厦门大学 大学物理B 第08章 变化的电磁场(2)
《大学物理》期末复习 第八章 电磁感应与电磁场

第八章 电磁感应与电磁场§8-1电磁感应定律一、电磁感应现象电磁感应现象可通过两类实验来说明: 1.实验1)磁场不变而线圈运动 2)磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。
3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰∙=lK ld K :非静电力ε (8-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为⎰∙=正极负极ld Kε表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。
(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰∙=lK ld K :非静电力ε(3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。
二、电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。
数学表达式:dtd ki Φ-=ε在SI 制中,1=k ,(St V Wb :;:;:εΦ),有dtd i Φ-=ε (8-2)上式中“-”号说明方向。
2、i ε方向的确定为确定i ε,首先在回路上取一个绕行方向。
规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。
在此基础上求出通过回路上所围面积的磁通量,根据dtd i Φ-=ε计算i ε。
,0>Φ00<⇒>Φi dtd ε ,0>Φ00>⇒<Φi dtd ε沿回路绕行反方向沿回路绕行方向:0:0<>iε三、楞次定律此外,感应电动势的方向也可用楞次定律来判断。
楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。
大学物理变化的电磁场理论及习题

(D)三者中 E和 H可以是任意方向的,但都必须
与 u垂直。
填空题1:一根直导线在磁感应强度为的均匀磁场 中以速度运动切割磁力线,导线中对应于非静电
力的场强(又称非静电场场强)vB .
Ek
F vB q
填空题2:载有恒定电流 I 的长直导线旁有一半圆环 导线cd,半圆环半径为b,环面与直导线垂直,且半 圆环两端点连线的延长线与直导线相交,如图所示。
a
b
R
R 2R
2R (rR)0I dr
R
2r
0IR(1ln2) 2
ab b点电势髙
计算题2:将等边三角形平面回路ACDA放在磁感应强度大小 为 B = B0t(式中B0为常量)的均匀磁场中,回路平面垂直于 磁场方向,如图所示。回路中CD段为滑动导线,设 t = 0 时, CD段从A端出发,以匀速 v 远离A端运动,且始终保持回路为 等边三角形。求回路ACDA中的感应电动势与时间 t 的关系。
动生电动势: 在稳恒磁场中运动着的导体内产生的感应 电动势.
感生电动势: 导体不动, 因磁场的变化产生的感应电动势.
动生电动势
感生电动势
恒定磁场中运动的导体
B B r
导体不动B , 磁B 场r发,t生变化
磁通量发生变化的原因
d dt
• 动生电动势
导线运动时,内部 自由电子受到向下洛
感应电流的效果总是反抗 引起感应电流I
a
d
楞次定律符合能量守恒和 转换定律.
• 法拉第电磁感应定律
当穿过回路所包围面积的磁通量发生变化时,回路中产生
的感应电动势的大小与穿过回路的磁通量对时间的变化率
成正比.
i
d
厦门大学 大学物理 第八章 电流与磁场

班级_________学号________姓名____________第8-1 直流电路 一. 填空题:1. 如图所示,两个长度相等,半径分别为r 1和r 2的棒1和2串联,并在两端加直流电压V ,则两段棒中的电流密度大小之比δ1:δ2=________,两段棒中的电场强度大小之比E 1:E 2=_______.2. 横截面积为的铝线,通过2安培的电流,则导线内电流密度大小2510m −=δ_________;设导线单位面积内的自由电子数,电子电量(库仑),则自由电子的平均漂移速率v =______________.329/108.1m n 个×=19106.1−×=e 3. 把横截面积相同的铜丝和钨丝串联后与一直流电源连接成闭合回路,设铜丝和钨丝中的电场强度的大小分别为E 1和E 2,电流密度大小分别为δ1和δ2,则E 1___E 2,δ1___δ2 (填=或≠)二. 选择题:4. 把一根金属导线拉长为均匀细丝,其长度变为原来的n 倍,则拉长后的金属丝的电阻与原金属导线的电阻之比是:( ) (A)n (B)n (C)n 2 (D)1/n5. 在通电流的铜导线中,某点电流密度矢量的方向是:( ) (A)该点自由电子运动的方向 (B)该点电场强度的方向 (C)该点电势梯度的方向6. 一横截面为S 的均匀铜线,表面镀有环形截面积亦为S 的均匀镀层,在两端加上电压后,设铜线中的电场强度大小为E 1,电流密度大小为δ1,电流强度为I 1,而镀层中相应的量为E 2、δ2和I 2,则:( ) (A)212121,I I E E ≠≠=δδ (B) 212121,I I E E =≠=δδ (C) 212121,I I E E ==≠δδ (D) 212121,I I E E ≠≠≠δδ三. 计算题:7. 一根铜线和一根铁线长均为L ,直径均为d ,把两者连接起来,并在这复合导线两端加电压U ,设L =100m ,d =2.0mm ,U =10V ,已知铜的电阻率,铁的电阻率,试计算: m Ωρ81106.1−×=m Ωρ82107.8−×=(1)每根导线中的电流密度的大小 (2)每根导线中的电场强度的大小 (3)铁线两端的电势差8. 电缆的芯线是半径为r 1的铜线,铜线外面是同轴绝缘层,绝缘层的外半径为r 2,电阻率为ρ,在绝缘层外面是是同轴铝层,求: (1)在长为L 的一段电缆上的径向电阻(2)在芯线与铝层之间的电势差为U 时,求径向电流四. 证明题:9. 有一半径为r 0 的半球状电极与大地接触(如图),大地的电阻率为ρ,假定电流通过这种接地电极均匀地向无穷远处流散,试证明:在此情况下的接地电阻为: 02r R πρ=班级_________学号________姓名____________第8-2 一. 填空题:1. 一电流计的内阻R g =15Ω,允许通过的最大电流为1mA ,若把它改装成量程为1A 的安培计,则需并联一个R 1=___________的电阻;若把它改装成量程为3V 的伏特计,则需串联一个R 2=___________的电阻.2. 电动势为ε,内阻为r 的电源,与一可变电阻R 连接成闭合电路,则电源的端电压与外电阻R 的关系是_______________,当R =___________时,电源的输出功率为最大.1r2C3. 如图为复杂电路中的一段电路的情况,则电路中BC 之间的点势差U BC =_____________.二. 选择题:4. 把标有“220V ,60W ”和“220V ,40W ”的两只灯泡A 和B 串联在220V 的电路中,则:(A)A 亮,B 暗 (B)B 亮,A 暗 (C)A 、B 都很亮 5. 下列说法正确的是:( )(A)不含源支路中电流必从高电势到低电势 (B)含源支路中电流必从低电势到高电势 (C)支路两端电势差为零时,支路的电流必为零 (D)支路的电流为零时,支路两端电势差必为零6. 如图所示电路,已知电流流向,则A 、B 两点电势关系为:( ) (A)U A 一定大于 U B (B) U A 一定小于 U B(C)不确定,要由r R I ,,,ε等的数值确定 (D) U A 一定等于 U Bε , rRB三. 计算题:7. 如图所示,已知 电源内阻不计,,电容C =5μF ,求:,621V ==εεΩ3321===R R R (1)通过电阻R 2的电流 R 32(2)b 、d 两点的电势差 (3)电容器极板上的电量8. 如图所示电路,已知,求a 与b 两点的电势差. ΩΩεεε2,1,8,10,12321=====R r V V V r2εr3RR Rr1ε班级____________学号______姓名_________第8-3 磁场1. 如图六根互相绝缘导线,通以电流强度均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为正方形,那么指向纸内的磁通量最大的区域是:( )(A)Ⅰ区域 (B)Ⅱ区域 (C)Ⅲ区域 (D)Ⅳ区域2. 一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于已线外有绝缘层,在A 处两导线并不短路,则在圆心处磁应强度B 的大小为:( )(A)(μ0+1)I /(2πR ) (B)μ0I /(2πR )(C)μ0I (1+π)/(2πR ) (D)μ0I (1+π)/(4πR )3. 载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为:( )(A)μ0I /(4a )+μ0I /(4πa ) (B)μ0I /(4a )+μ0I /(4πa )+2μ0I /(8πa ) (C)∞(D)μ0I /(4a )-μ0I /(4πa )+2μ0I /(4πa )4. 用相同的导线组成的一导电回路,由半径为R 的圆周及距圆心为R /2的一直导线组成如图,若直导线上一电源ε,且通过电流为I ,则圆心O处的磁应强度B 的大小为:( )(A)μ0I /(2R ) (B)0(C)3μ0I /(2πR )(D)μ0I /(2R )(1+3/π)5. 四条无限长直导线,分别放在边长为b 的正方形顶点上,如图所示,分别载电流为I ,2I ,3I ,4I ,方向垂直于图面向外,若拿走载电流为4I 的导线,则此时正方形中心O 点处的磁场感应强度大小与原来相比将:( )⊙⊙⊙⊙I2I4I3IO(A)变大 (B)变小 (C)不变(D)无法断定6. 如图半径为R 的带电圆盘,电荷面密度为σ,圆盘以角速度ω,绕过盘心,并垂直盘面的轴旋转,则中心O 处的磁感应强度大小为:( )(A)μ0σωR /2 (B)μ0σωR /4 (C)μ0σωR /6 (D)μ0σωR /8班级_____________学号______姓名__________第8-41. 如图真空中环绕两根通有电流为I 的导线的两种环路,则对环路L 1,有∫⋅)(1L d l B = _________; 对环路L 2 ,有∫⋅)(2L d l B = _______________.L2. 如图,在无限长直载流导线的右侧有面积为S 1和S 2两个矩形回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行,则通过面积S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为:________________.3. 电子在磁感应强度B =0.1T匀强磁场中沿圆周运动,电子运动形成的等效圆电流强度I=________________. (电子电量e =1.6×10-19C ,质量m =9.1×10-31kg)4. 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I 若作一个半径为R =5a ,高为l 的柱形曲面,已知柱形曲面的轴与载流导线的轴平行且相距3a ,如图,则B 在圆柱侧面S 上的积分=________________.∫∫⋅)(S d S B5. 如图长直导线载有电流I ,则穿过与其共面的矩形面积CDEF 的磁通量为_______________.I6. 在安培环路定理∫⋅Ld l B =中,∑ii I 0μ∑ii I 是指_______________________ _________________________,B 是指______________________________,它是由_________________________________________决定的.7. 将半径为R 的无限长导体薄壁管(厚度忽略) 沿轴向割去一宽度为h (h <<R )无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i (如图),则管轴线上磁感应强度的大小是_________________.8. 如图单层均匀密绕在截面为长方形的整个木环上,共有N 匝,求流入电流I 后,环内的磁感应强度分布和截面上的磁通量.2D 1班级_____________学号_____姓名_________第8-5 习题课后(磁场)O1. 如图,在半径为R 的无限长半圆柱形金属薄片中,均匀地自下而上通以电流I ,求半圆柱轴线上一点O 的磁感应强度.2. 如图电流I 均匀地流过宽为2a 的无限长导体薄平板,通过板的中线与板面垂直的平面上有一点P ,P 点到板距离为x ,求P 点磁感应强度大小.3. 半木球半径为R ,其上沿弧长单层均匀密绕N 匝线圈,通以电流I ,求木球球心O 处的磁感应强度大小.4. 在半径为r 和R 的两同心圆之间,均匀密绕N 匝平面线圈,通以电流I ,求圆心处的磁感应强度.5. 一电荷线密度为λ的带电正方形闭合框,绕过其中心并垂直于框平面的轴,以角速度ω旋转,试求正方形中心处的磁感应强度大小.O ’6. 如图一半径为R 1的无限长圆柱形导体,其内空心部分半径为R 2,空心部分的轴与圆柱的轴平行但不重合,两轴距离为a ,且a >R 2,现有电流I 均匀地流过导体横截面,且电流方向与导体轴线平行,求:(1)导体轴线上的磁感应强度,(2)空心部分轴线上的磁感强度.班级_____________学号_____姓名__________第 8-6 磁场 (习题课后作业)1. 如图在顶角为60°的圆锥面上从ab 到cd 均匀密绕N 匝线圈,线圈里通有电流I ,线圈平面垂直于锥轴,电流方向如图,且oa=ob=ad=bc=L ,求顶点O 的磁感应强度大小.2. 如图,电流I 均匀地自下而上通过宽度为a的无限长导体薄平板,求薄板所在平面上距板的一边为d 的P 点的磁感应强度.Pa3. (回答)根据毕一萨定律,AB 直线电流在P 点产生的)sin (sin 4120ββπμ−=OPIB ,现以OP 为半径,在垂直于电流的平面内作一圆,并以圆为回路,计算B 的环流)sin (sin 2120)(ββμ−=⋅∫Il dl B . 为什么与安培环路定律I 0)(μ=⋅∫l dl B 不一致?4. (证明)用安培环路定理证明,图中所表示的那种不带边缘效应的均匀磁场不可能存在.班级______________学号______姓名_________第8-7 磁力1. 真空中毕一沙定律表达式_____________;稳恒磁场的安培环路定律的表达式__________;磁场的高斯定理表达式__________________;安培环路定律说明磁场是___________________;磁场的高斯定理说明磁场是________________.2. 如图所示,真空中电流元在原点O 处,沿X 轴正方向放置,电流元在Z 轴上,沿Z 轴负方向放置,两者相距为r ,则电流元1对电流元2的作用力的大小为____________,电流元2对电流元1的作用力的大小为_______________. 1l d I 12l d I 23. 如图一无限长直导线通以电流I 1,与一个电流I 2的矩形刚性载流线圈共面,设长直导线固定不动,则矩形线圈受到的磁力大小为____________________,它将___________________运动.D E I4. 在一个磁性很强的长的条形磁铁附近放一条可以自由弯曲的软导线,如图所示,当电流从上向下流经软导线时,软导线将:(A)不动;(B)被磁铁推至尽可能远;(C)被磁铁吸引靠近它,但导线平行磁棒;(D)缠绕在磁铁上,从上向下看,电流是顺时针方向流动的; (E)缠绕在磁铁上,从上向下看,电流是逆时针方向流动的.5. 如图一固定的载流大平板,在其附近,有一载流小线框能自由转动或平动,线框平面与大平板垂直,大平板电流与线框中电流方向如图所示,则通电线框的运动情况从大平板向外看是:( )B A(A)靠近大平板AB (B)顺时针转动 (C)逆时针转动 (D)离开大平板向外运动6. 如图所示导线框abcd 置于均匀磁场中(B 方向竖直向上),线框可绕AB 轴转动. 导线通电时,转过α角后,达到稳定平衡. 如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即α不变),可以采用哪一种办法?(导线是均匀的)( ) AB b (A)将磁场B 减为原来的1/2或线框中电流强度减少为原来的1/2; (B)将导线bc 部分长度减小为原来的1/2;(C)将导线ab 和cd 部分长度减少为原来的1/2 ; (D)将磁场B 减少1/4,线框中电流强度减少1/4.7. 如图一根无限长直导线和长度为L 的线段彼此绝缘,以θ角交叉放置,分别通以电流I 1和I 2,线段中点在交叉位置,则线段受到磁力矩大小为____________,方向为_______________.班级______________学号______姓名_________第 8-81. 一段长为L 的导线被弯成一个单匝圆形线圈,通过此线圈的电流为I ,线圈放在磁感应线与线圈平面平行的均匀磁场B 中,则作用在线圈上的力矩是:( )(A)BIL 2/4 (B)2BIL 2/8 (C)BIL 2/8 (D)BIL 2/(4π) 2. 如图相距2a 的两条竖直放置的载流长直导线,电流强度均为I ,方向相反,长为2b ,质量为m 的金属棒MN 位于两直导线正中间,且在同一平面,欲使MN 处于平衡状态,则MN 中的电流强度为_____________;方向为________________.2IbM3. 半径为R 的圆片均匀带电,面电荷密度为σ,今该圆片以角速度ω绕其中心轴线旋转,则轴线上距圆片中心为x 处的磁感应强度大小B =____________,旋转圆片的磁矩p m =_________.4. 如图在x >0的空间存在均匀磁场,其磁感应强度为B ,方向垂下直纸面向里,当一质量为M ,电量为Q 的电荷以速度v 在x =0,y =0处向x 轴正方向进入磁场,则电荷飞出磁场时的坐标是x = ____________,y =_____________;在磁场中运动的时间T =________________.x5. 半径为R 质量为M 的刚性圆形线圈,平放在水平桌面上,线圈所在处的地磁场可看作均匀磁场,磁感应强度B 的水平分量为B x ,竖直分量为B y ,若想使线圈恰好能绕其上一点转动,则线圈中应通以最小电流I =_________安培6. 一平面线框如图所示,其中两段圆弧的半径分别为R 1和R 2(R 1<R 2),并分别放置在均匀磁场B 1和B 2中,已知B 1/B 2=R 2/R 1,已知两平行直导线间距为d 当线框中通以逆时针方向电流I 时,线框将:( ) (A)向左平移 (B)向右平移 (C)静止不动 (D)绕OO`联线转动7. 一个薄的塑料圆盘,半径为R ,均匀带电Q ,圆盘能绕垂直盘面并通过中心的轴线转动,设转动角速度为ω,圆盘所在处为均匀的磁感应强度B ,方向与转轴AA ,夹角为θ,则圆盘的磁矩大小P m =_____________;磁场作用在圆盘上的力矩M =________________ .8. 如图半径分别为R 1和R 2(R 1>>R 2)的二同心金属圆环,大环固定,小环可绕竖直轴OO ’自由转动,其转动惯量为J ,二圆通以相同的电流I ,若小环稍微偏离其平衡位置时,求:小环作微小摆动周期.O ’I班级_____________学号_____姓名_________第8-9 磁力 (习题课)1. 如图在载流为I 1的长直导线旁,共面放置一载流为I 2的等腰直角三角形,线圈abc ,腰长ab=ac=L ,边长ab 平行于长直导线,相距L ,求线圈各边受的磁力F .II 22. 无限长直载流导线与一个无限长薄电流板构成闭合回路,电流板宽为a ,二者相距也为a (导线与板在同一平面内),求导线与电流板间单位长度内作用力.3. 发电厂的汇流条是两条3. 0m 的平行铜棒,它们相距0. 5m ,接通电流时,棒中电流是10000A ,问这汇流棒之间的相互作用力多大?4. 空气中有一半径为R 的无限长直圆柱金属导体,OO'为中心轴线,在圆柱体内挖一个直径为R /2的加圆柱空洞,空洞侧面与OO'相切,在未挖空部分通以电流密度为δ,方向沿OO'向下的电流,试求:(1)空洞轴线上任一点的磁感应强度的大小;(2)在距轴线OO'为3R 处有一电子沿平行OO'方向,以速度v 向下飞经P 点时所受的力. (P 点、空洞轴线、OO'三者共面)5. 磁控管中一群电子在垂直于均匀磁场B 的平面内作圆周运动,在运动中,与电极1和2最近距离为r ,圆周轨道直径为D ,设这群电子有N 个,电荷为e ,质量为m ,求电极1和2上电压变化幅度和变化频率.I 6. 如图长直载流导线I 1的右侧,与其共面放置另一导线,轨迹为x =y 2+1,端点坐标a(2,1),b(2,-1),通以电流I 1,试求导线I 1所受的安培力.班级_____________学号_____姓名_________第8-10 磁力 (习题课后作业)I 11. 如图在垂直于无限长直导线的平面内有一载流I 2的扇形线圈ABCD ,长直导线通以垂直于纸面向外的电流I 1,设θ<π,两段圆弧的半径分别为OA=R 1,OD=R 2,求图示位置时,(1)线圈各边所受的磁力;(2)线圈所受的磁力矩.2. 如图无限长直导线和半径为R 的圆形线圈,彼此绝缘,共面放置,且圆线圈直径和长直导线重合,直导线与圆线圈分别通以电流I 1和I 2,求(1)长直导线对半圆弧abc 所作用的磁力;(2)整个圆形线圈所受的磁力.d3. 如图一等腰直角三角形线圈abc 与一无限长直导线处在同一平面内,已知bc=L ,且平行于直导线,a 点与直导线相距为R ,导线和线圈分别通以电流I 1和I2,求线圈所受的磁力.I4. 一平面圆环状回路,载有电流I,置于磁感应强度为B的均匀磁场中,求证环路受到的力矩为M=I S×B,其中S为载流环的有向面积,方向由I的流向依右手定则确定.5. 图中曲线是一带电粒子在磁场中的运动轨迹,斜线部分是铝板,粒子通过它要损失能量,磁场方向如图. 问粒子是带正电,还是带负电?说明理由.6. 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向.。
大物B课后题08-第八章 电磁感应 电磁场

习题之阳早格格创做8-6 一根无限少曲导线有接变电流0sin i I t ω=,它中间有一与它共里的矩形线圈ABCD ,如图所示,少为l 的AB 战CD 二边与曲导背仄止,它们到曲导线的距离分别为a 战b ,试供矩形线圈所围里积的磁通量,以及线圈中的感触电动势. 解 修坐如图所示的坐标系,正在矩形仄里上与一矩形里元dS ldx =,载流少曲导线的磁场脱过该里元的磁通量为 通过矩形里积CDEF 的总磁通量为由法推第电磁感触定律有8-7 有一无限少曲螺线管,单位少度上线圈的匝数为n ,正在管的核心搁置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线仄止,设螺线管内电流变更率为dI dt ,球小线圈中感触的电动势.解 无限少曲螺线管里里的磁场为通过N 匝圆形小线圈的磁通量为由法推第电磁感触定律有8-8 部分积为S 的小线圈正在一单位少度线圈匝数为n ,通过电流为i 的少螺线管内,并与螺线管共轴,若0sin i i t ω=,供小线圈中感死电动势的表白式.解 通过小线圈的磁通量为由法推第电磁感触定律有8-9 如图所示,矩形线圈ABCD 搁正在16.010B T -=⨯的匀称磁场中,磁场目标与线圈仄里的法线目标之间的夹角为60α=︒,少为0.20m 的AB 边可安排滑动.若令AB 边以速率15.0v m s -=•背左疏通,试供线圈中感触电动势的大小及感触电流的目标.解 利用动死电动势公式感触电流的目标从A B →.8-10 如图所示,二段导体AB 战BC 的少度均为10cm ,它们正在B 处相接成角30︒;磁场目标笔曲于纸里背里,其大小为22.510B T -=⨯.若使导体正在匀称磁场中以速率11.5v m s -=•疏通,目标与AB 段仄止,试问AC 间的电势好是几? 哪一端的电势下?解 导体AB 段与疏通目标仄止,不切割磁场线,不电动势爆收.BC 段爆收的动死电动势为AC 间的电势好是C 端的电势下.8-11 少为l 的一金属棒ab ,火仄搁置正在匀称磁场B 中,如图所示,金属棒可绕O 面正在火仄里内以角速度ω转动,O 面离a 端的距离为l k .试供a,b 二端的电势好,并指出哪端电势下(设k>2)解 修坐如图所示的坐标系,正在Ob 棒上任一位子x 处与一微元dx ,该微元爆收的动死电动势为Ob 棒爆收的动死电动势为共理,Oa 棒爆收的动死电动势为金属棒a,b 二端的电电势好果k>2,所以a 端电势下.8-12 如图所示,真空中一载有稳恒电流I 的无限少曲导线旁有一半圆形导线回路,其半径为r ,回路仄里与少曲导线笔曲,且半圆形曲径cd 的延少线与少曲导线相接,导线与圆心O 之间距离为l ,无限少曲导线的电流目标笔曲纸里背内,当回路以速度v 笔曲纸里背中疏通时,供:(1)回路中感触电动势的大小;(2)半圆弧导线cd 中感触电动势的大小.解 (1) 由于无限少曲导线所爆收的磁场目标与半圆形导线天圆仄里仄止,果此当导线回路疏通时,通过它的磁通量不随时间改变,导线回路中感触电动势0ε=.(2)半圆形导线中的感触电动势与曲导线中的感触电动势大小相等,目标好异,所以可由曲导线估计感触电动势的大小采用x 轴如图8.7所示,正在x 处与线元dx,dx 中爆收感触电动势大小为其中02I B xμπ= 导线cd 及圆弧cd 爆收感触电动势的大小均为8-13 正在半径0.50R m =的圆柱体内有匀称磁场,其目标与圆柱体的轴线仄止,且211.010dB dt T s --=⨯•,圆柱体中无磁场,试供离启核心O 的距离分别为0.1,0.25,0.50,1.0m m m m 战各面的感死电场的场强.解 变更的磁场爆收感死电场线是以圆柱轴线为圆心的一系列共心圆,果此有 而22,L S B dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感当r R <时, 22dB E r r dtππ=-感 所以0.1r m =时,415.010E V m --=⨯•感;0.25r m=时,.311.310E V m --=⨯•感当r R >时 22dB E r R dtππ=-感 所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感触强度为B 的匀称磁场充谦正在半径为R 的圆柱体内,有一少为l 的金属棒ab 搁正在该磁场中,如果B 以速率dB dt 变更,试证:由变更磁场合爆收并效率于棒二端的电动势等于12dB dt 说明 要领一 对接Oa,Ob,设念Oab 形成关合回路,由于Oa,Ob 沿半径目标,与通过该处的感死电场处笔曲,所以Oa,Ob 二段均无电动势,那样由法推第电磁感触定律供出的关合回路Oab 的总电动势便是棒ab 二端电动势.根据法推第电磁感触定律要领二 变更的磁场正在圆柱体内爆收的感死电场为棒ab 二端的电动势为8-15 如图所示,二根横截里半径为a 的仄止少曲导线,核心相距d ,它们载有大小相等、目标好异的电流,属于共一回路,设导线里里的磁通量不妨忽略不计,试说明那样一对于导线少为l 的一段的自感为0ln l d a L aμπ-=. 解 二根仄止少曲导线正在它们之间爆收的磁感触强度为 脱过二根导线间少为dx 的一段的磁通量为所以,一对于少为的一段导线的自感为8-16一匀称稀绕的环形螺线管,环的仄稳半径为R ,管的横截里积为S ,环的总匝数为N ,管内充谦磁导率为μ的磁介量.供此环形螺线管的自感系数L .解 当环形螺线管中通有电流I 时,管中的磁感触强度为 通过环形螺线管的磁链为则环形螺线管的自感系数为8-17由二薄圆筒形成的共轴电缆,内筒半径1R ,中筒半径为2R ,二筒间的介量1r μ=.设内圆筒战中圆筒中的电流目标好异,而电流强度I 相等,供少度为l 的一段共轴电缆所储磁能为几?解 有安培环路定理可供得共轴电缆正在空间分歧天区的磁感触强度为1r R <时, 10B =12R r R <<时, 022I B rμπ=2r R >时, 30B =正在少为L ,内径为r ,中径为r dr +的共轴薄圆筒的体积2dV rldr π=中磁场能量为所以,少度为l 的一段共轴电缆所储能为补充正在共时存留电场战磁场的空间天区中,某面P 的电场强度为E ,磁感触强度为B ,此空间天区介量的介电常数0εε≈,磁导率0μμ≈.供P 面处电场战磁场的总能量体稀度w . 解 电场能量稀度为磁场能量稀度为总能量稀度为8-19 一小圆线圈里积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它搁正在另一半径220R cm =,2100N =匝的圆线圈核心,二线圈共轴共里.如果把大线圈正在小线圈中爆收的磁场瞅成是匀称的,试供那二个线圈之间的互感;如果大线圈导线中的电流每秒缩小50A ,试供小线圈中的感触电动势.解 当大圆形线圈通偶尔2I ,它正在小圆形线圈核心处的磁感触强度大小为若把大圆形线圈正在小圆形线圈中爆收的磁场瞅成是匀称的,则通过小圆形线圈的磁链为二个线圈之间的互感为如果大线圈导线中的电流每秒缩小50A ,则小线圈中的感触电动势为8-20 一螺线管少为30cm .由2500匝漆包导线匀称稀绕而成,其中铁芯的相对于磁导率100r μ=,当它的导线中通有的电流时,供螺线管核心处的磁场能量稀度.解 螺线管中的磁感触强度为螺线管中的磁场能量稀度为8-21 一根少曲导线载有电流I ,且I 匀称天分散正在导线的横截里上,试供正在少度为l 的一段导线里里的磁场能量. 解 有安培环路定理可得少曲导线里里的磁感触强度为 正在少度为l 的一段导线里里的磁场能量8-22一共轴线由很少的曲导线战套正在它表里的共轴圆筒形成,它们之间充谦了相对于磁导率为1r μ=的介量,假定导线的半径为1R ,圆筒的内中半径分别为2R 战3R ,电流I 由圆筒流出,由曲导线流回,并匀称天分散正在它们的横截里上,试供:(1)正在空间各个范畴内的磁能稀度表白式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,正在每米少度的共轴线中所储藏的磁场能量.解 (1)有安培环路定理可得正在空间各个范畴内的磁感触强度为1r R <时 01212Ir B R μπ= ;12R r R << 时022I B r μπ=23R r R <<时2203322322I R r B r R R μπ-=-;3r R >时 40B =相映天,空间各个范畴内的磁能稀度为1r R <时222012201128m I r B w R μμπ==;12R r R <<时20228m I w r μπ=; 23R r R <<时2222032222328m I R r w r R R μπ⎛⎫-= ⎪-⎝⎭;3r R >时0m w =.(2) 每米少度的共轴线中所储藏的磁场能量为8-23说明电容C 的仄止板电容器,极板间的位移电流强度d dUI C dt =,U 是电容器二极板间的电势好.说明 由于仄止板中D σ=,所以脱过极板位移电位移通量 仄止板电容器中的位移电流强度8-24 设圆形仄止板电容器的接变电场为()51720sin 10E t V m π-=•,电荷正在电容器极板上匀称分散,且边沿效力不妨忽略,试供:(1)电容器二极板间的位移电流稀度;(2)正在距离电容器极板核心连线为 1.0r cm =处,通过时间52.010t s -=⨯时的磁感触强度的大小.解 (1)电容器二极板间的位移电流稀度为(2)以电容器极板核心连线为圆心,以 1.0r cm =为半径干一圆周.由齐电流安培环路定律有所以通过时间时52.010t s -=⨯,磁感触强度的大小为8-25 试决定哪一个麦克斯韦圆程相称于或者包罗下列究竟:(1)电场线仅起初或者末止与电荷或者无贫近处;(2)位移电流;(3) 正在静电仄稳条件下,导体里里大概有所有电荷;(4)一变更的电场,肯定有一个磁场伴伴它;(5)关合里的磁通量末究为整;(6)一个变更的磁场,肯定有一个电场伴伴它;(7)磁感触线是无头无尾的;(8)通过一个关合里的洁电通量与关合里里里的总电荷成正比;(9)不存留磁单极子;(10)库仑定律;(11)静电场是守旧场.解 1Ni i s D ds q =•=∑⎰⎰相称于或者包罗究竟:(1),(3),(8),(10);L S B E dl dS t ∂•=-•∂⎰⎰⎰相称于或者包罗究竟:(6),(11); 0S B dS •=⎰⎰相称于或者包罗究竟:(5),(7),(9);1N D i i L d H dl I dt φ=•=+∑⎰相称于或者包罗究竟:(2),(4);。
大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。
解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。
解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。
解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。
若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。
解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。
大学物理第8章 电磁感应定律2课时PPT课件

Ii
i R
1 R
dΦ dt
(变化快慢)
3)t t2t1时间内,流过回路的电荷
q
t2 t1
Idt
R 1Φ Φ 12dΦ R 1(Φ 1Φ 2)(变化量)
第八章 电磁感应
4) 感应电动势的方向
i
dΦ dt
B
人为规定回路L方向:
B与回路成右螺旋,则 Φ0 L
反之, Φ 0
N
d Φ Φ (t d t) Φ (t)
回路所围面积的磁通量发
生变化时,回路中会产生
感应电动势,且感应电动
势正比于磁通量对时间变
化率的负值.
i
k
dΦ dt
国际单位制
i
伏特
Φ 韦伯
第八章 电磁感应
B
A
i
i
N
k 1
i
dΦ dt
讨论:
第八章 电磁感应
1)闭合回路由 N 匝密绕线圈组成
i
d
dt
N d dt
磁通匝数(磁链)
NΦ
2)若闭合回路的电阻为 R ,感应电流为
线路; (3)钳形安培表测回路中交流电大小; (4)感应线圈使低压直流电变为高压脉冲,形
成高压放电,用于点火装置等; (5)电焊机利用互感产生低压大电流熔化金属进
产生感生电动势的非静电场
感生电场
麦克斯韦假设 变化的磁场在其周围空间激发一
种电场, 这个电场叫感生电场 Ek。
闭合回路中的感生电动势
i
dΦ LEkdl dt
d
ΦSB i dSLE kdlL E k dS l B tdd tS SBdS
第八章 电磁感应
感生电场和静电场的对比
大学物理课件第八章变化的电磁场

的动生电动势。
解:由电动势的定义
b
vB dl
B
a
dl
v
a b
vB xˆ dl
a
R xˆ
b
vB2R 哪点电势高?
(答:b点电势高)
结论:相当于ab直导线中的电动势。
2021/6/20
15
[例2]长为R 的导线绕 o点以角速度 在均匀磁场 B
中转动,B与转动平面垂直,如图。
感
d
dt
(有时需设计一个闭合回路)
[例1] 已知:半径为 R 的长直螺管内
dB
c
dt
求:管内外的 E i
2021/6/20
R
B
0
24
解:由于磁场有轴对称性,
L
P
E i 也有轴对称性,沿切线方向
取场点 P,过场点作轴对称圆回
路L,与B满足右手关系的方向
为正方向。
LE id lE i2 π r
S
S
q内
0
电力线不闭合
E感dS0
S
电力线闭合
22
一般有
E E 静 E 感
由于 E感 的通量为零,
EdS
q内
S
0
由于 E静 的环流为零,
B
Edl
L
S t
dS
2021/6/20
23
➢ 感生电动势与感生电场的计算 方法一: 由电动势的定义
感 LE 感 dlS B tdS
方法二: 由法拉第电磁感应定律
时针方向。
2021/6/20
10
半径为r的小绝缘圆环,置于半径为R的大导线环中心处
r R,在大导线环通有正弦电流(取逆时针方向为正)
大学物理第八章课后习题答案

大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当导体为一闭合回路(L)时:
i
பைடு நூலகம்
L
Ei dl
按麦克斯韦假设:
B i Ei dl dS L S t d d B dS dt S dt
—— 与法拉第电磁感应定律相符合
计算感生电动势的方法:
1)感生电场 感生电动势
复习:
电磁感应现象
d 法拉第电磁感应定律: i dt
动生电动势:磁场不变,导体运动
感生电动势:导体回路不动,磁场变化 动生电动势:
楞次定律
ab
b
a
b Ek dl (v B) dl
a
计算动生电动势: (1) 由非静电性场强 E k (2) 由法拉第电磁感应定律
磁场随时间变化且具柱对称性
感生电场为柱对称分布!
B(t )
例 空间均匀的磁场限制在半径为 R 的圆柱体内, 磁感应强度的方向平行柱轴,且有dB/dt = const。 B(t ) 求:感生电场分布 解:设场点距轴心为 r,根据对称性, 取以 O 为圆心,过场点的圆周环路 L
dI L L dt
— 自感电动势正比于回路中的电流变化率。
1.2 自感现象的应用
dI L L dt
自感在日光灯电路中的应用:
水银蒸气
起动器(氖气放电辉光, U形动触片,静触片)
1.3 自感系数的计算
1)利用自感定义式:
I
B
L I
2)利用自感电动势定义式:
dI L L dt
1.自感
1.1 自感现象
i
线圈
线圈具有反抗电流变化的能力(电惯性)
i
K合上,B先亮,A后亮; K打开,B先暗,A后暗;
当通过回路中电流发生变化时,引起穿过自身 的磁通量发生变化,从而在自身回路中产生感生电 动势的现象称为“自感现象”。所产生的电动势称 为“自感电动势”。
对一固定线圈,由毕奥-萨伐尔定律 :
L L
dI dt
例 长为 l 的螺线管,横断面为 S,线圈匝数密度 为 n ,管中磁介质的磁导率为 ,求自感系数。 解: B nI
S l
Ψ NBS N nIS
Ψ L NnS I
线圈匝数 : N nl
线圈体积 : V lS
Ln V
2
例 有一电缆,由两个“无限 长”的同轴圆桶状导体组成, 其间充满磁导率为 的磁介 质,电流 I 从内桶流进,外
Φ l R2 L ln I 2 R1
R1 R2
作业:
习题8-6: 一截面为长方形的环式螺线管(共 N 匝),其 尺寸如图所示,求此螺线管的自感系数。
习题8-7: 一长直螺线管,当线圈中通有10.0 A的恒定电流 时,通过每匝线圈的磁通量是20 μWb,当电流以4.0 A/s的速率变化时,产生的自感电动势为3.2 mV。求 此螺线管的自感系数与总匝数。
电磁炉
涡电流 用于金属零件淬火
点击视频
用涡电流的热效应进行冶炼
dB I Ei dt
热功率 : P
2
涡电流的热效应的危害:
3.3 涡电流的电磁阻尼效应
作业:
习题8-5: 图示的大圆内各点磁场强度B的大小为0.5 T,方 向垂直于纸面向里,且每秒钟平均减少0.1 T 。大圆 内有一半径为R=0.10 m的同心圆环,求(1)圆环上 任一点感应电场的大小和方向;(2)整个圆环上的 感应电动势的大小;(3)圆环中的感应电流(设圆 环电阻为 2 Ω);( 4 )圆上任意两点 a 、 b 间的电势 差;(5)若环在某处被切断,两端分开很小一段距 离时,求两端电势差。
a a
Fk qEi
(感生电动势定义式) 当导体为一闭合回路(L)时:
i
L
Ei dl
按麦克斯韦假设:
B i Ei dl dS L S t d d B dS dt S dt
—— 与法拉第电磁感应定律相符合
2)法拉第电磁感应定律 感生电动势
2.3 感生电场与感生电动势的计算 B 1)原则: L Ei dl S t dS 2)感生电场具有较高对称性才能给出解析式
如:空间均匀的磁场被限制在圆柱体内,磁感 应强度平行柱轴(长直螺线管内部的场)。
S
我们知道,与电动势相对应,必然存在某种 非静电力场(具有电场的性质)
2.1 感生电场
B i dS S t
1861年,麦克斯韦提出 感生电场假设。(第一假设)
当空间的磁场分布随时间发生变化时,会在空间 激发一种 感生电场,满足:
B L Ei dl S t dS
l r dr
桶流出。设内、外桶半径分
别为 R1 和 R2 ,求长为 l 的 一段电缆的自感系数。
R1 R2
求长为 l 的一段导线的 自感系数 解:
dΦ B dS BdS Bl dr
Φ
R2 R1
I B 2 r
( R1 r R2 )
l r dr
I Il R2 ldr ln 2 r 2 R1
解:方法一
r dB Ek Ei 2 dt
i
b
b
a
Ek dl
Ei cos dl a b r dB R 2 L2 / 4 dl a 2 dt r L dB R 2 L2 / 4 2 dt
B O R b a dl
§8-2 动生电动势 感生电动势
2. 感生电场与感生电动势
当线圈不动时,由于磁场随时间变化而 产生电动势。
B B( r , t )
d i dt
d B i B dS dS S t dt S
B dS
S
L
S 是以 L 为边界的任意曲面,方向满足右手规则 导体中这一电流的产生就是这一电场作用于导体 中自由电子的结果。 Fk qEi —非静电力
B 讨论: L Ei dl S dS t 1)变化的磁场可以激发电场。
2)楞次负号。 3)感生电场的环流不等于零, 表明该电场为涡旋场, 所以又称为“涡旋电场”。
Oa 0, bO 0
O R b a
2 L L dB 2 ab R 2 4 dt
同样对如图所示 ab 棒:
BS 扇形
d i dt i Oa ab bO
解:
AB
i1 0
B
A
Ei dl 0
CD 0
i2 0
3.涡电流 电磁阻尼
3.1 涡电流的产生 当大块导体放在 变化的磁场中,在导 体内部会产生感应电 流,由于这种电流在 导体内部自成回路, 故称为涡电流。
dB dt
导体
3.2 涡电流的热效应
涡电流的热效应的应用:
O r
dB L Ei dl S dt dS
dB dB 2 Ei 2r dS r ( r R ) S dt dt
r dB Ei (r R) 2 dt
r dB Ei (r R) 2 dt
讨论:
R dB (r R) Ei 2r dt r dB Ei (r R) 2 dt
2
1) dB / dt 只存在于 r < R 的区域,但整个空间 都有感生电场存在! dB
2)感生电场总是与磁场 的变化的方向垂直。
dt
Ei
例 半径为 R 的圆柱体空间区域内充满了均匀磁场, 已知 磁感应强度随时间的变化率为 dB / dt 大于零且为恒量。 棒 ab 上长 L,位置如图所示。求棒上的感生电动势。
dB dt
Ei
4)感生电场对任意闭合曲面的通量等于零
S
Ei dS 0
表明感生电场为无源场。(感生电场的高斯定理)
2.2 感生电动势 当一段导体(ab)处于感生电场中,自由电 子将受到非静电力
非静电性电场 E F / q E k k i b b i Ek dl Ei dl
Oa 0, bO 0
B R O
ab S扇形
dB dt
a
b
* 亦可用感生电动势的定义求解
思
问: AB , i1 , CD , i2 为何?
考
如图均匀变化磁场 B,导体 AB=2R,CD=2R,
BI
LI
B
L称自感系数,简称自感 自感系数 L 取决于回路线圈自身的性质: (1)回路大小;(2)形状;(3)周围介质
根据法拉第电磁感应定律: 自感电动势:
LI
d d ( LI ) dI dL i ( L I ) dt dt dt dt
如果回路自身性质不随时间变化,L 为常量。
Ek Ek
Ek
方法二:
补上两个半径Oa、Ob与ab构成回路OabO
L L 2 B R 2 4 2 d L L dB 2 i R dt 2 4 dt B