第04部分:曲线运动 重难点练习- (带答案)
高中物理曲线运动答题技巧及练习题(含答案)

高中物理曲线运动答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
最新高考必备物理曲线运动技巧全解及练习题(含答案)

最新高考必备物理曲线运动技巧全解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。
(1)当轻绳与OM 的夹角θ=37°时,求轻绳上张力F 。
高中物理曲线运动解题技巧讲解及练习题(含答案)

高中物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
某弹珠游戏可简化成如图所示的竖直平面内OABCD 透明玻璃管道,管道的半径较小。
为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y 59=x 2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切。
A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m 。
已知,弹珠质量m =100g ,直径略小于管道内径。
E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g =10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度ν0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度ν0的范围。
【答案】(1)3m/s (2)2m/s (3)3m/s <ν0<6m/s 【解析】 【详解】 (1)由y 59=x 2得:A 点坐标(1.20m ,0.80m ) 由平抛运动规律得:x A =v 0t ,y A 212gt =代入数据,求得 t =0.4s ,v 0=3m/s ; (2)由速度关系,可得 θ=53° 求得AB 、BC 圆弧的半径 R =0.5m OE 过程由动能定理得: mgy A ﹣mgR (1﹣cos53°)2201122E mv mv =- 解得 v 0=2m/s ;(3)sinα 2.65 2.000.400.5--==0.5,α=30°CD 与水平面的夹角也为α=30°设3次通过E 点的速度最小值为v 1.由动能定理得mgy A ﹣mgR (1﹣cos53°)﹣2μmgx CD cos30°=02112mv - 解得 v 1=23m/s设3次通过E 点的速度最大值为v 2.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣4μmgx CD cos30°=02212mv - 解得 v 2=6m/s考虑2次经过E 点后不从O 点离开,有﹣2μmgx CD cos30°=02312mv -解得 v 3=26m/s 故 23m/s <ν0<26m/s2.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的水平位移之比x 1:x 2=1:3,故两球做平抛运动的初速度之比v 1:v 2=1:3(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C 点所用时间为t 2,则有H =2112gt ,H -h =2212gt 又:x 1=v 1t 1O 、C 之间的水平距离:x '1=v 2t 2第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:33.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=-解得:222B C BCvvLgμ-=从C点到落地的时间:20.8ht sg==B到P的水平距离:222B CCv vL v tgμ-=+代入数据,联立并整理可得:214445C CL v v=-+由数学知识可知,当 1.6/Cv m s=时,P到B的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.光滑水平轨道与半径为R的光滑半圆形轨道在B处连接,一质量为m2的小球静止在B 处,而质量为m1的小球则以初速度v0向右运动,当地重力加速度为g,当m1与m2发生弹性碰撞后,m2将沿光滑圆形轨道上升,问:(1)当m1与m2发生弹性碰撞后,m2的速度大小是多少?(2)当m1与m2满足21(0)m km k=>,半圆的半径R取何值时,小球m2通过最高点C 后,落地点距离B点最远。
高中物理曲线运动的技巧及练习题及练习题(含答案)

高中物理曲线运动的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A 点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.【答案】(15gR (223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有0tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③ 由①②③式和题给数据得034F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得 355Rt g =点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力;(3)滑块在A 点受到的瞬时冲量的大小.【答案】(1)(2)45N (3)【解析】【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,BC为半径r225m竖直放置的细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球过C点时速度大小不变,小球冲出C点后经过98s再次回到C点。
高中物理曲线运动解题技巧及经典题型及练习题(含答案)

高中物理曲线运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=4.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2 解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.5.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
(完整word)曲线运动习题练习答案

曲线运动习题练习答案1。
关于做曲线运动的物体所受的合力,下列说法正确的是()A.一定是恒力B.一定是变力C.合力方向与速度方向不在同一直线上D。
合力方向与速度方向在同一直线上【解答】解:物体做曲线运动的条件是合力的方向与速度方向不在同一条直线上,但合外力可以变化,可以不变化.平抛运动受到的是恒力,匀速圆周运动受到的是变力,故正确,错误.故选:2。
下列关于曲线运动的说法正确的是( )A。
做曲线运动的物体速度方向一定变化,则加速度也一定变化B。
一个是匀变速直线运动,另一个是匀速直线运动,则物体的运动一定是匀变速运动C.合运动的加速度一定比每个分运动加速度大D.由于曲线运动的两个分运动的是彼此独立的,所以分运动的时间可以不相等【解答】解:、曲线运动可以受恒力,如平抛运动加速大小不变,故错误;、一个是匀变速直线运动,另一个是匀速直线运动,则合运动的加速度不变,物体的运动一定是匀变速运动,故正确;、加速度是矢量,矢量和不一定比每一个矢量大,故错误;、分运动的时间一定相等,故错误.故选:3. 关于曲线运动和圆周运动,下列说法中正确的是( )A。
做曲线运动的物体所受到的合力减小时其速度一定减小B.做曲线运动的物体所受到的合力一定是变化的C。
做圆周运动的物体受到的合力方向一定指向圆心D.做圆周运动的物体向心力只改变速度的方向,不改变速度的大小【解答】解:、当做曲线运动的物体所受到的合力方向与速度方向夹角小于时,合力做正功,速度增大,虽然合力减小,但速度仍然增大,故错误;、做曲线运动的物体所受到的合力不一定是变化的,如平抛运动,合力不变,故错误;、只有做匀速圆周运动的物体受到的合力方向才指向圆心,非匀速圆周运动,合力指向圆心的分量提供向心力,合力不指向圆心,故错误;、、向心力的方向始终指向圆心,只改变速度的方向,不改变速度的大小,故正确.故选:4. 关于曲线运动,下列说法正确的是()A。
做曲线运动物体的速度方向可以不变B。
高中物理曲线运动的技巧及练习题及练习题(含答案)含解析

高中物理曲线运动的技巧及练习题及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。
【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。
【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点 C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J 【分析】【剖析】【详解】(1)依据机械能守恒定律12E p=mv1 ?①12Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 曲线运动第一讲:曲线运动条件和运动特点、运动的合成与分解考点一:运动的合成与分解1、(多选)质量为m =2 kg 的物体在光滑的水平面上运动,在水平面上建立xOy 坐标系,t =0时物体位于坐标系的原点O.物体在x 轴和y 轴方向的分速度vx 、vy 随时间t 变化的图线如图甲、乙所示.则( ).A .t =0时,物体速度的大小为3 m/s 答案 ADB .t =8 s 时,物体速度的大小为4 m/sC .t =8 s 时,物体速度的方向与x 轴正向夹角为37°D .t =8 s 时,物体的位置坐标为(24 m,16 m)2、(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A .最初4 s 内物体的位移为8 2 m 答案 ACB .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动3.汽车静止时,车内的人从矩形车窗ABCD 看到窗外雨滴的运动方向如图图线①所示.在汽车从静止开始匀加速启动阶段的t 1、t 2两个时刻,看到雨滴的运动方向分别如图线②③所示.E 是AB 的中点.则( )A .t 2=2t 1B .t 2=2t 1C .t 2=5t 1D .t 2=3t 1 答案 A解析 静止时,雨滴相对于地面做的是竖直向下的直线运动,设雨滴的速度为v0,汽车匀加速运动后,在t1时刻,看到的雨滴的运动方向如图线②,设这时汽车的速度为v1,这时雨滴水平方向相对于汽车的速度大小为v1,方向向左,在t2时刻,设汽车的速度为v2,则雨滴的运动方向如图线③,雨滴水平方向相对于汽车速度大小为v2,方向水平向左,根据几何关系,v1OA =v0AB ,v2OA =v012AB ,得v2=2v1,汽车做匀加速运动,则由v =at 可知,t2=2t1,A 项正确.4.一物体在光滑水平面上运动,它在x 方向和y 方向上的两个分运动的速度—时间图象如图所示.(1)判断物体的运动性质;(2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.答案 (1)匀变速曲线运动 (2)50 m/s (3)3013m 180 m5、如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v 0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s2)求:(1)小球在M 点的速度v 1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ;(3)小球到达N 点的速度v 2的大小.答案 (1)6 m/s (2)见解析图 (3)410 m/s解析 (1)设正方形的边长为x0. 竖直方向做竖直上抛运动,有v0=gt1,2x0=v02t1 水平方向做匀加速直线运动,有3x0=v12t1. 解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v0=4 m/s 水平分速度vx =a 水平tN =2v1=12 m/s ,故v2=v 20+v 2x =410 m/s.考点二:绳(杆)端速度分解模型(结合受力和机械能守恒)1、如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
答案:θcos 0v v A = 2.两根光滑的杆互相垂直地固定在一起,上面分别穿有一个小球,小球a 、b 间用一细直棒相连,如图9所示.当细直棒与竖直杆夹角为θ时,求两小球实际速度大小之比.答案 tan θ3、如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少?答案v′=v·cosθ.4.(单选)如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向左运动时,物体M 的受力和运动情况是( ) 答案 BA .绳的拉力等于M 的重力B .绳的拉力大于M 的重力C .物体M 向上做匀速运动D .物体M 向上做匀加速运动5.(单选)如图所示,中间有孔的物块A 套在光滑的竖直杆上,通过滑轮用不可伸长的轻绳将物体拉着匀速向上运动.则关于拉力F 及拉力作用点的移动速度v 的下列说法正确的是( )A.F 不变、v 不变B.F 增大、v 不变C.F 增大、v 增大D.F 增大、v 减小 答案 D因为A 做匀速直线运动,有:Fcos θ=mg ,因为θ增大,则F 增大.物体A 沿绳子方向上的分速度v =v 物cos θ,因为θ增大,则v 减小.D 正确.6.(多选)如图所示,有一个沿水平方向做匀速直线运动的半径为R 的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆,在竖直杆未达到半圆柱体的最高点之前( ) 答案 BCA .半圆柱体向右匀速运动时,竖直杆向上做匀减速直线运动B .半圆柱体向右匀速运动时,竖直杆向上做减速直线运动C .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为vtan θD .半圆柱体以速度v 向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为θ时,竖直杆向上的运动速度为vsin θ解析 O 点向右运动,O 点的运动使杆OA 绕A 点(定点)逆时针转动的同时,沿杆OA 方向向上推动A 点;竖直杆的实际速度(A 点的速度)方向竖直向上,使A 点绕O 点(重新定义定点)逆时针转动的同时,沿OA 方向(弹力方向)与OA 具有相同速度.速度分解如图乙所示,对于O 点,v1=vsin θ,对于A 点,vA =v1cos θ,解得vA =vtan θ.O 点(半圆柱体)向右匀速运动时,杆向上运动,θ角减小,tan θ减小,vA 减小,但杆不做匀减速直线运动,A 错误,B 正确;由vA =v tan θ可知C 正确,D 错误.7、如图所示,一轻杆两端分别固定质量为mA 和mB 的两个小球A 和B (可视为质点)。
将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为V A ,求此时B 球的速度V B ? 解析::A 球以VA 的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速度为VA1;一个使杆绕B 点转动的分运动,设其速度为VA2。
而B 球沿斜槽上滑的运动为合运动,设其速度为VB ,可分解为:一个使杆伸长的分运动,设其速度为VB1,VB1=VA1;一个使杆摆动的分运动设其速度为VB2;由图可知:ααcos sin 11A A B B V V V V === αcot ⋅=A B V V第二讲:平抛运动、类平抛运动考点一:平抛运动的基本规律(利用速度分解或位移分解及角度公式)也可看着斜抛的反向运动1、 (多选)从某高度处水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是( ) 答案 ADA .小球水平抛出时的初速度大小gt tan θB .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .若小球初速度增大,则θ减小2.(单选)一个物体以初速v0水平抛出,落地时速度为v ,则运动时间为( ).答案 CA.v -v0g B .v +v0g C.v2-v20g D .v2+v20g3、(多选)某物体做平抛运动时,它的速度方向与水平方向的夹角为θ,其正切值tan θ随时间t 变化的图象如图所示,(g 取10 m/s2)则( ). 答案 ADA .第1 s 物体下落的高度为5 mB .第1 s 物体下落的高度为10 mC .物体的初速度为5 m/sD .物体的初速度是10 m/s4.(单选)初速度为v 0的平抛物体,某时刻物体的水平分位移与竖直分位移大小相等,下列错误的是().A .该时刻物体的水平分速度与竖直分速度相等B .该时刻物体的速率等于5v0 答案 AC .物体运动的时间为2v0gD .该时刻物体位移大小等于22v20g5.(单选)如图所示,将一篮球从地面上方B 点斜向上抛出,刚好垂直击中篮板上A 点,不计空气阻力,若抛射点B 向篮板方向水平移动一小段距离,仍使抛出的篮球垂直击中A 点,则可行的是( )A .增大抛射速度v0,同时减小抛射角θ 答案 CB .减小抛射速度v0,同时减小抛射角θC .增大抛射角θ,同时减小抛出速度v0D .增大抛射角θ,同时增大抛出速度v06.(单选)如图所示,球网高出桌面H ,网到桌边的距离为L ,某人在乒乓球训练中,从左侧L 2处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧边缘,设乒乓球的运动为平抛运动,下列判断正确的是( ) 答案 DA .击球点的高度与网高度之比为2∶1B .球在网左右两侧运动时间之比为2∶1C .球过网时与落到右侧桌边缘时速率之比为1∶2D .球在左、右两侧运动速度变化量之比为1∶27.(单选)如图所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;而在C点以初速度v2沿BA 方向平抛的小球也能击中D 点.已知∠COD =60°,则两小球初速度大小之比v1∶v2.(小球视为质点)( ).答案 DA .1∶2B .1∶3C .3∶2D .6∶38.(单选)如图所示,在竖直放置的半圆形容器中心O 点分别以水平速度V1,V2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA ⊥OB ,且OA 与竖直方向夹角为α角,则两小球初速度大小之比值12V V 为( )【答案】CA.tan αB.Cos αC.tan αtan αD.Cos αcos α考点三:平抛运动的基本规律(顺斜面平抛--------利用位移分解和位移角)1、(单选)如图,在足够长的斜面上的A 点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t 1;若将此球改用2v 0抛出,落到斜面上所用时间为t 2,则t 1与t2之比为( ).A .1∶1B .1∶2 答案 BC .1∶3D .1∶42.(单选)如图,为湖边一倾角为30°的大坝横截面示意图,水面与大坝的交点为O.一人站在A 点以速度v 0沿水平方向扔一小石子,已知AO =40 m ,不计空气阻力,g 取10 m/s2.下列说法正确的是().答案 AA .若v 0>18 m/s ,则石块可以落入水中B .若v 0<20 m/s ,则石块不能落入水中C .若石子能落入水中,则v 0越大,落水时速度方向与水平面的夹角越大D .若石子不能落入水中,则v 0越大,落到斜面上时速度方向与斜面的夹角越大3.(单选)如图所示,小球以v 0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t 为(重力加速度为g)( ).答案 DA .t =v0tan θB .t =2v0tan θgC .t =v0cot θgD .t =2v0cot θg4. (多选)如图所示,倾角为θ的斜面上有A 、B 、C 三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D 点,今测得AB∶BC∶CD=5∶3∶1由此可判断( ) 答案 BCA .A 、B 、C 处三个小球运动时间之比为1∶2∶3B .A 、B 、C 处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1C .A 、B 、C 处三个小球的初速度大小之比为3∶2∶1D .A 、B 、C 处三个小球的运动轨迹可能在空中相交解析 由于沿斜面AB∶BC∶CD=5∶3∶1,故三个小球竖直方向运动的位移之比为9∶4∶1,运动时间之比为3∶2∶1,A 项错误;斜面上平抛的小球落在斜面上时,速度与初速度之间的夹角α满足tan α=2tan θ,与小球抛出时的初速度大小和位置无关,因此B 项正确;同时tan α=gt v0,所以三个小球的初速度之比等于运动时间之比,为3∶2∶1,C 项正确;三个小球的运动轨迹(抛物线)在D 点相交,因此不会在空中相交,D 项错误.5.如图所示,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经3.0 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80;g 取10 m/s2)求(1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;(3)运动员落到A 点时的动能.答案 (1)75 m (2)20 m/s (3)32 500 J考点四:平抛运动的基本规律(对斜面平抛或顺斜面平抛离斜面最远-----利用速度分解和速度角)1.(单选)如图所示,以10 m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,g 取10 m/s2,这段飞行所用的时间为( ) 答案 C A.23 s B.233s C. 3 s D .2 s2. (单选)如图所示是倾角为45°的斜坡,在斜坡底端P 点正上方某一位置Q 处以速度v0水平向左抛出一个小球A ,小球恰好能垂直落在斜坡上,运动时间为t1,小球B 从同一点Q 处自由下落,下落至P 点的时间为t2,不计空气阻力,则t1∶t2为( ).答案 DA .1∶2B .1∶ 2C .1∶3D .1∶ 33.(单选)如图所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )A .1∶1B .2∶1C .3∶2D .2∶3 答案 C解析 小球A 做平抛运动,有:x =v1t①y=12gt2②又tan 30°=y x =33③联立①②③得:v1=32gt④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v2vy =v2gt ⑤则得:v2=33gt⑥由④⑥得:v1∶v2=3∶2 4、如图,在足够长的斜面上的A 点,以水平速度v0抛出一个小球,不计空气阻力,求经过多长时间小球离斜面最远。