π[ , ] 2 3a 2b 2| A .(1,2 + 3 ⎤B (1, 3 ⎤⎡2+ 3, +∞)D ⎡2 - 3,2 + 3 ⎤11.如图, 直线 MN 与双曲线 C: x 2线相交于 P 点, F 为右焦点,若|FM|=2|FN|, 又NP= λPM (λ∈R), 则6.两直线 3x +y -2=0 和 y +a=0 的夹角为()A. 30°B. 60°C. 120°D. 150°7.已知函数 y = f ( x )( x ∈ R)满足f ( x + 2) = f ( x ) 且当 x ∈ [-1,1]时f ( x ) = x 2 ,则y = f ( x )与y = log x 的图像的交点个数为()7A .3B .4C .5D .68.若关于 x 的方程 4cos x - cos 2 x + m - 3 = 0 恒有实数解,则实数 m 的取值范围是A. [ -1,+∞)B. [-1,8]C [0,8]D [0,5]9.如图,在杨辉三角中,斜线的上方从 1 开始按箭 头所示的数组成一个锯齿形数列 1,3,3,4,6,5,10,……,记此数列为{a } ,则 a 等于n21A .55B .65C .78D .6610.已知点 F 、F 为双曲线 x 2 - y 2 = 1 (a > 0, b > 0) 的左、右焦点, P 为右1 2支上一点,点 P 到右准线的距离为 d ,若 | PF | 、PF| 、d 依次成等差数列,12则此双曲线离心率的取值范围是()⎦⎦C⎣ ⎣ ⎦a 2 - y 2b 2 = 1的左右两支分别交于 M 、N 两点, 与双曲线 C 的右准→ →实数λ的取值为 ( )11A. B.1 C.2 D.2312.△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为()1221A.1B.C.D.1或333第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.x2113.二项式(-)9展开式中的系数为________2x x14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为_________15.过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B 分别作抛物线C的切线交于点M,则点M的轨迹方程为_________ 16.定义在R上的函数f(x)满足f(x+5)+f(x)=0,且函数f(x+5)为奇函24数,给出下列结论:①函数f(x)的最小正周期是5;②函数f(x)的2图像关于点(5,0)对称;③函数f(x)的图像关于直线x=5对称;④42函数f(x)的最大值为f(5).2其中正确结论的序号是__________(写出所有你认为正确的结论的序号)三、解答题:本大题共6小题,共74分。
2020届高三最新模拟考试文科数学试题-含答案

2020届高三最新模拟考试文科数学试题第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只 有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.已知复数z 满足(13)23i z i +=(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.圆的方程为222100x y x y +++-=,则圆心坐标为 A .(1,1)-B .1(,1)2-C .(1,2)-D .1(,1)2-- 3.2019年第十三届女排世界杯共12支队伍参加,中国女排不负众望荣膺十冠王.将12支队伍的积分制成茎叶图如图所示,则这组数据的中位数和平均数分别为 A .17.5和17 B .17.5和16 C .17和16.5D .17.5和16.54.某公司有3000名员工,将这些员工编号为1,2,3,…,3000,从这些员工中使用系统抽样的方法抽取200人进行“学习强国”的问卷调查,若84号被抽到则下面被抽到的是 A .44号B .294号C .1196号D .2984号5.已知直线1:220l x y +-=,2:410l ax y ++=,若12l l P ,则实数a 的值为A .8B .2C .12- D .2- 6.执行如图所示的程序框图,则输出n 的值是A .1B .2C .3D .47.设2:log 0p x <,:33xq ≥,则p 是q ⌝的A .充分不必要条B .必要不充分条件C .充要条件D .既不充分条件也不必要条件8.若抛物线216x y =上一点()00,x y 到焦点的距离是该点到x 轴距离的3倍,则0y =A .12B .2C .1D .29.若函数2()2f x x ax =-+与()1ag x x =+在区间[1,2]上都是减函数,则a 的取值范围 A .(1,0)(0,1)-U B .(1,0)(0,1]-U C. (0,1) D .(0,1]10.设点P 是圆22(1)(2)2x y ++-=上任一点,则点P 到直线10x y --=距离的最大值为A .2B .22C .32D .222+11.已知中心在原点的双曲线,其右焦点与圆22410x x y -++=的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是 A .23(1,) B .(1,2)C .23(,)+∞ D .(2)+∞12.如图,三棱锥P ABC -的四个顶点恰是长、宽、高分别是m ,2,n 的长方体的顶点,此三棱锥的体积为2,则该三棱锥外接球体积的最小值为 A .2563πB .823πC .323πD .36π第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最小值是______.14.斜率为2的直线l 经过抛物线28y x =的焦点F,且与抛物线相交于,A B 两点,则线段AB 的长为_____.15. 若倾斜角为α的直线l 与曲线3y x =相切于点()1,1,则2cos sin2αα-的值为_____.16.已知两圆221:4210C x y x y +-+-=与222:44170C x y x y ++--=,则它们的公共弦所在直线方程为______.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(12分)某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(I )根据频率分布直方图,计算图中各小长方形的宽度;(II )根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);(III )按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x (单位:万元) 1 2 3 4 5 销售收益y (单位:百万元)2327表中的数据显示,x 与y 之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y 关于x 的回归方程.;附公式:1221ni ii nii x y nx ybxnx==-=-∑∑$,a y bx =-$$.18. (12分)已知函数2()23sin cos 2cos 1f x x x x =--,()x R ∈ (I )当[0,]2x π∈时,求函数()f x 的最小值和最大值;(II )设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且3c =,()0f C =,若向量(1,sin )m A =u r 与向量(2,sin )n B =r共线,求,a b 的值.19.(12分)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是菱形,60BAD ∠=︒,2AB =,6PD =,O 为AC 与BD 的交点,E 为棱PB 上一点.(I )证明:平面EAC ⊥平面PBD ;(II )若//PD 平面EAC ,求三棱锥P EAD -的体积.20.(12分)已知动圆M 在圆1F :221(1)4x y ++=外部且与圆1F 相切,同时还在圆2F :2249(1)4x y -+=内部与圆2F 相切. (I )求动圆圆心M 的轨迹方程;(II )记(1)中求出的轨迹为C ,C 与x 轴的两个交点分别为1A 、2A ,P 是C 上异于1A 、2A 的动点,又直线:l x =x 轴交于点D ,直线1A P 、2A P 分别交直线l 于E 、F 两点,求证:DE DF ⋅为定值.21.(12分) 已知函数ln ()1a b xf x x +=+在点(1,(1))f 处的切线方程为2x y +=(I )求,a b 的值;(II )若对函数()f x 定义域内的任一个实数x ,都有()xf x m <恒成立,求实数m 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分)在平面直角坐标系xoy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 221221(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为θρcos 4=. (I )写出直线l 的普通方程和圆C 的直角坐标方程.(II )若点P 坐标为(1,1),圆C 与直线l 交于A ,B 两点,求|PA|+|PB|的值.23.[选修4-5:不等式选讲](10分) 已知1x y z ++= (I )证明:22213x y z ++≥; (II )设,,x y z 为正数,求证:111(1)(1)(1)8xy z---≥.参考答案1.A 2.D3.D4.B5.A6.D7.A8.D9.D10.C11.D 12.C13.21-14.1015.12-16.0834=--y x 17.(Ⅰ)设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知()0.080.10.140.120.040.020.51m m +++++⋅==,故2m =;(Ⅱ)由(Ⅰ)知各小组依次是[)[)[)[)[)[]0,2,2,4,4,6,6,8,8,10,10,12, 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=; (Ⅲ)由(Ⅱ)知空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555ii x==++++=∑,根据公式,可求得26953 3.8121.2555310ˆb-⨯⨯===-⨯, 3.8 1.230ˆ.2a =-⨯=,即回归直线的方程为 1.2.2ˆ0yx =+. 19.(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC PD ⊥.∵四边形ABCD 是菱形,∴AC BD ⊥. 又∵PD BD D =I ,∴AC ⊥平面PBD , 而AC ⊂平面EAC , ∴平面EAC ⊥平面PBD . (2)连接OE ,∵//PD 平面EAC ,平面EAC I 平面PBD OE =,∴//PD OE . ∵O 是BD 的中点,∴E 是PB 的中点, 取AD 的中点H ,连接BH ,∵四边形ABCD 是菱形,60BAD ∠=︒,∴BH AD ⊥,又BH PD ⊥,AD PD D =I , ∴BH ⊥平面PAD,且BH AB ==,故111112223622P EAD E PAD B PAD PAD V V V S BH ---∆===⨯⨯⨯=⨯⨯=. 20.(1)设动圆M 的半径为r ,由已知得112MF r =+,272MF r =-,12124MF MF F F +=>,∴M 点的轨迹是以1F ,2F 为焦点的椭圆,设椭圆方程:22221x y a b +=(0a b >>),则2a =,1c =,则2223b a c =-=,方程为:22143x y +=;(2)解法一:设00)(P x y , ,由已知得1(2,0)A -,220A (,) ,则1002PA y k x =+,2002PA y k x =-,直线1PA 的方程为:()10022PA y l y x x =++:, 直线2PA 的方程为:()20022PA y l y x x =--:,当x =D,))00002222y y E F x x ⎫⎫⎪⎪+-⎭⎭,,,,∴))202000222224y yy DE DF x x x ⋅=⨯=⨯+--,又Q 00)(P x y ,满足2200143x y +=,∴2020344y x =--, ∴33242DE DF ⋅=-⨯=为定值.解法二:由已知得1(2,0)A -,220A (,),设直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,由已知得,1k ,2k 存在且不为零,∴直线1PA 的方程为:1(2)y k x +=,直线2PA 的方程为:2(2)y k x -=,当x =D,))))1222Ek Fk ,,∴))1212222DE DF k k k k ⋅=⨯=,联立直线1PA 和直线2PA 的方程,可得P 点坐标为()1212212124k k k k k k k k ⎛⎫+ ⎪--⎝⎭,,将P 点坐标代入椭圆方程223412x y +=中,得()()()22212122221214163412k k k k k k k k +⨯+⨯=--,即222212122112()6412()k k k k k k ++=-,整理得121234()0k k k k =+ ,Q 120k k ≠,∴1234k k =-,∴12332242DE DF k k ⋅==⨯-=为定值.22.解析:(1)直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 221221(t 为参数). 消去参数t 可得:直线l 的普通方程为:02=-+y x .........................2分圆C 的方程为θρcos 4=.即θρρcos 42=,可得圆C 的直角坐标方程为:4)2(22=+-y x .....................4分(2)将⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 221221代入4)2(22=+-y x 得:22220t t +-=..................6分 得12120,*20,t t t t +=-<=-<........................................................8分则12 4.PA PB t t +=-==........................10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三三诊模拟考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I 卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则A B =IA .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<2.z C ∈,若||12z z i -=+,则z =A .322i - B .322i + C .22i + D .22i -3.若sin 78m =o ,则sin 6=o A .12m + B .12m- C .1m + D .1m- 4.函数()21x f x x-=的图象大致为A .B .C .D .5.已知等差数列{}n a 的前n 项和为,n S 912216,4,2a a a =+=则数列1{}nS 的前10项和为 A .1112B .1011 C .910D .896.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为 A .12πB .6π C .3π D .4π 7.已知ln 241log 532a b c e ===,,,则a b c ,,满足 A .a b c <<B .b a c <<C .c a b <<D .c b a <<8.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为A .54B .5CD .29.设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且6C π=,12a b +=,则ABC V 面积的最大值为 A .8B .9C .16D .2110.《九章算术》是我国古代第一部数学专著,它有如下问题:“今有圆堡我()cong ,周四丈八尺,高一丈一尺.问积几何?”意思是“今有圆柱体形的土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少?”(注:1丈=10尺,取3π=) A .704立方尺B .2112立方尺C .2115立方尺D .2118立方尺11.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为 A .4πB .16πC .163πD .323π12.若函数()()()1cos23sin cos 412f x x a x x a x =+-+-在,02π⎡⎤-⎢⎥⎣⎦上单调递增,则实数a 的取值范围为 A .1,17⎡⎤⎢⎥⎣⎦B .11,7⎡⎤-⎢⎥⎣⎦C .][1,1,7⎛⎫-∞-⋃+∞ ⎪⎝⎭D .[)1,+∞ 第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。
13.=+o o 75cos 75sin .14.设,a b v v 是两个向量,则“a b a b +>-v vv v ”是“0a b ⋅>v v ”的__________条件.15.已知函数2()ln f x a x bx =-图象上一点(2,(2)f 处的切线方程为32ln 22y x =-++,则a b +=_______.16.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围是______.三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)已知正项等比数列{}n b 的前n 项和为n S , 34b =, 37S =,数列{}n a 满足()*11n n a a n n N +-=+∈,且11a b =.(I )求数列{}n a 的通项公式; (II )求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和.18.(12分)鱼卷是泉州十大名小吃之一,不但本地人喜欢,而且深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户当地的习俗是农历正月不生产鱼卷,客户正月所需要的鱼卷都会在上一年农历十二月底进行一次性采购小张把去年年底采购鱼卷的数量x (单位:箱)在[)100,200的客户称为“熟客”,并把他们去年采购的数量制成下表:(I)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;(II)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的58,估算小张去年年底总的销售量(同一组中的数据用该组区间的中点值为代表);(III)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m 元(25m ≤≤)销售量可增加1000m 箱,求小张今年年底收入Y (单位:元)的最大值.19.(12分)如图,在多面体EFABCD 中,//AB CD ,AB BC ⊥,EB ⊥平面ABCD ,//BE DF ,244CD BC AB ===,24BE DF ==.(Ⅰ)求证:AC EF ⊥; (Ⅱ)求三棱锥A CDF -的体积.20.(12分)中心在原点的椭圆E 的一个焦点与抛物线2:4C x y =的焦点关于直线y x =对称,且椭圆E 与坐标轴的一个交点坐标为()2,0. (I )求椭圆E 的标准方程;(II )过点()0,2-的直线l (直线的斜率k 存在且不为0)交E 于A ,B 两点,交x 轴于点P 点A 关于x 轴的对称点为D ,直线BD 交x 轴于点Q .试探究||||OP OQ ⋅是否为定值?请说明理由.21.(12分)已知函数2()2ln f x x ax x =-+.(I )当5a =时,求()f x 的单调区间; (II )若()f x 有两个极值点12,x x ,且12113x x e<<<,求a 取值范围.(其中e 为自然对数的底数).(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)已知直线l:112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线1C :cos sin x y θθ=⎧⎨=⎩(θ为参数).(I)设l 与1C 相交于,A B 两点,求AB ; (II)若把曲线1C 上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的2倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最大值.23.[选修4-5:不等式选讲](10分) 已知:0x >,0y >,且6x y +=(I )若|5||4|6x y -+-≤求x 的取值范围;(II )|5||4||2|x y m -+-≥-恒成立,求m 的取值范围.文科数学参考答案1.C 2.B3.B4.D5.B6.D7.A8.C9.B10.B11.D12.D 13.26 14.充分必要 15.3 .16.),2(+∞17.(Ⅰ)根据题意,设{}n b 的公比为q ,所以2121114,{7,b q b b q b q =++=解得11,{2.b q ==又11n n a a n +-=+,所以()()()()11232211n n n n n a a a a a a a a a a ---=-+-+⋯+-+-+()()2112122n n n nn n ++=+++⋯++==. (Ⅱ)因为2121121n a n n n n ⎛⎫==- ⎪++⎝⎭, 所以1211111111111221212231111n n a a a n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-+⋯+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.解: (1)作出频率分布直方图,如图根据上图,可知采购量在168箱以上(含168箱)的“熟客”人数为180********.0050.0201720-⎛⎫⨯⨯+⨯= ⎪⎝⎭(2)去年年底“熟客”所采购的鱼卷总数大约为110101301015051702019057500⨯+⨯+⨯+⨯+⨯=(箱)小张去年年底总的销售量为57500120008÷=(箱) (3)若不在网上出售鱼卷,则今年年底小张的收入为120020240000Y =⨯=(元); 若在网上出售鱼卷,则今年年底的销售量为()12000100m +箱,每箱的利润为()20m -, 则今年年底小张的收入为()22(20)(120001000)100082401000(4)256Y m m m m m ⎡⎤=-⋅+=-++=--+⎣⎦,当4m =时, Y 取得最大值256000 ∵256000240000>,∴小张今年年底收入Y 的最大值为256000元.19.(Ⅰ)EB Q ⊥平面ABCD ,AC ⊂平面ABCD EB AC ∴⊥,//AB BC AB CD ⊥Q 90ABC BCD ∴∠=∠=o又244CD BC AB === 12AB BC BC CD ∴== ABC BCD ∴∆~∆ 则CAB DBC ∠=∠90ABD DBC ∠+∠=o Q 90ABD CAB ∴∠+∠=o AC BD ∴⊥又EB BD B ⋂= AC ∴⊥平面DBEF 又EF ⊂平面DBEF AC EF ∴⊥ (Ⅱ)三棱锥A CDF -的体积:1111833323A CDF F ADC ADC BDC V V S DF S DF BC CD DF --∆∆==⋅=⋅=⨯⋅⋅⋅=20.(1)因为椭圆E 的一个焦点与抛物线2:4C x y =的焦点关于直线y x =对称,所以椭圆E 的右焦点为1,0(),所以1c =.又椭圆E 与坐标轴的一个交点坐标为2,0(),所以2a =,又2223b a c =-=,所以椭圆E 的标准方程为22143x y +=.(2)设直线l 的方程为2y kx =-,0k ≠,则点2,0P k ⎛⎫⎪⎝⎭,设()()1122,,,A x y B x y 则点()11,D x y -,联立直线l 与椭圆E 的方程有221432x y y kx ⎧+=⎪⎨⎪=-⎩, 得()22341640kx kx +-+=,所以有()248410k ∆=->,即214k >且1221221634434k x x k x x k ⎧+=⎪⎪+⎨⎪=⎪+⎩,即直线BD 的方程为112121y y x x y y x x +-=+- 令\0y =,得点Q 的横坐标为()()121212*********Q kx x x x x y x y x y y k x x -++==++-,代入得:()228322421216434Q k k k x k k k --===--+, 所以2||||24P Q OP OQ x x k k⋅=⋅=⋅=,所以||||OP OQ ⋅为定值4. 21.(1)()f x 的定义域为()0+∞,,()()()2212225225x x x x f x x x x x---+='=-+=, ()f x 的单调递增区间为10,2⎛⎫⎪⎝⎭和()2,+∞,单调递减区间为1,22⎛⎫ ⎪⎝⎭.(2∵()22222x ax f x x a x x='-+=-+,()f x 有两个极值点∴令()222g x x ax =-+,则()g x 的零点为12,x x ,且12113x x e<<<. ∴216a ∆=->0, ∴4a <- 或4a >∵1202ax x +=>,121=x x ∴4a >. 根据根的分布,则1()03g >且g(1e ) <0 即 1122093a ⨯-+>, 21220ae e⋅-+<.∴a 的取值范围是22023e a e +<< 22.(1)l的普通方程为)1y x =-,1C 的普通方程为221x y +=,联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩,解得交点为()11,0,,2A B ⎛ ⎝⎭, 所以AB1=; (2)曲线2C:1cos 2x y θθ⎧=⎪⎪⎨⎪=⎪⎩(θ为参数).设所求的点为1cos ,22P θθ⎛⎫ ⎪ ⎪⎝⎭, 则P 到直线l的距离d ==)4πθ+.当cos()14pq +=-时,d取得最大值24+. 23.(1)把6y x =-代入原不等式得|5||2|6x x -+-≤,此不等式等价于2526x x x <⎧⎨-+-≤⎩或25526x x x ≤≤⎧⎨-+-≤⎩或5526x x x >⎧⎨-+-≤⎩分别解得:122x ≤<或25x ≤≤货1352x <≤,故原不等式解集为113,22⎡⎤⎢⎥⎣⎦(2)|5||4||9|3x y x y -+-≥+-=,当且仅当05x <≤,04y <≤时取等号, ∴|2|3m -≤,故15m -≤≤.。