九年级(上)数学一元二次方程单元系列试题集锦(创制三)

合集下载

九年级上《一元二次方程》整章测试题

九年级上《一元二次方程》整章测试题

九年级上册第二十二章《一元二次方程》整章测试题一、选择题(每题3分)1. (2018山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=2 (2018成都)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B 。

1k >-且0k ≠ C.。

1k < D 。

1k <且0k ≠3.(2018年潍坊)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .94. (2018青海)方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15C .15D .不能确定5(2018年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2018B .2018C .2018D .20186. (2018江西)为了让江西的山更绿、水更清,2018年省委、省政府提出了确保到2018年实现全省森林覆盖率达到63%的目标,已知2018年我省森林覆盖率为60.05%,设从2018年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()260.05163%x += D .()260.05163x +=7. (2018襄樊市)如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+ C.2+ D.212+ADCEB 图58.(2018青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题:(每题3分)9. (2018重庆綦江)一元二次方程x 2=16的解是 .10. (2018威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是 .11. (2018年包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是 .12. (2018年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .13 . (2018年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.14. (2018年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 15. (2018年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .16. (2018年广东省)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.三、解答题:(52分)17.解方程(每小题5分,共10分)(1)x 2-4x -3=0 (2)(x -3)2+2x(x -3)=018.(2018北京)已知关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值19.(2018广东茂名)已知关于x 的一元二次方程2260x x k --=(k 为常数). (1)求证:方程有两个不相等的实数根;(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值.20. (2018年鄂州)22、关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。

数学九年级上学期《一元二次方程》单元检测卷(带答案)

数学九年级上学期《一元二次方程》单元检测卷(带答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.若方程(m-1)x2+5x+m=0是关于x的一元二次方程,则m的取值不可能的是( )A . m>1B . m<1C . m=1D . m=02.已知x=2是关于x的一元二次方程A x2-3B x-5=0的一个根,则4A -6B +6的值是( )A . 1B . 6C . 11D . 123.某服装原价为200元,连续两次涨价A %后,售价为242元,则A 的值为( )A . 10B . 9C . 5D . 124.将方程3x2+6x-1=0配方,变形正确的是( )A . (3x+1)2-1=0B . (3x+1)2-2=0C . 3(x+1)2-4=0D . 3(x+1)2-1=05.用因式分解法把方程6x(x-7)=7-x分解成两个一次方程,正确的是( )A . x-7=0,6x-1=0B . 6x=0,x-7=0C . 6x+1=0,x-7=0D . 6x=7,x-7=7-x6.若一元二次方程(1-2k)x2+12x-10=0有实数根,则k的最大整数值为( )A . 1B . 2C . -1D . 07.x1,x2是方程x2+x+k=0的两个实根,若x12+x1x2+x22=2k2恰成立,则k的值为( )A . ﹣1B . 或﹣1C .D . ﹣或18.在一幅长80C m,宽50C m的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400C m2,设金色纸边的宽为xC m,那么x满足的方程是( )A . x2+130x﹣1400=0B . x2+65x﹣350=0C . x2﹣130x﹣1400=0D . x2﹣65x﹣350=09.如图,在▱A B C D 中,A E⊥B C 于E,A E=EB =EC =A ,且A 是一元二次方程x2+2x-3=0的根,则▱A B C D 的周长为( )A . 4+2B . 12+6C . 2+2D . 2+或12+610.如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x应满足的方程是()A . (40-x)(70-x)=350B . (40-2x)(70-3x)=2450C . (40-2x)(70-3x)=350D . (40-x)(70-x)=2450二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x的一元二次方程4x2-2A x-A x-2A -6=0常数项为4,则一次项系数______.12.已知(A -1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3A +6>0的解集_______.13.已知A ,B ,C 分别是三角形的三边,则方程(A +B )x2+2C x+(A +B )=0的根的情况是_____.14.已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为▲三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的方程(m2-1)x2+(m-1)x-2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?16.解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、(本大题共2小题,每小题8分,满分16分)17.已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=3x1x2﹣6,求k的值.18.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)该公司2016年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?五、(本大题共2小题,每小题10分,满分20分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:A 2+2A +B 2-4B +5=0,求A B 的值.20.已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形A B C 的一边长A =1,另两边长B ,C 恰好是这个方程的两个根,求△A B C 的周长.六、(本题满分12分)21.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.七、(本题满分12分)22.已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△A B C 的两边A B ,A C 的长是方程的两根,第三边B C 的长为5,①则k为何值时,△A B C 是以B C 为斜边的直角三角形?②k为何值时,△A B C 是等腰三角形,并求出△A B C 的周长.八、(本题满分14分)23.合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.若方程(m-1)x2+5x+m=0是关于x的一元二次方程,则m的取值不可能的是( )A . m>1B . m<1C . m=1D . m=0[答案]C[解析][分析]根据一元二次方程的定义列式求出m的值,即可进行选择.[详解]∵(m−1)x2+5x+m=0是关于x的一元二次方程,∴m−1≠0,解得m≠1,∴说法m>1、m<1、m=0都是可以的,说法m=1错误.故选:C .[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是A x2+B x+C =0(且A ≠0).特别要注意A ≠0的条件.2.已知x=2是关于x的一元二次方程A x2-3B x-5=0的一个根,则4A -6B +6的值是( )A . 1B . 6C . 11D . 12[答案]C[解析][分析]把x=2代入方程即可求得4A −6B 的值,然后将其整体代入所求的代数式并求值即可.[详解]∵x=2是关于x的一元二次方程A x2−3B x−5=0的一个根,∴4A −6B −5=0,∴4A −6B =5,∴4A −6B +6=5+6=11,即4A −6B +6=11.故选:C .[点睛]本题考查了一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.3.某服装原价为200元,连续两次涨价A %后,售价为242元,则A 的值为( )A . 10B . 9C . 5D . 12[答案]A[解析][分析]本题中原价为200元,第一次涨价后价格变为200(1+A %)元,第二次在200(1+A %)元的基础之上又涨A %,变为200(1+A %)(1+A %)即200(1+A %)2元,从而可列出方程,进而求解.[详解]由题意得:200(1+A %)2=242,整理得(1+A %)2=1.21,解之得A %=0.1=10%或A %=−2.1(舍去).故A =10.故选:A .[点睛]此类题目旨在考查增长率的定义,要注意增长的基数,另外还要注意解的合理性,从而确定取舍.4.将方程3x2+6x-1=0配方,变形正确的是( )A . (3x+1)2-1=0B . (3x+1)2-2=0C . 3(x+1)2-4=0D . 3(x+1)2-1=0[答案]C[解析][分析]首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.[详解]∵3x2+6x−1=0∴3(x2+2x)−1=0∴3(x2+2x+1−1)−1=0∴3(x2+2x+1)−3−1=0∴3(x+1)2−4=0故选:C .[点睛]先把二次项的系数化为1,再在等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用因式分解法把方程6x(x-7)=7-x分解成两个一次方程,正确的是( )A . x-7=0,6x-1=0B . 6x=0,x-7=0C . 6x+1=0,x-7=0D . 6x=7,x-7=7-x[答案]C[解析][分析]先移项,再提公因式就可以求出结论.[详解]移项,得6x(x-7)+(x-7)=0,提公因式,得,(6x+1)(x−7)=0,∴6x+1=0或x−7=0故选:C .[点睛]本题考查了运用平方差公式分解因式,完全平方公式分解因式,提公因式法分解因式及“十字”相乘法分解因式的方法解一元二次方程的运用,解答时灵活运用分解因式的方法是关键.6.若一元二次方程(1-2k)x2+12x-10=0有实数根,则k的最大整数值为( )A . 1B . 2C . -1D . 0[答案]B[解析][分析]由方程根的情况可求得k的取值范围,再求其最大整数即可.[详解]∵一元二次方程(1−2k)x2+12x−10=0有实数根,∴△≥0且1−2k≠0,即122−4(1−2k)×(−10)≥0且1−2k≠0,解得k≤2.3且k≠0.5,∴k的最大整数值为2,故选:B .[点睛]本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.7.x1,x2是方程x2+x+k=0的两个实根,若x12+x1x2+x22=2k2恰成立,则k的值为( )A . ﹣1B . 或﹣1C .D . ﹣或1[答案]A[解析]分析:根据一元二次方程的根与系数的关系得到,两根之和与两根之积,再根据x12+x1x2+x22=(x1+x2)2﹣x1x2把已知条件代入,即可求得k的值.详解:根据根与系数的关系,得:x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得:k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去,∴取k=﹣1.故选A .点睛:注意:利用根与系数的关系求得的字母的值一定要代入原方程,看方程是否有实数根.8.在一幅长80C m,宽50C m的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400C m2,设金色纸边的宽为xC m,那么x满足的方程是( )A . x2+130x﹣1400=0B . x2+65x﹣350=0C . x2﹣130x﹣1400=0D . x2﹣65x﹣350=0[答案]B[解析]试题分析:根据题意可得:挂图的长为(80+2x)C m,宽为(50+2x)C m,根据题意可得:(80+2x)(50+2x)=5400,化简得:+65x-350=0.考点:一元二次方程的应用9.如图,在▱A B C D 中,A E⊥B C 于E,A E=EB =EC =A ,且A 是一元二次方程x2+2x-3=0的根,则▱A B C D 的周长为( )A . 4+2B . 12+6C . 2+2D . 2+或12+6[答案]A[解析]先解方程求得A ,再根据勾股定理求得A B ,从而计算出□A B C D 的周长即可.解:∵A 是一元二次方程x2+2x﹣3=0的根,∴A 2+2A ﹣3=0,即(A ﹣1)(A +3)=0,解得,A =1或A =﹣3(不合题意,舍去).∴A E=EB =EC =A =1.在Rt△A B E中,A B =,∴B C =EB +EC =2,∴□A B C D 的周长═2(A B +B C )=2(+2)=4+2.故选A .10.如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x应满足的方程是()A . (40-x)(70-x)=350B . (40-2x)(70-3x)=2450C . (40-2x)(70-3x)=350D . (40-x)(70-x)=2450[答案]B[解析]试题解析:由题意可得,(40-2x)(70-3x)=40×70×(1-),整理,得(40-2x)(70-3x)=2450,故选B .二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x的一元二次方程4x2-2A x-A x-2A -6=0常数项为4,则一次项系数______.[答案]15[解析][分析]根据常数项是不含x的项,可得关于A 的方程,根据解方程,可得A 的值,可得一次项系数.[详解]由题意,得−2A −6=4,解得A =−5.一次项的系数为−2A −A =−3A =−3×(−5)=15,故答案为:15.[点睛]本题考查了一元二次方程的一般形式,利用常数项为零得出关于A 的方程是解题关键.12.已知(A -1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3A +6>0的解集_______.[答案]A >-2且A ≠1[解析][分析](A −1)x2−5x+3=0是一个关于x的一元二次方程,所以(A −1)x2是二次项A −1≠0,解得A ≠1;解得不等式3A +6>0,则A >−2,从而得到其解集是A >−2且A ≠1.[详解]∵(A −1)x2−5x+3=0是一个关于x的一元二次方程,∴(A −1)x2是二次项A −1≠0,∴A ≠1,∵不等式3A +6>0,∴A >−2,∴不等式3A +6>0的解集是A >−2且A ≠1.[点睛]要确定二次项系数和常数项,首先要把方程化成一般形式.确定A ≠1,结合不等式3A +6>0求出A 的解集.一元二次方程的一般形式是:A x2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x2叫二次项,B x叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.13.已知A ,B ,C 分别是三角形的三边,则方程(A +B )x2+2C x+(A +B )=0的根的情况是_____.[答案]方程没有实数根.[解析]解:△=(2C )2﹣4(A +B )(A +B )=4C 2﹣4(A +B )2=4(C +A +B )(C ﹣A ﹣B ).∵A ,B ,C 分别是三角形的三边,∴A +B >C ,∴C +A +B >0,C ﹣A ﹣B <0,∴△<0,则方程没有实数根.14.已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为▲[答案]7[解析]设x2-x=m,则原方程可化为:m2-4m-12=0,解得m=-2,m=6;当m=-2时,x2-x=-2,即x2-x+2=0,△=1-8<0,原方程没有实数根,故m=-2不合题意,舍去;当m=6时,x2-x=6,即x2-x-6=0,△=1+24>0,故m的值为6;∴x2-x+1=m+1=7三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的方程(m2-1)x2+(m-1)x-2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?[答案](1)当m≠±1时,该方程为一元二次方程(2)当m=-1时,该方程为一元一次方程.[解析][分析](1)根据一元二次方程的定义得到:m2-1≠0,由此可以求得m的值;(2)由一元一次方程的定义得到:m2-1=0,且m-1≠0,由此可以求得m的值.[详解](1)∵关于x的方程(m2-1)x2+(m-1)x-2=0为一元二次方程,∴m2-1≠0,解得m≠±1,即当m≠±1时,该方程为一元二次方程;(2)∵关于x的方程(m2-1)x2+(m-1)x-2=0为一元一次方程,∴m2-1=0,且m-1≠0,解得m=-1,即当m=-1时,该方程为一元一次方程.[点睛]本题考查了一元二次方程、一元一次方程的定义.熟知一元一次方程的未知数的系数不等于零,一元二次方程的二次项系数不等于零是解题的关键.16.解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)[答案](1)x=;(2)x=; (3)y=[解析]分析: (1)先找A ,B ,C ,再求△,根据根的判别式判断方程根的情况,再代入公式计算即可;(2)先移项,再方程两边同加上一次项系数一般半的平方,再直接开平方即可;(3)先变形,再提公因式,得出两个一元一次方程求解即可.详解:(1):2x2-4x-5=0.∵A =2,B =−4,C =−5,B ²−4AC =(−4) ²−4×2×(−5)=56>0.∴x==.∴x₁=,x₂=.(2) x2-4x+1=0.x²−4x+4=4−1,即(x−2) ²=3.∴x₁=2+,x₂=2−.(3)∵(y−1) ²+2y(1−y)=0,∴(y−1) ²−2y(y−1)=0.∴(y−1)(y−1−2y)=0.∴y−1=0或y−1−2y=0.∴y₁=1,y₂=−1.点睛: 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.四、(本大题共2小题,每小题8分,满分16分)17.已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=3x1x2﹣6,求k的值.[答案](1)k≥﹣(2)k=2[解析]试题分析:(1)、根据方程有两个实数根,从而得出△=,得出k的取值范围;(2)、根据韦达定理得出两根之和和两根之积,然后代入代数式求出k的值,然后根据k的取值范围得出答案.试题解析:(1)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴△≥0,即4(k+1)2﹣4×1×k2≥0,解得k≥﹣,∴k的取值范围为k≥﹣;(2)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴x1+x2=2(k+1),x1x2=k2,∵x1+x2=3x1x2﹣6,∴2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0,∴k1=2,k2=﹣,∵k≥﹣,∴k=2.18.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)该公司2016年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?[答案](1)2016年该公司盈利1800万元(2)预计2008年该公司盈利2592万元[解析]试题分析:(1)设每年盈利的年增长率为x,根据相等关系是“2017年盈利=2015年盈利×(1+每年盈利的年增长率)2”,列出方程并解方程求得增长率,再由“2016年盈利=2015年盈利×每年盈利的年增长率”计算出2016年盈利即可;(2)由“2018年盈利=2017年盈利×每年盈利的年增长率”计算出2018年盈利即可.试题解析:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2016年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元五、(本大题共2小题,每小题10分,满分20分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:A 2+2A +B 2-4B +5=0,求A B 的值.[答案](1) y的最小值是1;(2) -2.[解析][分析](1)先把要求的式子进行变形,得出y=(x−2)2+1,再根据(x−2)2≥0,即可求出y的最小值;(2)先把A 2+2A +B 2−4B +5=0变形为(A +1)2+(B −2)2=0,再根据(A +1)2≥0,(B −2)2≥0,求出A 与B 的值,然后代入计算即可.[详解](1)∵y=x2-4x+,∴y=x2-4x+4+1=(x-2)2+1.∵(x-2)2≥0,∴(x-2)2+1≥1,即y的最小值是1;(2)∵A 2+2A +B 2-4B +5=0,∴A 2+2A +1+B 2-4B +4=0,∴(A +1)2+(B -2)2=0,∵(A +1)2≥0,(B -2)2≥0,∴A +1=0,B -2=0,∴A =-1,B =2,∴A B =-1×2=-2.[点睛]此题考查了配方法的应用,关键是通过配方对要求的式子进行变形,再根据完全平方式的性质求值.20.已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形A B C 的一边长A =1,另两边长B ,C 恰好是这个方程的两个根,求△A B C 的周长.[答案](1)无论取任何实数值,方程总有实数根;(2)△A B C 的周长为5.[解析]试题分析:(1)先计算出△=(k+2)2﹣4•2k=(k﹣2)2,然后根据非负数的性质和根的判别式的意义判断方程根的情况;(2)分类讨论:当B =C 时,△=0,则k=2,再把k代入方程,求出方程的解,然后计算三角形周长;当B =A =1或C =A =1时,把x=1代入方程解出k=1,再解此时的一元二次方程,然后根据三角形三边的关系进行判断.试题解析:(1)△=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)当B =C 时,△=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△A B C 的周长=2+2+1=5;当B =A =1或C =A =1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△A B C 的周长为5.[考点]根的判别式;根与系数的关系;三角形三边关系;等腰三角形的性质.视频六、(本题满分12分)21.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.[答案](1)商场每件衬衫降价4元,则商场每天可盈利1008元;(2)每件衬衫应降价20元;(3)不可能.理由见解析.[解析][分析](1)根据题意得到每天的销售量,然后由销售量×每件盈利进行解答;(2)利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可;(3)同样列出方程,若方程有实数根则可以,否则不可以.[详解](1)×(40-4)=1008(元).答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20,∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x2-30x+400=0,∵Δ=900-4×400<0,∴商场平均每天不可能盈利1600元.[点睛]此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.七、(本题满分12分)22.已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△A B C 的两边A B ,A C 的长是方程的两根,第三边B C 的长为5,①则k为何值时,△A B C 是以B C 为斜边的直角三角形?②k为何值时,△A B C 是等腰三角形,并求出△A B C 的周长.[答案](1) 见解析;(2) k=;(3) 当k=3时,△A B C 是等腰三角形,此时△A B C 的周长为14;当k=4时,△A B C 是等腰三角形,此时△A B C 的周长为16.[解析][分析](1)根据方程的系数结合根的判别式即可得出△=1>0,由此即可得出方程有两个不相等的实数根;(2)根据根与系数的关系进行解答;(3)利用分解因式法可求出x1=k+1,x2=k+2.①不妨设A B =k+1,A C =k+2,根据B C =5利用勾股定理即可得出关于k的一元二次方程,解方程即可得出k的值;②根据(1)结论可得出A B ≠A C ,由此可找出△A B C 是等腰三角形分两种情况,分A B =B C 、A C =B C 两种情况考虑,根据两边相等找出关于k的一元一次方程,解方程求出k值,进而可得出三角形的三边长,再根据三角形的周长公式即可得出结论[详解](1)∵在方程x2-(2k+3)x+k2+3k+2=0中,Δ=B 2-4A C =[-(2k+3)]2-4(k2+3k+2)=1>0,∴方程有两个不相等的实数根;(2)∵x1+x2=2k+3,x1·x2=k2+3k+2,∴由(x1-1)(x2-1)=5,得x1·x2-(x1+x2)+1=5,即k2+3k+2-2k-3+1=5,整理得k2+k-5=0,解得k=;(3)∵x2-(2k+3)x+k2+3k+2=(x-k-1)(x-k-2)=0,∴x1=k+1,x2=k+2.①不妨设A B =k+1,A C =k+2,∴斜边B C =5时,有A B 2+A C 2=B C 2,即(k+1)2+(k+2)2=25,解得k1=2,k2=-5(舍去),∴当k=2时,△A B C 是直角三角形;②∵A B =k+1,A C =k+2,B C =5,由(1)知A B ≠A C ,故有两种情况:(Ⅰ)当A C =B C =5时,k+2=5,∴k=3,A B =3+1=4,∵4,5,5满足任意两边之和大于第三边,∴此时△A B C 的周长为4+5+5=14;(Ⅱ)当A B =B C =5时,k+1=5,∴k=4,A C =k+2=6,∵6,5,5满足任意两边之和大于第三边,∴此时△A B C 的周长为6+5+5=16.综上可知,当k=3时,△A B C 是等腰三角形,此时△A B C 的周长为14;当k=4时,△A B C 是等腰三角形,此时△A B C 的周长为16.[点睛]本题考查了根的判别式、因式分解法解一元二次方程以及等腰三角形的判定,熟练掌握“当根的判别式△>0时,方程有两个不等实数根.”是解题的关键.八、(本题满分14分)23.合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?[答案](1) 2015至2017年的平均增长率为37.5%;(2)单人间的数量是28间;(3)该校的寝室建成后最多可供596名师生住宿.[解析][分析](1)可设2015至2017年的平均增长率是x,根据等量关系:2015年学校寝室数×(1+平均增长率)2=2017年学校寝室数,列出方程求解即可;(2)设双人间的数量为y间,则四人间的数量为5y间,根据不等量关系:单人间的数量在20至于30之间(包括20和30),列出不等式,再根据整数的性质即可求解;(3)由于四人间的数量是双人间的5倍,可知四人间和双人间的数量是5+1=6的倍数,找到150~160间6的最大倍数,再进一步求出双人间和四人间的数量,以及单人间的数量,从而求解.[详解](1)设2015至2017年的平均增长率是x,依题意有64(1+x)2=121,解得x1=0.375,x2=-2.375.故2015至2017年的平均增长率为37.5%;(2)设双人间的数量为y间,则四人间的数量为5y间,依题意有20≤600-2y-4×5y≤30,解得25≤y≤26,∵y为整数,∴y=26,600-2y-4×5y=600-52-520=28.故单人间的数量是28间;(3)由于四人间的数量是双人间的5倍,则四人间和双人间的数量是5+1=6的倍数,双人间与四人间总数量在150~160之间.∵150~160间6的最大倍数是156,∴双人间156÷6=26(间),四人间的数量26×5=130(间),单人间180-156=24(间),24+26×2+130×4=596(名).答:该校的寝室建成后最多可供596名师生住宿.[点睛]本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

九年级上第一章一元二次方程单元测试含答案

九年级上第一章一元二次方程单元测试含答案

第一章一元二次方程单元测试一、单选题(共10题;共30分)1.已知反比例函数y=abx ,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13 B、11 C、11或13 D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0 B、1 C、2 D、35.(2015•长春)方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根B、只有一个实数根C、没有实数根D、有两个不相等的实数根6.已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤94B.k≥﹣94 且k≠0C.k≥﹣94D.k>﹣94 且k≠08.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=29.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠310.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题(共8题;共24分)11.一元二次方程x2=3x的解是:________ .12.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________13.如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为。

九年级上学期数学《一元二次方程》单元综合检测含答案

九年级上学期数学《一元二次方程》单元综合检测含答案
24.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了 棵,已知这些学生在初一时种了 棵,若平均成活率 ,求这个年级两年来植树数的年平均增长率.(只列式不计算)
25.如图,为美化校园环境,某校计划在一块长为 米,宽为 米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米.
(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
5.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()
A.2005B.2003C. ﹣2005D.4010
[答案]B
[解析]
[分析]
根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程Ax2+Bx+C=0(A≠0,A,B,C为常数)的两个实数根,则x1+x2=- ,x1x2= .而α2+3α+β=α2+2α+(α+β),即可求解.
(1)若商场要求该服装部每天盈利 元,每件衬衫应降价多少元?
(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
参考答案
一、选择题(本题共计10小题,每题3分 ,共计30分)
1.如果关于x的方程(m﹣3) ﹣x+3=0是关于x的一元二次方程,那么m的值为()
A.±3B.3C.﹣3D.都不对
[答案]C
10.把方程 的左边配方后可得方程()
A. B. C. D.
[答案]A
[解析]
[分析]
首先把常数项 移项后,再在左右两边同时加上一次项系数 的一半的平方,继而可求得答案.
[详解] ,

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(答案解析)(3)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(答案解析)(3)

一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x +=D .2(1)3x += 3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( ) A .(x+2)2=3 B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 4.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 8.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-39.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <010.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人 11.下列方程是一元二次方程的是( ) A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 12.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5 二、填空题13.一元二次方程2210x x -+=的一次项系数为_________.14.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.15.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________17.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.18.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.19.当x=______时,−4x 2−4x+1有最大值.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?22.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?24.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?25.解方程(1)()221250x --= (2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩26.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭,∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.7.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=, 解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.9.C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.10.B解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.11.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12.D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题13.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x +1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2【分析】根据一元二次方程的一次项系数的定义即可求解.【详解】解:一元二次方程x 2 -2x +1=0一次项系数是:-2.故答案为:-2.【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键. 14.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 15.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.16.2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义. 17.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角 解析:22【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.18.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一 解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】 此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键. 20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)125544x x ==;(2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,524b x a -±±∴==,1255,44x x ∴==(2)23(5)2(5)0x x ---=,移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数;(3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.25.(1)123,2x x ==-;(2)51x y =⎧⎨=⎩【分析】(1)方程移项后,运用直接开平方法求解即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()221250x --= ()22125x -=215x -=或215x -=-∴123,2x x ==-;(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩①②由①得:4x y =+③,把③代入②可得:1342x y y -+-=, 5x =,∴1y =,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.同时还考查了二元一次方程组的解法.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。

数学九年级上学期《一元二次方程》单元测试(附答案)

数学九年级上学期《一元二次方程》单元测试(附答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 22. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=13. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 14. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠08. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或19. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=18210. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________12. 方程x(x-2)=0的解是___________________13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.14. 方程x2-2x-1=0的判别式△=____________.15. 方程x2-4x+4=0的根的情况是__________________16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?参考答案一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 2[答案]B[解析]由一元二次方程的定义可得,解得:m=2.故答案为:2.2. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=1[答案]D[解析]解:移项得:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,x1=0,x2=1.故选C .3. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 1[答案]D[解析]根据方根的根的定义得:故(x12+x1-2)×(x22+x2-2)= .故选D .4. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)[答案]A[解析]根据方根的根的定义得:x2-px + q=(x -1)(x +2).故选A .5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定[答案]B[解析]试题解析:x2-5x+8=x2-5x++=(x-)2+,任意实数的平方都是非负数,其最小值是0,所以(x-)2+的最小值是,故多项式x2-5x+8的值是一个正数,故选B .考点:1.配方法的应用;2.非负数的性质:偶次方.6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定[答案]C[解析]由题意得:当A -B +C =0,即当x=-1时,A x2+B x+C =A -B +C =0,故选C .7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠0[答案]B[解析]由题意得: .故选C .8. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或1[答案]C[解析]试题分析:根据一元二次方程A x2+B x+C =0(A ≠0)的根的判别式和定义得到m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1,即可得到m的值.∵一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,∴m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1.∴m的值为﹣6或1.考点:根的判别式.9. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=182[答案]B[解析]一个季度包括3个月,四月份产量+五月份产量+六月份产量=第二季度共生产零件182万个.易得:50+50(1+x)+50(1+x)2=182.故选B .10. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m[答案]A视频二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________[答案]2x2-6x+5=0[解析]原方程移项,得2x2-6x+5=0.故答案为2x2-6x+5=0.点睛:一元二次方程的一般形式为:A x2+B x+C =0(A ≠0).12. 方程x(x-2)=0的解是___________________[答案]x1=0,x2=2[解析]利用因式分解法解一元二次方程,易得:x=0或x-2=0,即x1=0,x2=2.故答案:x1=0,x2=2.13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.[答案]-3[解析]试题分析:根据一元二次方程的根,可知把x=1代入原方程可得1+2+m=0,解得m=-3.考点:一元二次方程的解14. 方程x2-2x-1=0的判别式△=____________.[答案]8[解析]由题意得:A =1,B =-2,C =-1,故 .故答案:8.15. 方程x2-4x+4=0的根的情况是__________________[答案]有两个不相等实数根[解析]Δ=B 2-4A C =(-4)2-4×1×4=0,所以方程有两个相等的实数根.点睛:一元二次方程解的情况:(1)B 2-4A C >0,方程有两个不相等的实数根;(2)B 2-4A C =0,方程有两个相等的实数根;(3)B 2-4A C <0,方程没有实数根.16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.[答案]-3[解析]设方程两根分别为x1,x2,其中x1=1,由韦达定理可得x1·x2=-3,∴x2=-3.故答案为-3.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)[答案](1) x1=9, x2=1;(2)x1=0, x2=-5;(3)x1=2+, x2=2;(4)x1=-4 , x2=1[解析][试题分析](1)用直接开平方法求解;(2)用因式分解法求解;(3)用配方法求解;(4)用公式法求解.[试题解析](1)(x-5)2=16(2)x2+5x=0(3)x2-4x+1=0(4)x2+3x-4=0A =1,B =3,C =-4,则所以方程的根为:,即:x1=-4 , x2=1.[方法点睛]本题目是一道考查求一元二次方程的根的问题,四道题利用四种不同的方法求解,在于全面考查一元二次方程的解法,难度不大.18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.[答案](1)7;(2)x1=3, x2=-7[解析]试题分析:(1)将A =4,B =3代入公式计算出结果即可;(2)根据运算规则计算出方程左边的结果,再解方程即可.试题解析:(1)4△3=42-32 =16-9=7.(2)(x+2)△5=0,(x+2)2-52=0,(x+2)2=52,x+2=±5,x1=3,x2=-7 .点睛:遇到新运算规则,理解题目的意思,套用公式即可.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.[答案]见解析[解析]试题分析:要证明方程总有两个不相等的实数根,即要证明Δ>0恒成立,将Δ用含m的式子表示出来,然后配方即可证明.试题解析:△=(2m+1)2-4 m(m+1) =4m2+4m+1-4m2-4m =1>0,所以方程有两个不相等实数根.点睛:(1)一元二次方程解的情况:①B 2-4A C >0,方程有两个不相等的实数根;②B 2-4A C =0,方程有两个相等的实数根;③B 2-4A C <0,方程没有实数根.(2要证明多项式恒大于0或者恒小于0可用配方法证明.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?[答案](1)每年市政府投资的增长率为50% ;(2)2017年预计建设了18万平方米的廉租房.[解析]试题分析:(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.解:(1)设每年市政府投资的增长率为x,依题意得:3(1+x)2=6.75解得x1=0.5=50% x2=-2.5(舍去)答:每年市政府投资的增长率为50%(2)12(1+50%)2=27答:2017年预计建设了27万平方米的廉租房.点睛:本题考查了一元一次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为A (1+x)n =B ,其中n为共增长了几年,A 为第一年的原始数据,B 是增长后的数据,x是增长率.21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?[答案](1)P、Q 两点出发5秒时,四边形PB C Q 的面积为33C m2;(2) P、Q 两点从出发点出发秒或秒时,点P 与点Q 的距离是10C m.[解析]解:(1)设P、Q两点从出发开始到x秒时四边形PB C Q的面积为33C m2,则PB =(16﹣3x)C m,QC =2xC m,根据梯形的面积公式得(16﹣3x+2x)×6=33,解之得x=5,(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10C m,作QE⊥A B ,垂足为E,则QE=A D =6,PQ=10,∵PA =3t,C Q=B E=2t,∴PE=A B ﹣A P﹣B E=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:(1)P、Q两点从出发开始到5秒时四边形PB C Q的面积为33C m2;(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10C m.[点睛](1)根据梯形的面积公式可列方程:求解;(2)作QE⊥A B ,垂足为E,在Rt PEQ中,用勾股定理列方程求解.视频。

九年级上学期数学《一元二次方程》单元测试题含答案

九年级上学期数学《一元二次方程》单元测试题含答案
[详解]设一条直角边为x,则另一条直角边为7-x,利用三角形面积公式可得:
x (7-x)=6,
解得x=3或4,故该直角三角形两个直角边分别为3和4,
利用勾股定理可得斜边长为: ,
故斜边为5.
[点睛]本题利用三角形面积公式和勾股定理考察了一元二次方程的应用.
9.三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()
∴k+2≠0且△=(-3)2-4(k+2)•1≥0,
解得:k≤ 且k≠-2,
故选C.
[点睛]本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
8.直角三角形两条直角边的和为7,面积为6,则斜边为().
A. B. 5C. D. 7
[答案]B
[解析]
[分析]
设一条直角边为x,则另一条直角边为7-x,利用三角形面积公式可得: x (7-x)=6.
故选D.
[点睛]本题考查了一元二次方程 解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3.已知x=A是方程x2﹣3x﹣5=0的根,则代数式4﹣2A2+6A的值为()
A.6B.9C.14D.﹣6
[答案]D
[解析]
[分析]
利用一元二次方程解的定义得到A2-3A=5,再把4-2A2+6A变形为4-2(A2-3A),然后利用整体代入的方法计算即可.
A. k< 且k≠﹣2B. k≤ C. k≤ 且k≠﹣2D. k≥
8.直角三角形两条直角边的和为7,面积为6,则斜边为().
A B.5C. D.7
9.三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()

数学九年级上学期《一元二次方程》单元测试卷附答案

数学九年级上学期《一元二次方程》单元测试卷附答案

九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟 满分:120分]一.选择题(共12小题)1.下列方程:①5x 2=2y ;②2x (x +3)=x 2﹣5;③0322=++x x ;④﹣x 2+5x =0;⑤3132++xx ;⑥mx 2+n x =0.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个2.一元二次方程2(x 2﹣1)﹣3x =0的二次项系数、一次项系数、常数项依次是( )A .1,﹣1,﹣3B .1,﹣3,﹣1C .2,﹣3,﹣1D .2,﹣3,﹣23.下列语句中正确的是( )A .方程x 2=x 只有一个解x =1B .方程x 2+1=0没有解C .对于任何实数m ,(m ﹣2)x 2+m x +2=0是一元二次方程D .x 2+4=0不是一元二次方程4.若代数式x 2﹣2x ﹣3的值等于0,则x 的值是( )A .3或﹣1B .1或﹣3C .﹣1D .35.用配方法解一元二次方程m 2﹣6m +8=0,结果是下列配方正确的是( )A .(m ﹣3)2=1B .(m +3)2=1C .(m ﹣3)2=﹣8D .(m +3)2=96.已知关于x 的一元二次方程x 2﹣6x +k =0的一个根是1,则另一个根是( )A .5B .﹣5C .﹣6D .﹣77.若关于一元二次方程x 2+2x +k +2=0的两个根相等,则k 的取值范围是( )A .1B .1或﹣1C .﹣1D .28.下列一元二次方程最适合用分解因式法来解的是( )A .(x +1)(x ﹣3)=2B .2(x ﹣2)2=x 2﹣4C .x 2+3x ﹣1=0D .5(2﹣x )2=39.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x +3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x +1=010.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x ,可列出的方程为( )A .12.5(1+x )2=8B .12.5(1﹣x )2=8C .12.5(1﹣2x )=8D .8(1+x )2=12.5 11.商场销售某种商品,四月份销售了若干件,共获利6万元,五月份把这种商品的单价降低了1元,但销售量比四月份增长了2万件,从而获得的利润比四月份多了2万元,求调价前每件商品的利润是多少元?设调价前每件商品的利润是x 元,则可列方程是( )A .()26261+=⎪⎭⎫ ⎝⎛+-x x B .()6261=⎪⎭⎫ ⎝⎛+-x x C .()26261+=⎪⎭⎫ ⎝⎛-+x x D .()6261=⎪⎭⎫⎝⎛-+x x 12.当x 为何值时,此代数式x 2+14+6x 有最小值( )A .0B .﹣3C .3D .不确定二.填空题(共4小题)13.方程()05112=+---mx x m m 是关于x 的一元二次方程,则m 的取值范围是 .14.若(A 2+B 2)(A 2+B 2﹣2)﹣24=0,则A 2+B 2= .15.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是x m ,根据题意可列方程为 .第15题16.一个菱形的边长是方程x 2﹣7x +10=0的一个根,其中一条对角线长为6,则该菱形的面积为 .三.解答题(共8小题)17.用合适的方法解方程(1)(x +2)2﹣25=0 (2)x 2+4x ﹣5=0(3)x 2﹣5x +6=0 (4)2x 2﹣7x +3=0.18.当m 为何值时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根?有实数根?19.A ,B ,C 是△A B C 的三边长,且关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.20.已知x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根.(1)求k 的取值范围.(2)是否存在实数k ,使得等式21121-=+k x x 成立?如果存在,请求出k 的值;如果不存在,请说明理由.21.用配方法求:(1)3x2﹣4x+8的最小值;(2)﹣2x2+4x﹣1的最大值.22.设x1,x2是一元二次方程3x2﹣x﹣4=0的两个根,不解方程,求下列代数式的值.(1)(x1+5)(x2+5);(2)x12x2+x1x22.23.大名童装平均每天可售出20件,每件盈利40元.因新冠肺炎影响,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?24.合肥长江180艺术街区进行绿化改造,用一段长40m的篱笆和长15m的墙A B ,围城一个矩形的花园,设平行于墙的一边D E的长为x m;(1)如图1,如果矩形花园的一边靠墙A B ,另三边由篱笆C D EF围成,当花园面积为150m2时,求x的值;(2)如图2,如果矩形花园的一边由墙A B 和一节篱笆B F构成,另三边由篱笆A D EF围成,当花园面积是150m2时,求B F的长.答案与解析一.选择题(共12小题)1.下列方程:①5x 2=2y ;②2x (x +3)=x 2﹣5;③;④﹣x 2+5x =0;⑤;⑥mx 2+n x =0.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个[分析]本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.[解答]解:①5x 2=2y ,方程含有两个未知数,故错误;②2x (x +3)=x 2﹣5,符合一元二次方程的定义,正确;③,符合一元二次方程的定义,正确;④﹣x 2+5x =0,符合一元二次方程的定义,正确; ⑤,不是整式方程,故错误; ⑥mx 2+nx =0,方程二次项系数可能为0,故错误.故选:C .2.一元二次方程2(x 2﹣1)﹣3x =0的二次项系数、一次项系数、常数项依次是( )0322=++x x 3132++xx 0322=++x x 3132++xxA .1,﹣1,﹣3B .1,﹣3,﹣1C .2,﹣3,﹣1D .2,﹣3,﹣2[分析]首先将一元二次方程化为一般形式,然后确定二次项系数、一次项系数、常数项即可.[解答]解:2(x2﹣1)﹣3x=0化为一般形式得2x2﹣3x﹣2=0,二次项系数、一次项系数、常数项依次是2,﹣3,﹣2,故选:D .3.下列语句中正确的是()A .方程x2=x只有一个解x=1B .方程x2+1=0没有解C .对于任何实数m,(m﹣2)x2+m x+2=0是一元二次方程D .x2+4=0不是一元二次方程[分析]对于方程x2=x和x2+1=0分别解方程即可判断A 与B 是否正确;一元二次方程中二次项系数不能为0,所以m﹣2≠0,即m≠2;判定一个方程是否为一元二次方程,只要二次项系数不为0即可.[解答]解:A 、方程x2=x的解还可以是0;B 、x2=﹣1,∵任何数的平方一定大于或等于0,∴方程x2+1=0没有解;C 、当m=2时,(m﹣2)x2+m x+2=0中m﹣2=0,原方程不是一元二次方程;D 、x2+4=0是一元二次方程;故选:B .4.若代数式x2﹣2x﹣3的值等于0,则x的值是()A .3或﹣1B .1或﹣3C .﹣1D .3[分析]根据题意得到x2﹣2x﹣3=0,利用因式分解法解方程即可.[解答]解:依题意得:x2﹣2x﹣3=0,整理,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.故选:A .5.用配方法解一元二次方程m2﹣6m+8=0,结果是下列配方正确的是()A .(m﹣3)2=1B .(m+3)2=1C .(m﹣3)2=﹣8D .(m+3)2=9[分析]移项,配方,即可得出选项.[解答]解:m2﹣6m+8=0,m2﹣6m=﹣8,m2﹣6m+9=﹣8+9,(m﹣3)2=1,故选:A .6.已知关于x的一元二次方程x2﹣6x+k=0的一个根是1,则另一个根是()A .5B .﹣5C .﹣6D .﹣7[分析]设方程x2﹣6x+k=0的两根为α、β,由根与系数的关系可得出α+β=6,结合α=1即可求出β值.[解答]解:设方程x2﹣6x+k=0的两根为α、β,则有:α+β=6,∵α=1,∴β=6﹣1=5.故选:A .7.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是()A .1B .1或﹣1C .﹣1D .2[分析]根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.[解答]解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选:C .8.下列一元二次方程最适合用分解因式法来解的是()A .(x+1)(x﹣3)=2B .2(x﹣2)2=x2﹣4C .x2+3x﹣1=0D .5(2﹣x)2=3[分析]先观察每个方程的特点,根据方程的特点逐个判断即可.[解答]解:A 、不适合用分解因式解方程,故本选项错误;B 、最适合用分解因式解方程,故本选项正确;C 、不适合用分解因式解方程,故本选项错误;D 、不适合用分解因式解方程,故本选项错误;故选:B .9.下列方程中,两实数根之和等于2的方程是()A .x2+2x﹣3=0B .x2﹣2x+3=0C .2x2﹣2x﹣3=0D .3x2﹣6x+1=0[分析]根据根与系数的关系对A 、C 、D 进行判断;根据判别式的意义对B 进行判断.[解答]解:A 、两实数根之和等于﹣2,所以A 选项错误;B 、△=(﹣2)2﹣4×3=﹣8<0,方程没有实数根,所以B 选项错误;C 、两实数根之和等于1,所以C 选项错误;D 、两实数根之和等于﹣2,所以D 选项正确.故选:D .10.某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同,设每次降价的百分率为x ,可列出的方程为( )A .12.5(1+x )2=8B .12.5(1﹣x )2=8C .12.5(1﹣2x )=8D .8(1+x )2=12.5 [分析]设该药品平均每次降价的百分率为x ,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是12.5(1﹣x ),第二次后的价格是12.5(1﹣x )2,据此即可列方程求解.[解答]解:根据题意得:12.5(1﹣x )2=8.故选:B .11.商场销售某种商品,四月份销售了若干件,共获利6万元,五月份把这种商品的单价降低了1元,但销售量比四月份增长了2万件,从而获得的利润比四月份多了2万元,求调价前每件商品的利润是多少元?设调价前每件商品的利润是x 元,则可列方程是( )A .B .C .D . [分析]如果设调价前每件商品的利润是x 元,那么四月份的销量为,五月份的单件的利润为(x ﹣1)元,根据题意可列出方程. [解答]解:根据题意,四月份的销量为, 五月份的单件的利润为(x ﹣1)元,可得出方程为. 故选:A .12.当x 为何值时,此代数式x 2+14+6x 有最小值( )()26261+=⎪⎭⎫ ⎝⎛+-x x ()6261=⎪⎭⎫ ⎝⎛+-x x ()26261+=⎪⎭⎫ ⎝⎛-+x x ()6261=⎪⎭⎫⎝⎛-+x x x 6x6()26261+=⎪⎭⎫ ⎝⎛+-x xA .0B .﹣3C .3D .不确定[分析]运用配方法变形x 2+14+6x =(x +3)2+5;得出(x +3)2+5最小时,即(x +3)2=0,然后得出答案.[解答]解:∵x 2+14+6x =x 2+6x +9+5=(x +3)2+5,∴当x +3=0时,(x +3)2+5最小,∴x =﹣3时,代数式x 2+14+6x 有最小值.故选:B .二.填空题(共4小题)13.方程是关于x 的一元二次方程,则m 的取值范围是 m =± .[分析]根据一元二次方程的定义可得m 2﹣1=2,且m ﹣1≠0,再解即可.[解答]解:由题意得:m 2﹣1=2,且m ﹣1≠0,解得:,故答案为:.14.若(A 2+B 2)(A 2+B 2﹣2)﹣24=0,则A 2+B 2= 6 .[分析]把A 2+B 2视为一个整体,设A 2+B 2=y ,则(A 2+B 2)(A 2+B 2﹣2)﹣24=0可化为:y 2﹣2y ﹣24=0,解出y 的值即可,[解答]解:设A 2+B 2=y ,则原方程可化为:y 2﹣2y ﹣24=0,解之得:y 1=6,y 2=﹣4,∴A 2+B 2=6,故答案为6.15.如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是x m ,根据题意可列方程为 . ()05112=+---mx x m m 3±=m 3±=m[分析]把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植花草部分是一个长方形,根据长方形的面积公式列方程求解即可.[解答]解:设道路的宽应为x 米,由题意有(30﹣x )(20﹣x )=×30×20. 故答案为:(30﹣x )(20﹣x )=×30×20. 16.一个菱形的边长是方程x 2﹣7x +10=0的一个根,其中一条对角线长为6,则该菱形的面积为 24 .[分析]利用因式分解法解方程得到x 1=2,x 2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.[解答]解:x 2﹣7x +10=0,(x ﹣2)(x ﹣5)=0,x ﹣2=0或x ﹣5=0,∴x 1=2,x 2=5,∵菱形一条对角线长为6,∴菱形的边长为5,∵菱形的另一条对角线长=,∴菱形的面积=×6×8=24. 三.解答题(共8小题)17.解方程(1)(x +2)2﹣25=0 (2)x 2+4x ﹣5=02121835222=-21(3)x2﹣5x+6=0 (4)2x2﹣7x+3=0.[分析](1)先变形得到(x+2)2=25,然后利用直接开平方法解方程;(2)利用因式分解法解方程;(3)利用因式分解法解方程;(4)利用因式分解法解方程.[解答]解:(1)(x+2)2=25, x+2=±5,所以x1=﹣7,x2=3;(2)解:(x+5)(x﹣1)=0, x+5=0或x﹣1=0,所以x1=﹣5,x2=1;(3)解:(x﹣2)(x﹣3)=0, x﹣2=0或x﹣3=0,所以x1=2,x2=3;(4)解:(2x﹣1)(x﹣3)=0, 2x﹣1=0或x﹣3=0,所以x1=,x2=3.2118.当m 为何值时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根?有实数根?[分析]先计算出△,△=(2m ﹣3)2﹣4(m 2﹣3)=﹣12m +21.当△<0,即﹣12m +21<0,原方程没有实数根,解不等式得到m 的范围;当△≥0,即﹣12m +21≥0,原方程有实数根,解不等式得到m 的范围.[解答]解:△=(2m ﹣3)2﹣4(m 2﹣3)=﹣12m +21,当△<0,即﹣12m +21<0,原方程没有实数根,解不等式﹣12m +21<0得,m >; 当△≥0,即﹣12m +21≥0,原方程有实数根,解不等式﹣12m +21≥0得,m ≤. 所以当m >时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0没有实数根; 当m ≤时,一元二次方程x 2+(2m ﹣3)x +(m 2﹣3)=0有实数根. 19.A ,B ,C 是△A B C 的三边长,且关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.[分析]先将原方程化为一元二次方程的一般形式,然后根据根的判别式△=B 2﹣4A C =0证明.[解答]证明:由原方程,得(B +C )x 2﹣2A x ﹣B +C =0,∵关于x 的方程B (x 2﹣1)﹣2A x +C (x 2+1)=0有两个相等的实根,∴△=4A 2﹣4(B +C )(﹣B +C )=0,即A 2﹣C 2+B 2=0,∴A 2+B 2=C 2,∴这个三角形是直角三角形.20.已知x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根.47474747(1)求k 的取值范围.(2)是否存在实数k ,使得等式成立?如果存在,请求出k 的值;如果不存在,请说明理由. [分析](1)根据方程的系数结合△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)根据根与系数的关系可得出x 1+x 2=2,x 1x 2=k +2,结合,即可得出关于k 的方程,解之即可得出k 值,再结合(1)即可得出结论. [解答]解:(1)∵一元二次方程x 2﹣2x +k +2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k +2)≥0,解得:k ≤﹣1.(2)∵x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根,∴x 1+x 2=2,x 1x 2=k +2.∵, ∴, ∴k 2﹣6=0,解得:k 1=﹣,k 2=.又∵k ≤﹣1, ∴k =﹣.∴存在这样的k 值,使得等式成立,k 值为﹣. 21121-=+k x x 21121-=+k x x 21121-=+k x x 2221212-=+=+k k x x x x 66621121-=+k x x 621.用配方法求:(1)3x 2﹣4x +8的最小值;(2)﹣2x 2+4x ﹣1的最大值.[分析](1)先提取二次项系数,再配方,根据任何数的完全平方一定是非负数即可求解;(2)把原式根据配方法化成:﹣2x 2+4x ﹣1=﹣2(x ﹣1)2+1即可得出最大值.[解答]解:(1)3x 2﹣4x +8所以3x 2﹣4x +8的最小值是. (2)﹣2x 2+4x ﹣1=﹣2(x 2﹣2x +1)+2﹣1=﹣2(x ﹣1)2+1所以﹣2x 2+4x ﹣1的最大值是1.22.设x 1,x 2是一元二次方程3x 2﹣x ﹣4=0的两个根,不解方程,求下列代数式的值.(1)(x 1+5)(x 2+5);(2)x 12x 2+x 1x 22.[分析]根据根与系数的关系得到x 1+x 2=,x 1x 2=﹣, (1)利用多项式乘法得到原式=x 1x 2+5(x 1+x 2)+25,然后利用整体代入的方法计算;(2)利用因式分解得到原式=x 1x 2(x 1+x 2),然后利用整体代入的方法计算.3203233439434322+⎪⎭⎫ ⎝⎛-=-+⎪⎭⎫ ⎝⎛+-=x x x 3203134[解答]解:根据题意得x 1+x 2=,x 1x 2=﹣, (1)原式=x 1x 2+5(x 1+x 2)+25=﹣+5×+25=; (2)原式=x 1x 2(x 1+x 2)=﹣×=﹣. 23.大名童装平均每天可售出20件,每件盈利40元.因新冠肺炎影响,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件.如果要盈利1200元,那每件降价多少元?[分析]设每件降价x 元,则平均每天可售出件,根据总利润=每件童装获得的利润×销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.[解答]解:设每件降价x 元,则平均每天可售出件, 依题意,得:(40﹣x )=1200, 整理,得:x 2﹣30x +200=0,解得:x 1=10,x 2=20.又∵要尽量减少库存,∴x =20.答:每件降价20元.24.合肥长江180艺术街区进行绿化改造,用一段长40m 的篱笆和长15m 的墙A B ,围城一个矩形的花园,设平行于墙的一边D E 的长为xm ;(1)如图1,如果矩形花园的一边靠墙A B ,另三边由篱笆C D EF 围成,当花园面积为150m 2时,求x 的值;31343431376343194⎪⎭⎫ ⎝⎛+4820x ⎪⎭⎫ ⎝⎛+4820x ⎪⎭⎫ ⎝⎛+4820x(2)如图2,如果矩形花园的一边由墙A B 和一节篱笆B F 构成,另三边由篱笆A D EF 围成,当花园面积是150m 2时,求B F 的长.[分析](1)设平行于墙的一边D E 的长为xm ,则C D 的长为m ,利用矩形的面积公式即可得出关于x 的一元二次方程,解之取小于15的值即可得出结论;(2)设B F 的长为y ,利用矩形的面积公式即可得出关于y 的一元二次方程,解之即可求出结论. [解答]解:(1)由题意得:(40﹣x )x =150; 解得:x 1=10,x 2=30,∵30>15∴x =30舍去,∴x =10m ;答:x 的值为10m ;(2)设B F =y ;则(25﹣y )(y +15)=150; 解得y 1=15,y 2=﹣5(舍去),答:B F 的长为15m .240x -2121。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(上)学习质量测评 一元二次方程 单元试题(三) 温馨提示: 亲爱的同学,勤奋好学的你很想显露自己的数学才华吧!老师提供了展示自我的平台,请你在限定时间内完成答卷,老师会给你作出恰当的评价! 解一元二次方程-公式法 一.选择题(共10小题) 1.一元二次方程x 2﹣px +q=0的两个根是(4q <p 2)( ) A . B . C . D . 2.用公式法解方程(x +2)2=6(x +2)﹣4时,b 2﹣4ac 的值为( ) A .52 B .32 C .20 D .﹣12 3.方程ax 2+bx +c=0(a <0)有两个实根,则这两个实根的大小关系是( ) A .≥ B .> C .≤ D .< 4.用公式法解﹣x 2+3x=1时,先求出a 、b 、c 的值,则a 、b 、c 依次为( ) A .﹣1,3,﹣1 B .1,﹣3,﹣1 C .﹣1,﹣3,﹣1 D .1,3,1 5.下列方程适合用求根公式法解的是( ) A .(x ﹣3)2=2 B .325x 2﹣326x +1=0 C .x 2﹣100x +2500=0 D .2x 2+3x ﹣1=0 6.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A .x 1、2= B .x 1、2= C .x 1、2= D .x 1、2= 7.已知a 是一元二次方程x 2﹣3x ﹣5=0的较小的根,则下面对a 的估计正确的是( )
8.以x=为根的一元二次方程可能是( ) A .x 2+bx +c=0 B .x 2+bx ﹣c=0 C .x 2﹣bx +c=0 D .x 2﹣bx ﹣c=0 9.方程2x 2﹣6x +3=0较小的根为p ,方程2x 2﹣2x ﹣1=0较大的根为q ,则p +q 等于( ) A .3 B .2 C .1 D . 10.用公式法解方程4x 2﹣12x=3所得的解正确的是( ) A .x= B .x= C .x= D .x= 二.填空题(共5小题) 11.把方程(x +3)(x ﹣1)=x (1﹣x )整理成ax 2+bx +c=0的形式 ,b 2﹣4ac 的值是 .
12.当 ≥0时,一元二次方程ax 2+bx +c=0的求根公式为 . 13.用公式法解一元二次方程﹣x 2+3x=1时,应求出a ,b ,c 的值,则:a= ;b= ;c= . 14.根的判别式内容: △=b 2﹣4ac >0⇔一元二次方程 ; △=b 2﹣4ac=0⇔一元二次方程 ; 此时方程的两个根为x 1=x 2= . △=b 2﹣4ac <0⇔一元二次方程 . △=b 2﹣4ac ≥0⇔一元二次方程 . 15.用求根公式解方程x 2+3x=﹣1,先求得b 2﹣4ac= ,则 x 1= ,x 2= . 三.解答题(共3小题) 16.用公式法解下列方程: (1)x 2+2x ﹣1=0 (2)16x 2+8x=3. 17.阅读并回答问题. 求一元二次方程ax 2+bx +c=0(a ≠0)的根(用配方法).
∵a ≠0,∴x 2+x +=0,第一步 移项得:x 2+x=﹣,第二步 两边同时加上()2,得x 2+x +( )2=﹣+()2,第三步 整理得:(x +)2=直接开方得x +=±,第四步 ∴x=, ∴x 1=,x 2=,第五步 上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法. 18.(探究题)如表:方程1,方程2,方程3…是按照一定规律排列的一列方程: (1)解方程3,并将它的解填在表中的空白处
参考答案 一.选择题(共10小题) 1.A .2.C .3.A .4.A .5.D .6.D .7.A .8.D .9.B .10.D . 二.填空题(共5小题) 11.2x 2+x ﹣3=0;25. 12.b 2﹣4ac ;x= 13.﹣1,3,﹣1. 14.有两个不相等的实数根;有两个相等的实数根;﹣;无解;有实数根.
15.5;; 三.解答题(共3小题) 16.(1)x 2+2x ﹣1=0, b 2﹣4ac=22﹣4×1×(﹣1)=8, x=, x 1=﹣1+,x 2=﹣1﹣; (2)16x 2+8x=3, 16x 2+8x ﹣3=0, b 2﹣4ac=82﹣4×16×(﹣3)=256, x=, x 1=,x 2=﹣. 17.解:有错误,在第四步. 错误的原因是在开方时对b 2﹣4ac 的值是否是非负数没有进行讨论.
正确步骤为:(x +)2=, ①当b 2﹣4ac ≥0时, x +=±, x +=±, x=, ∴x 1=,x 2=. ②当b 2﹣4ac <0时,原方程无解. 18.解:(1)﹣6,3 (2)方程规律:x 2+1•x ﹣12•2=0, x 2+2•x ﹣22•2=0, x 2+3•x ﹣32•2=0, 即第10个方程为x 2+10x ﹣102•2=0, 所以第10个方程为x 2+10x ﹣200=0, 解得x=,x 1=10,x 2=﹣20.。

相关文档
最新文档