传感器与测试技术 第7章

合集下载

《传感与检测技术》习题及解答

《传感与检测技术》习题及解答

第1章 传感与检测技术基础第2章 电阻式传感器 第3章 电感式传感器1、电感式传感器有哪些种类?它们的工作原理分别是什么?2、说明3、变气隙长度自感式传感器的输出特性与哪些因素有关?怎样改善其非线性?怎样提高其灵敏度?答:根据变气隙自感式传感器的计算式:00022l S W L μ=,线圈自感的大小,即线圈自感的输出与线圈的匝数、等效截面积S 0和空气中的磁导率有关,还与磁路上空气隙的长度l 0有关;传感器的非线性误差:%100])([200⨯+∆+∆= l ll l r 。

由此可见,要改善非线性,必须使l l∆要小,一般控制在0.1~0.2。

(因要求传感器的灵敏度不能太小,即初始间隙l 0应尽量小,故l ∆不能过大。

)传感器的灵敏度:20022l S W dl dL l L K l ⨯-=≈∆∆≈μ,由此式可以看出,为提高灵敏度可增加线圈匝数W ,增大等效截面积S 0,但这样都会增加传感器的尺寸;同时也可以减小初始间隙l 0,效果最明显。

4、试推导 5、气隙型 6、简述 7、试分析 8、试推导 9、试分析 10、如何通过11、互感式12、零点残余电压产生的原因是什么?怎样减小和消除它的影响?答:在差动式自感传感器和差动变压器中,衔铁位于零点位置时,理论上电桥输出或差动变压器的两个次级线圈反向串接后电压输出为零。

但实际输出并不为零,这个电压就是零点残余电压。

残差产生原因:①由于差动式自感传感器的两个线圈结构上不对称,如几何尺寸不对称、电气参数不对称。

②存在寄生参数;③供电电源中有高次谐波,而电桥只能对基波较好地预平衡。

④供电电源很好,但磁路本身存在非线性。

⑤工频干扰。

差动变压器的零点残余电压可用以下几种方法减少或消除:①设计时,尽量使上、下磁路对称;并提高线圈的品质因素Q=ωL/R;②制造时,上、下磁性材料性能一致,线圈松紧、每层匝数一致等③采用试探法。

在桥臂上串/并电位器,或并联电容等进行调整,调试使零残最小后,再接入阻止相同的固定电阻和电容。

传感器与测试技术7 振动的测量

传感器与测试技术7 振动的测量
可测频率比粘结方法稍差,但 使用方便,可以随时移动加速度计 的位置,便于多点测量。
在加速度计与被测物之间涂一层硅胶,可改善冲击状
态,有利于高频响应。
Page ▪ 35
7.2 测振传感器
7.2.3 接触式测振传感器的校准 ⑴ 绝对法 拾振器固定在校准用的标准振动台上,由正弦信号发生器
发出标准信号,经功率放大器放大,推动振动台,用激光干涉 振动仪直接测量振动台的振幅,在与被校准拾振器的输出进行 比较,从而确定拾振器的灵敏度。可以同时测量频率响应。
Page ▪ 7
7.1 概述
(3)测振放大器 它将测振传感器转换后的电信号加以放大 ,以便分析设备
的后续分析、处理以及记录显示仪器的记录、显示、绘图等。 常用的测振放大器类型有电荷放大器、电压放大器和调制型放 大器等。
(4)分析设备 主要有频谱分析仪,可分为模拟式和数字式两大类。
(5)记录显示仪器 根据振动测量的不同目的,可将振动测量结果以数据或图
Page ▪ 15
惯性式位移传感器的相频特性
② 速度传感器
7.2 测振传感器
x y0 0
(n)2 1(n)2 242(n)2
动态特性与位移传感器相同
③ 加速度传感器
y0
x0 2
1
2 n
1(n)2 242(n)2
y0
x0
2 n 2
1
1(n)2 242(n)2
质量元件相对壳体的位移与被测振动加速度成正比 。
惯性传感器的质量元件相对于外壳的运动与被测物体的运 动规律一样。
其振幅比与相位差值由传感器的固有频率及阻尼比的大小 来确定。
讨论: ① 位移传感器
n ,0.6~0.7低频只能保证幅值精度,无法保证

传感器与检测技术胡向东第2版习题解答

传感器与检测技术胡向东第2版习题解答

传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述1.1 什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

1.2 传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。

1.3 传感器一般由哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。

另外还需要信号调理与转换电路,辅助电源。

1.4 传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。

①按传感器的输入量(即被测参数)进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。

1.6 改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性2.1 什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。

2.3 利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。

传感器与检测技术ppt课件

传感器与检测技术ppt课件

22
重复性
图1-4所示为校正曲线的重复特性。
正行程的最大重复性偏差为△Rmax1, 反行程的最大重复 性偏差为△Rmax2,重复性误差取这两个最大偏差中之较 大者为△Rmax,再以满量程输出的百分数表示,即
rR
Rmax yFS
100%
(1-15)
式中 △Rmax----输出最大不重复误差。
精选课件ppt
现代人们的日常生活中,也愈来愈离不开检测技术。例 如现代化起居室中的温度、湿度、亮度、空气新鲜度、防火、 防盗和防尘等的测试控制,以及由有视觉、听觉、嗅觉、触 觉和味觉等感觉器官,并有思维能力机器人来参与各种家庭 事务管理和劳动等,都需要各种检测技术。
精选课件ppt
34
自动检测系统的基本组成
自动检测系统是自动测量、自动资料、自动保护、自动 诊断、自动信号处理等诸系统的总称,基本组成如图1-7。
图1-10 微差法测量稳压电源输出电压的微小变化
精选课件ppt
44
误差处理 主要内容
• 一、误差与精确处理 • 二、测量数据的统计处理 • 三、间接测量中误差的传递 • 四、有效数字及其计算法则
精选课件ppt
45
误差与精确处理
主要内容
(1)绝对误差与相对误差 (2)系统误差、偶然误差和疏失误差 (3)基本误差和附加误差 (4)常见的系统误差及降低其对测量结果影响的方法
(1-17)
由于种种原因,会引起灵敏度变化,产生灵敏度误差。灵 敏度误差用相对误差来表示
k10% 0 sk
(1-18)
精选课件ppt
25
分辨率
分辨率是指传感器能检测到的最小的输入增量。 分辨率可用绝对值表示,也可以用满量程的百分比表 示。

第7章 波式传感器

第7章 波式传感器

v2 c v cos
超声波顺流与逆流传播的时间差为
d / sin d / sin 2dv cot t t 2 t1 2 c v cos c v cos c v 2 cos 2
c 2dv v tan t t 2 cot 2d c 2 2 则体积流量约为 QV d v dc tan t 4 8
5. 超声波在介质中的衰减
超声波在介质中传播时,由于声波的散射或漫射及吸收 等会导致能量的衰减,随传播距离的增加,声波的强度逐渐 减弱。以固体介质为例,设超声波入射介质时的强度为I0, 通过厚度为δ的介质后的强度为I,衰减系数为A。
介质中的能量衰减程度与超声波 和介质密度有很大关系。气体的密度 很小,因此衰减很快,尤其对于高频 率超声波而言,衰减更快。 因此,在空气中测量时,要采用 较低频率的超声波,一般低于数十 kHz,而在固体中则应该采用频率高 的超声波,一般应该在MHz数量级以 上。
超声波探伤
超声波探伤是 目前应用十分广泛 的无损探伤手段。 它既可检测材料表 面的缺陷,又可检 测内部几米深的缺 陷,这是x光探伤 所达不到的深度。
裂纹
A型超声探伤 反射波形
(2)横波探伤法
用斜探头进行探伤的方法称横波探伤法。超声波的一个 显著特点是:超声波波束中心线与缺陷截面积垂直时,探测 灵敏度最高。 如遇到如图7-7中所示的斜向缺陷时,用直探头虽然能 探测出缺陷的存在,但并不能真实反映缺陷的大小。如用斜 探头探测,探伤的效果良好。因此在实际应用中,应该根据 不同缺陷的性质、取向采用不同的探头进行探伤。有些工件 的缺陷性质、取向事先不能确定,为了保证探伤质量,则应 该采用不同种类的探头进行多次探测。
I I 0e

传感器与检测技术(重点知识点总结)

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

《传感器技术》第3版课后部分习题解答

《传感器技术》第3版课后部分习题解答

潘光勇0909111621 物联网1102班《传感器技术》作业第一章习题一1-1衡量传感器静态特性的主要指标。

说明含义。

1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、灵敏度——传感器输出量增量与被测输入量增量之比。

5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2计算传感器线性度的方法,差别。

1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1—4 传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。

各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。

传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。

传感器技术与应用第2版-部分习题答案

传感器技术与应用第2版-部分习题答案

第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

人们根据传感器的静特性来选择合适的传感器。

9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。

,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。

微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。

17.答:⑴20。

C时,0~100ppm对应得电阻变化为250~350 kΩ。

V0在48.78~67.63mV之间变化。

⑵如果R2=10 MΩ,R3=250 kΩ,20。

C时,V0在0~18.85mV之间变化。

30。

C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。

⑶20。

C时,V0为0~18.85mV,30。

C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。

但相对(2)得情况来说有很大的改善。

18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。

11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。

因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的实偶函数。
(2)
自相关函数 Rx
的取值范围为
2 x
2 x
Rx
2 x
2 x
Rx
x
2 x
2 x
又因为xy 1
,所以
2 x
2 x
Rx
2 x
2 x
(3) 自相关函数 Rx 在 0 时取最大值,并等于该随机信
号的均方值
2 x

根据自相关函数定义可知
Rx
0
lim
间变化的最基本信息。因此,在大型回转机械监测和故障诊断
中普遍受到重视和广泛的应用。
时域波形是描述信号的时间历程,以周期振动信号为例,
其数学表达式为
xt xt kT
(1)
它反应振动信号随时间变化的情况,如是否稳定、是否叠加 有高频或低频分量及通频振动的大小情况。
机械系统中,回转体不平衡引起的振动往往也是一直周 期性运动。例如,图7-1所示是某钢厂减速机振动测点布置图, 图7-2所示是减速机测得的振动信号波形(测点3),可以近似地 看作是周期信号。
可知 xy 1。当 xy 1 时,说明x、y两变量是理想的线性相关;当 xy 1 时,也是理想的线性相关,只是直线的斜率为负;当 xy 0时,表示x、 y
两变量之间完全无关。
7.2.2 信号的自相关分析
1. 自相关函数的概念
xt 是某各态历经随机过程的一个样本记录,xt 是xt 时移后
的样本,如图7-4所示。
7.1.3 统计分析
根据输入的原始数据及给定的概率区间求出代表信号特征 的概率密度,以直方图的形式给出,同时求出信号的峰峰值、 均方值、均值、峭度指标等。
7.2 信号的相关分析
7.2.1 相关系数
在测试信号分析中,相关是一个非常重要的概念,在振动测试分 析、雷达测距、声发射探伤等都要用到相关分析。所谓相关,是指变 量之间的线性关系,对于确定性信号而言,两个变量之间可用函数关 系来描述,两者存在一一对应的确定关系。对于随机变量而言,两者 不存在这种确定关系,但是如果两个变量之间具有某种内涵的物理联 系,那么,通过大量统计就能发现它们之间还是存在着某种虽不精确 却具有相应的表征其特性的近似关系。
这里, X rms 、X av 分别代表信号的有效值和平均绝对值, Ft 、Fc 反映了时域波形的形状特征。
7.1.2 包络分析
有些合成波比简单波形复杂,但其波形变化有一定的规 律,它的包络线有一定的趋向,这时可用包络线法进行分析 处理。分析方与步骤如下:
(1) 若上下包络线形状相同,相位一致,则属于简单情 况,包络线内只有一个高频分量;
信号(功率信号)和非周期信号(能量信号),自相关函数的定义分别为
周期信号:
Rx
1 T
T
0
xt
xt
dt
非周期信号:
Rx
xt
xt
dt
2. 自相关函数的性质
(1) 自相关函数为实偶函数,即 Rx Rx
证明
Rx
lim
T
1 T
T
0
xt xt
dt
lim
T
1 T
T
0
xt
xt
d t
Rx
即 Rx Rx ,又因为 xt 是实函数,所以自相关函数是
(2) 上或下包络线代表低频分量,包络线内的波形为高 频分量;
(3) 包络线本身的峰谷在1s内交替变化的次数为低频分量 的频率数,其峰-峰值即为低频分量的参量幅值。1s内高频分 量的振动次数为高频分量的频率值,由包络线宽度可计算高 频分量的参量幅值;
(4) 若两包络线近似为正弦波,但反相,即其间高频分量 呈拍形。
(a)
(b)
图7-3 两随机变量的相关性
如图表示由两个随机变量 x 和 y 组成的数据点的分布情况。图a中
各点分布很散,可以认为变量 x 和变量 y 之间是无关的。图b中,x 和y
虽无确定关系,但从统计结果看,大体上具有某种程度的线性关系,因 此可以认为它们之间具有相关关系。
变量 x 和 y之间的相关程度用相关系数xy表示
第7章 测试信号分析与处理
测试工作的目的是获取反映被测对象的状态和特征的信息, 测试中所获得的各种动态信号包含着丰富的有用信息,同时,由 于测试系统内部和外部各种因素的影响,必然在输出信号中混有 噪声,有用的信号总是和各种噪声混杂在一起,有时本身也不明 显,难以直接识别和利用,必须对所测量的信号进行必要的分析 与处理,才能比较准确地提取测得信号中所包含的有用信息。
图7-4 各态历经随机过程的样本记录
两个样本的相关程度可以用相关系数来分析。若将
成x ,则有
xt xt 简写
x
lim 1 T T
T
xt
0
xt x t xt xt
xt dt
将分子展开,并利用xt和 x t 具有相同的均值和方差,即
lim 1
T T
图7-1某钢厂减速机振动测点布置图 图7-2 某钢厂减速机测点3振动信号波形
对于式(1)所表示的周期振动,可用以下时域特征值来描述 其振动波形特征。
峰-峰值:指最大波峰到最小波谷之间的距离。
幅值X p :指波形上相对于零线的最大偏离值。
波形系数 Ft:
Ft
X max X av
波峰系数 Fc:
Fc
Xp X rms
因此,测试信号分析与处理的目的是:①剔除信号中的噪声 和干扰,提高信噪比;②消除测量系统误差,修正畸变的波形; ③强化、突出有用信息,削弱信号中的无用部分;④将信号加工、 处理、变换,以便更容易地识别和分析信号的特征,解释被测对 象所表现的各种物理现象。
7.1 信号的时域分析
7.1.1 波形分析
时域波形分析是时0
xt
dt
x
1
lim T T
T 0
xt
dt
x
xt xt x
xt xt x
从而得
lim 1
x T T
T 0
xt
xt
dt
2 x
2 x
对各态历经随机信号定义自相关函数 Rx 为
Rx
lim
T
1 T
T x t x t dt
0

x
Rx
2 x
2 x
应当指出,信号的性质不同,自相关函数具有不同的形式。对于周期
xy
xy x y
E x x y y
E x x 2 E
y y
2
式中 xy ——随机变量x、y 的协方差;
x y ——随机变量 x 、y 的均值;
x y——随机变量 x、y的标准差;
E ——求随机变量的数学期望。
利用柯西-许瓦兹不等式
Ex x y y 2 Ex x 2 Ey y 2
相关文档
最新文档