负反馈放大电路的设计与仿真_课程论文
EDA设计实验二 负反馈放大器设计与仿真

实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
负反馈放大电路的设计和仿真

负反馈放大电路的设计和仿真一、实验目的1、掌握阻容耦合放大电路的静态工作点的调试方法。
2、掌握多级放大电路的电压放大倍数、输入电阻、输出电阻的测试方法。
3、掌握负反馈对电路的影响二、实验要求1、设计一阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,电压增益大于100。
2、给电路引入电压串联负反馈,并分别测试负反馈接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反馈对电路非线性失真的影响。
三、实验原理图原理图中的滑动变组曲均为100k图2.01 反馈接入前图2.02 反馈接入后四、实验过程1、反馈接入前(1)放大倍数:77.703109.893 707.078vmVAuV==(2)输入电阻:707.0787.48494.475iuVR knA==Ω(3)输出电阻:707.0804.934143.311ouVR knA==Ω(4)频率特性:f L=326.5512Hz,f H=525.3266kHz图2.03 频率特性曲线(5)三极管参数的测量①1β与1be r的测量111864.20800214.94.02151cbIuI uβ===1114.12956.8547602.4295bebebV mr kI n∆===Ω∆图2.04 前级输入特性曲线②2β与2be r的测量222890.64300215.54.13287cbI uI uβ===2224.84656.7131721.9498bebebV mr kI n∆===Ω∆图2.05 后级输入特性曲线(6)非线性失真的观察①开始出现失真时幅度:约1.3mV波形:图2.06 开始出现失真波形②失真较明显时幅度:约16mV波形:图2.07 明显失真时波形2、反馈接入后(1)放大倍数:1.3681.935707.079fmVAuV==(2)输入电阻:707.0797.97288.698iuVR knA==Ω(3)输出电阻:707.08047.92814.753ouVRuA==Ω(4)频率特性:f L=29.1507Hz,f H=90.0710MHz图2.08 反馈接入后频率特性(5)三极管参数的测量①1β与1be r的测量1 111.93811205.5 9.43256cbI mI uβ===1114.73442.84501.6641bebebV mr kI u∆===Ω∆图2.09 反馈接入后前级输入特性曲线②2β与2be r的测量对比接入负反馈前的数据可知,2β与2be r的值未改变,即2215.5β=,2 6.7131ber k=Ω图2.10 反馈接入后后级输入特性曲线非线性失真的观察①开始出现失真时幅度:约250mV波形:图2.11 反馈接入后开始失真时波形②失真较明显时幅度:约1V波形:图2.12 反馈接入后明显失真时波形五、数据分析 1.数据误差分析 (1)反馈接入前第一级的be r :116.665Tbe b c V r r k I β=+=Ω 第二级的be r :22 6.491Tbe b cV r r k I β=+=Ω第二级输入电阻:'9762||(40%)|| 3.649i be R R R R r k =+=Ω放大倍数:'142101112211||||108.656(1)i v be be R R R R A r R r βββ==++ 输入电阻:1231112||(30%)||[(1)]7.487i be R R R R r R k β=+++=Ω 输出电阻:10 5.1o R R k ==Ω反馈接入前各测量量的误差分析见下表1be r 2be r v Ai Ro R测得值/k Ω 6.8547 6.7131 109.893 7.484 4.934 理论值/k Ω 6.665 6.491 108.656 7.487 5.1 误差2.85%3.42%1.14%0.04%3.24%表2.01 反馈接入前各值误差分析(2)反馈接入后第一级的be r :112.957Tbe b c V r r k I β=+=Ω 第二级的be r :22 6.491Tbe b cV r r k I β=+=Ω 放大倍数: 1.9641vf v A A A F==+ 输入电阻:123||(30%)||(1)7.846if v i R R R R A F R k =++=Ω(注:串联负反馈放大输入电阻if R 的表达式为(1)1if v ioof o R A F R R R A F=+=+ 。
负反馈放大电路的设计、测试与调试

电子技术实验报告实验名称:4.17负反馈放大电路的设计、测试与调试指导教师:一、实验原理:1.负反馈放大器所谓的反馈放大器就是将放大器的输出信号送入一个称为反馈网络的附加电路后在放大器的输入端产生反馈信号,该反馈信号与放大器原来的输入信号共同控制放大器的输入,这样就构成了反馈放大器。
单环的理想反馈模型如下图所示,它是由理想基本放大器和理想反馈网络再加一个求和环节构成。
反馈信号是放大器的输入减弱成为负反馈,反馈信号使放大器的输入增强成为正反馈。
四种反馈类型分别为:电压取样电压求和负反馈,电压取样电流求和负反馈,电流取样电压求和负反馈,电流取样电流求和负反馈。
2. 电压取样电压求和负反馈对放大器性能的影响 引入负反馈会使放大器的增益降低。
负反馈虽然牺牲了放大器的放大倍数,但它改善了放大器的其他性能指标,对电压串联负反馈有以下指标的改善。
(1) 可以扩展闭环增益的通频带放大电路中存在耦合电容和旁路电容以及有源器件内部的极间电容,使得放大器存在有效放大信号的上下限频率。
负反馈能降低L f 和提高H f ,从而扩张通频带。
(2) 电压求和负反馈使输入电阻增大当s v 一定,电压求和负反馈使净输入电压i v 减小,从而使输入电流i x 减小。
由s v 产生的i i 减小,意味着输入电阻增大。
由理想模型可得:i if R AB R )1(+=(3) 电压取样负反馈使输出电阻减小当放大器的输出电阻较小时,负载变化引起输出电压的变化较小,即输出电阻小的放大器输出电压更稳定。
电压取样负反馈能使输出电压稳定,由此可以推断,电压取样负反馈会使输出电阻减小。
由理想模型可得:)1/(AB R R o of +=二、 实验目的:1. 掌握负反馈电路的设计原理,各性能指标的测试原理2. 加深理解负反馈对电路性能指标的影响 3. 掌握用正弦测试方法对负反馈放大器性能的测量4. 熟练multisim 软件的使用方法 三、 实验方案: (一)实验电路搭建:实验电路如上图所示,可以判断该实验电路的反馈类型为电压取样电压求和负反馈,要研究引入该反馈类型对放大器的性能影响,纸需要分别测试该反馈放大器在开环,闭环状态时的交流参数,并进行比较即可。
负反馈放大电路的Multisim仿真分析与设计

8 8
岳 阳 职 业 技 术 学 院 学 报
第 2 卷 6
测 量 静 态参 数[ 图 1 a 所 示 : = 58 1 2 1 如 () I 2.  ̄  ̄ 6 A、 I = .0 mA、 c = .0 V, 论 计 算 和 测 试 结果 非 c 1 9 Q 3 U E 40 8 理 o
游 标对 电压 进行 精确 测量 可 读 出数 据 : 出电压 峰 输
峰值 U = . 一一 . )25 输 出电压 的有 效值 为 : 即 11 (1 5= . 5 3 V, U= . 2 / = 8 m , 025 、 8 4 V 负载 电压 放大 倍数 为 : = J / AvU I D 1J
路 进行 了静 态和动 态的仿 真运行 分析输 出电压 失真 的 原 因 , 阐述性 能 改善 的 原理 。 为使 电路 获得 最佳 并
性能, 通过 对 比 。 分析反 馈 元件 不 同参 量对反 馈 性 能的 影响 , 证 了在 低频 线性放 大电路 中, 验 只有 引入 合 适
的反馈 量 才 能使 电路 获得 理 想的 效果 。
:— 一 + 2 I : : . 2: 2 1 V 50+ 1 O
一 明 = 2—0. 7= 1 3I .I
=
竿 1A -m . 3
( ) 入 输 出 电 压 波形 b输
图 l 单 管放 大 电路 测试
收 稿 日期 : 0 1 O — 1 2 1 一 5 1 作 者 简 介 : 厚军 ( 9 7 ) 女 , 北 武 汉 人 , 子 副教 授 , 汉 电工 理 论 学会 常务 理 事 。 研 究方 向 : 子技 术 应 用 。 罗 1 5一 , 湖 电 武 电
真 进 行 测 试 、 析 和 比较 , 证 实 反馈 效 果 最 佳 的 分 并 参 量选 择 。
负反馈放大电路的仿真及设计

负反应放大电路的仿真与设计一、实验目的1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2.掌握多级放大电路的电压放大倍数,输入电阻,输出电阻的测试方法。
3.掌握负反应对放大电路动态参数的影响。
二、实验器材2N2222A三极管〔2个〕、1mV 10KHz 正弦电压源、12V直流电压源、10uF电容〔5个〕、5.1KΩ1%负反应电阻、3.0KΩ5%集电极电阻〔2个〕、1.50KΩ1%电阻、1.40KΩ1%电阻、1.00KΩ1%负载电阻、100Ω1%电阻、21.0KΩ1%基极电阻〔2个〕、11.0KΩ1%基极电阻〔2个〕、开关、万用表、示波器等。
三、实验原理与要求由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立。
在实验电路中引入电压串联负反应,将引回的反应量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。
设计一个阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,能不失真放大符合要求的交流信号,且电压增益大于100。
给电路引入电压串联深度负反应,并分别测试负反应接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反应对电路非线性失真的影响。
原理图如下:四、实验内容与方法1.电路频率特性的测试1)未引入负反应前的电路频率特性将电路中的开关J1翻开,则此时电路为未引入电压串联负反应的情况,对电路进展频率仿真,得到如下的电路频率特性图。
可知下限频率f L=755.4901 Hz, 上限频率f H=328.5528KHz。
调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如下:继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如下2)引入电压串联负反应后的电路频率特性将电路中的开关J1闭合,则此时电路引入电压串联负反应,对电路进展频率仿真,得到如下列图所示的引入电压串联负反应后的电路频率特性图。
负反馈放大电路的设计与仿真_课程论文

SHANGHAI UNIVERSITY课程论文COURSE PAPER题目: 仿真设计与分析装订线学院机自学院一功率放大电路仿真一. OTL功率放大器的原理如图1所示为OTL功率放大器。
其中由晶体三极管VT1组成推动级(也称前置放大级),VT2、VT3是一对参数对称的NPN和PNP型晶体三极管,它们组成互补推挽OTL功率放大电路。
由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。
VT1管工作于甲类状态,它的集电极电流IC1由电位器RP1(RP1)进行调节。
IC1 的一部分流经电位器RP2及二极管VD,给VT2、VT3提供偏压。
调节RP2,可以使VT2、VT3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。
静态时要求输出端中点A的电位,可以通过调节PR1来实现,又由于RP1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。
C4和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。
图1OTL功率放大器当输入正弦交流信号ui时,经VT1放大、倒相后同时作用于VT2、VT3的基极,ui的负半周使VT2管导通(VT3管截止),有电流通过负载RL,同时向电容C2(C2)充电,在ui的正半周,VT3导通(VT2截止),则已充好电的电容器C2起着电源的作用,通过负载RL 放电,这样在RL 上就得到完整的正弦波,其波形如图所示。
在仿真中若输出端接喇叭,在仿真时只要输入不同的频率信号,就能在喇叭中能听到不同的声音。
2. OTL 电路的主要性能指标1)最大不失真输出功率Pom :理想情况下,L2CCom R U 81P =在电路中可通过测量R L 两端的电压有效值U O 或R L 的电流来求得实际的O O I U ==L2O om R U P2)效率η:100%P P ηvom=PV-直流电源供给的平均功率,理想情况下,ηmax = 78.5% 。
负反馈放大电路的设计与仿真实验报告-V1

负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。
本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。
二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。
2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。
图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。
为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。
图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。
结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。
经过仿真后,输出信号稳定,未出现失真等问题。
三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。
实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。
负反馈放大电路(模电课程设计)

负反馈放大电路课程设计1 设计任务内容与要求 1.1设计内容内容:负反馈放大电路。
1.2设计要求1、工作频率:f=30H Z ~30K H Z 。
2、信号源:U i =10mV (有效值),内阻R S =50Ω。
3、输出要求:U O ≥1V (有效值),输出电阻小 于10Ω,输出电流I O ≤1mA (有效值)。
4、输入要求:输入电阻大于20K 。
5、工作稳定性:当电路元件改变时,若%10=∆AuAu,则%1<∆AufAuf。
2 原理设计与框图负反馈放大电路在日常生活中得到了广泛的应用,原因就在于它能大大地改善放大电路的性能。
利用负反馈技术,用集成运放可构成各种运算电路,根据外接反馈元件的不同,可构成比例、加法、减法、微分、积分等运算电路。
负反馈电路的样式也是多种多样的,下面就对几种负反馈放大电路进行一下比较。
3.方案比较 3.1 方案一运用集成运放为主所组成的负反馈放大电路。
它的优点在于制作时简单、便捷、原理图简单、其运作模式思路清晰而且可以较好的抑制温漂(这点非常特殊)。
而缺点在于若出现故障不便于检测和维修、且成本较高,不太容易实现。
3.2 方案二用两个三极管、电容、电阻等构成的负反馈放大电路。
此方案优点就是运用元件较少,采用的负反馈形式、电路原理思路清晰,且有比较高的可操作性。
缺点就是对交流负反馈作用不太明显,在工作时候, 电路的稳定性, 输入输出电阻的阻值不太容易达到设计的要求。
3.3方案三如(附录)图1,应用三个三极管所构成的负反馈放大电路,信号i u 由输入端经电容1C 耦合输入三极管基极,经三极管1VT 放大;由集电极输出与二级放大电路2VT 直接耦合相连,放大后由电容2C 与三级放大电路耦合相连,最后由三级放大电路的发射极输出;反馈信号受输出电压的影响以电压方式作用于输入端,形成电压负反馈放大电路。
4.各项选择4.1反馈网络的选择采用什么反馈方式,主要负载的要求及信号源内阻的情况来考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SHANGHAI UNIVERSITY课程论文COURSE PAPER题目: 仿真设计与分析装订线学院机自学院一功率放大电路仿真一. OTL功率放大器的原理如图1所示为OTL功率放大器。
其中由晶体三极管VT1组成推动级(也称前置放大级),VT2、VT3是一对参数对称的NPN和PNP型晶体三极管,它们组成互补推挽OTL功率放大电路。
由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。
VT1管工作于甲类状态,它的集电极电流IC1由电位器RP1(RP1)进行调节。
IC1 的一部分流经电位器RP2及二极管VD,给VT2、VT3提供偏压。
调节RP2,可以使VT2、VT3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。
静态时要求输出端中点A的电位,可以通过调节PR1来实现,又由于RP1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。
C4和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。
图1OTL功率放大器当输入正弦交流信号ui时,经VT1放大、倒相后同时作用于VT2、VT3的基极,ui的负半周使VT2管导通(VT3管截止),有电流通过负载RL,同时向电容C2(C2)充电,在ui的正半周,VT3导通(VT2截止),则已充好电的电容器C2起着电源的作用,通过负载RL 放电,这样在RL 上就得到完整的正弦波,其波形如图所示。
在仿真中若输出端接喇叭,在仿真时只要输入不同的频率信号,就能在喇叭中能听到不同的声音。
2. OTL 电路的主要性能指标1)最大不失真输出功率Pom :理想情况下,L2CCom R U 81P =在电路中可通过测量R L 两端的电压有效值U O 或R L 的电流来求得实际的O O I U ==L2O om R U P2)效率η:100%P P ηvom=PV-直流电源供给的平均功率,理想情况下,ηmax = 78.5% 。
可测量电源供给的平均电流I dC ,从而求得Pv =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。
在仿真平台上也可用功率表分别测出最大不失真功率和电源供给的平均功率。
二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器三、实验内容与步骤1.如下图2所示的电路图图2 OTL功率放大电路2.静态工作点的调整分别调整R4和R1滑动变阻器器,使得万用表XMM2和XMM3的数据分别为5---10mA和2.5V,然后测试各级静态工作点填入下表:(注意,信号发生器的大小为0)Ic1=Ic2= 7.56mA,U12=2.53.测量最大不失真输出功率 理想情况下,最大不失真输出功率LCCOMR U P 281=,在实验中可通过测量R L 两端的电压有效值,来求得实际的LOOMR U P 2=。
或通过测量流过R L 的电流有效值,来求得实际的L L O M R I P 2=。
如下图3所示。
图(a) RL 两端的电压有效值 图(b) 流过RL的电流图 3 Pom 的测量4.测量功率放大器的效率η%100⨯=EOMP P η,其中E P 是直流电源供给的平均功率。
理想情况下,%5.78=η。
在实验中,可测量电源供给的平均电流I DC ,如图3.7-4所示,从而求得Pv =U CC ·I dC.。
图4 电源供给的平均电流I dC在本例中也可用两块瓦特表分别测量电源供给的平均功率Pv 及最大不失真输出功率Pom ,其图标和面板如图5所示。
该图标中有两组端子,左边两个端子为电压输入端子,与所要测试电路并联,右边两个端子为电流输入端子,与所要测试电路串联。
图5 瓦特表图标和面板5.输入灵敏度输入灵敏度是指输出最大不失真功率时,输入信号V i 之值。
6.频率响应的测试实测幅频率特性如下图所示:其中:f L =242Hz ,f H =3.45MHz 。
四、实验分析1.理想情况下,最大不失真功率为mW W R U P L CC OM39039.085818122=≈⨯==,而实测功率只有1.25mW ,主要原因是功率三极管的管压降比较高,实际输出最大电压不到1V 。
2.由于功率输出电路直流工作电流较大,几乎工作在甲类状态,加上三极管管压降较高,电源提供的功率大部分由三极管消耗了,所以实测效率较低。
负反馈放大电路的仿真一、实验元件2N2222A三极管(2个)、1mV 10KHz 正弦电压源、12V直流电压源、10uF电容(5个)、5.1KΩ1%负反馈电阻、3.0KΩ5%集电极电阻(2个)、1.50KΩ1%电阻、1.40KΩ1%电阻、1.00KΩ1%负载电阻、100Ω1%电阻、20.0KΩ1%基极电阻(2个)、10.0KΩ1%基极电阻(2个)、开关、万用表、示波器等。
二、实验原理由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,本次实验采用了实验一的数据,所以可不必重新调节静态工作点。
在实验电路中引入电压串联负反馈,将引回的反馈量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。
参数选择:为了使反馈达到深度负反馈,实验中选取了5.1KΩ的负反馈电阻,同时为了不会在引入负反馈后出现交流短路的现象,将Re1分为两个部分Re11(100)和Re12(1.4KΩ)。
根据实验要求,设计的两级阻容耦合放大电路如图1:图1 两级阻容耦合放大电路原理图三、电路频率特性测试1、未引入电压串联负反馈前的电路频率特性将电路中的开关J1打开,则此时电路为未引入电压串联负反馈的情况,对电路进行频率仿真,得到如图2的电路频率特性图。
图2 未引入负反馈的频率特性曲线和通频带指针读数根据上限频率和下限频率的定义——当放大倍数下降到中频的0.707倍对应的频率时,即将读数指针移到幅度为中频的0.707倍处,如图2,读出指针的示数,即下限频率f L=761.6815 Hz, 上限频率f H=348.2346 KHz, 因此通频带为(348.2346×—761.6815)Hz。
调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如图3:图3 信号源幅度为1mV时的不失真输出波形继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如图4:图4 信号源幅度为2mV时出现截止失真的输出波形2、引入电压串联负反馈后的电路频率特性将电路中的开关J1闭合,则此时电路引入电压串联负反馈,对电路进行频率仿真,得到如图5所示的引入电压串联负反馈后的电路频率特性图。
图5引入负反馈后的频率特性和通频带指针读数将读数指针移到幅度为中频的0.707倍处,如图5,读出指针的示数,即下限频率f L=33.6584 Hz, 上限频率f H=4.7302 MHz, 因此通频带为(4.7302×—33.6584)Hz,明显比未引入负反馈前放宽!再来观察引入电压串联负反馈后,整个电路的最大不失真电压值。
当信号源幅度为1mV时,可以被不失真放大,调节信号源幅度至24mV时,输出波形仍未失真,如图6:图6 信号源幅度为24mV时的临界不失真输出波形继续增大至25mV时,输出波形开始出现了饱和失真,如图7:图7信号源幅度为25mV时饱和失真的输出波形可见加入负反馈后,电路的动态范围增大,即电路可不失真放大的最大信号幅度增大.四、电路的放大倍数、输入和输出电阻1、测量放大倍数按图8,图9所示连接,分别测出J1打开和闭合时的输入电压U i、输出电压U o,放大倍数即为A u=U o/U i,从而可分别算出引入负反馈前后的电压放大倍数。
a)未引入负反馈的放大倍数打开J1,如图9,测得输入电压U i≈1mV,输出电压U o=598.033mV,则A u= U o/U i=598.033。
图8测量无负反馈时的电压放大倍数的电路图b)引入负反馈后的放大倍数闭合J1,如图9,测得输入电压U i≈1mV,输出电压U o=47.551mV,则A u= U o/U i=47.551。
图9测量有负反馈时的电压放大倍数的电路图可见电压串联负反馈的引入,使得电压放大倍数明显减小,两者相差约12.6倍。
2、测量输入电阻按图10,图11所示连接电路,分别测出J1打开和闭合时的输入电压U i、输入电流I i,输入电阻即为R i=U i/I i,从而可分别算出引入负反馈前后的输入电阻。
a)未引入负反馈的输入电阻打开J1,如图10,测得输入电压U i≈1mV,输入电流I i=194.329 nA,则R i=U i/I i=5.146K 。
图10 测量无负反馈时的输入电阻的电路图b)引入负反馈后的输入电阻闭合J1,如图11,测得输入电压U i≈1mV,输入电流I i=154.017 nA,则R i=U i/I i=6.493K 。
图11 测量有负反馈时的输入电阻的电路图可见电压串联负反馈的引入,使得输入电阻增大。
3、测量输出电阻按图12,图13所示连接电路,分别测出J1打开和闭合时的输出电压Uo、输出电流Io,输出电阻即为Ro= Uo/Io,从而可分别算出引入负反馈前后的输出电阻。
a)未引入负反馈的输出电阻打开J1,如图12,测得输出电压Uo≈1mV,输出电流I i=353.57nA,则Ro= Uo/Io=2.828KΩ。
图12测量无负反馈时的输出电阻的电路图b)引入负反馈后的输出电阻闭合J1,如图13,测得输出电压Uo≈1mV,输出电流I i=17.159uA,则Ro= Uo/Io=58.278Ω。
图13测量有负反馈时的输出电阻的电路图可见电压串联负反馈的引入,使得输出电阻减小。
五、AF ≈1/F的验证按如图14所示连接电路,闭合J1。
由于电压串联负反馈电路的A F=A uuf =U o/U i、F=F uu =Uƒ/U o,因此,需要测量输出电压U o、输入电压U i、反馈电压Uƒ。
图14 A F≈1/F的验证电路测得U i≈1mV,U o=47.551mV,Uƒ=991.747uF,则A F=A uuf=U o/U i=47.551,F=F uu =Uƒ/U o=0.02086,1/F=47.939,因此A F≈1/F得到验证。
六、实验结果分析本实验通过对二级阻容耦合放大电路引入电压串联负反馈前后进行电路仿真,由实验结果可以得出这样的结论:对电路引入电压串联负反馈,会减小其下限频率,增大其上限频率,从而使其通频带变宽;引入电压串联负反馈,会减小电路的电压放大倍数,并增大电路可不失真放大的最大信号幅度,减小非线性失真;引入电压串联负反馈,会增大输入电阻,减小输出电阻。