2017年高考数学(理)-换元法(测)-专题练习(二)

合集下载

2017高考题数学理真题汇编含答案

2017高考题数学理真题汇编含答案

专题1 集合与常用逻辑用语1.(2017·高考全国卷乙)已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅2.(2017·高考全国卷甲)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}3.(2017·高考全国卷丙)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1D .04.(2017·高考北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.(2017·高考江苏卷)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.专题2 函 数1.(2017·高考全国卷乙)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]2.(2017·高考全国卷丙)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A .-12B .13C.12D .13.(2017·高考北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数4.(2017·高考山东卷)已知当x ∈[0,1]时,函数y =(mx -1)2 的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞ )C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)5.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关6.(2017·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A .⎣⎡⎦⎤-4716,2 B .⎣⎡⎦⎤-4716,3916 C .[-23,2]D .⎣⎡⎦⎤-23,3916 7.(2017·高考全国卷丙)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 8.(2017·高考江苏卷)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈Dx ,x ∉D ,其中集合D ={x |x =n -1n,n ∈N *},则方程f (x )-lg x =0的解的个数是________. 9.(2017·高考浙江卷)已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.专题3 导数及其应用1.(2017·高考全国卷甲)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .12.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.3.(2017·高考全国卷乙)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.4.(2017·高考全国卷甲)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.5.(2017·高考全国卷丙)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n <m ,求m 的最小值.6.(2017·高考江苏卷)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.专题4 三角函数与解三角形1.(2017·高考全国卷乙)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.(2017·高考全国卷丙)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减3.(2017·高考山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A4.(2017·高考天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π245.(2017·高考全国卷甲)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 6.(2017·高考浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.7.(2017·高考全国卷乙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.8.(2017·高考全国卷甲)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .9.(2017·高考全国卷丙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.专题5 平面向量、数系的扩充与复数的引入1.(2017·高考全国卷乙)设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 42.(2017·高考全国卷甲)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i 3.(2017·高考全国卷甲)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-14.(2017·高考全国卷丙)设复数z 满足(1+i)z =2i ,则|z |=( ) A .12B .22C. 2D .25.(2017·高考全国卷丙)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .26.(2017·高考北京卷)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,-1) C .(1,+∞)D .(-1,+∞)7.(2017·高考山东卷)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a =( ) A .1或-1B .7或-7C .- 3D . 38. (2017·高考浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 39.(2017·高考全国卷乙)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ________ . 10.(2017·高考山东卷)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________11.(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.12.(2017·高考天津卷)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.专题6 数 列1.(2017·高考全国卷乙)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .82.(2017·高考全国卷甲)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏3.(2017·高考全国卷丙)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .84.(2017·高考全国卷甲)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则 k =1n1S k=__________. 5.(2017·高考全国卷丙)设等比数列{a n }满足a 1 + a 2 =-1, a 1-a 3 =-3,则a 4 = ________. 6.(2017·高考山东卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .7.(2017·高考天津卷)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).8.(2017·高考北京卷)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.专题7 不等式、推理与证明1.(2017·高考全国卷甲)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .92.(2017·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .93.(2017·高考山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x +2y 的最大值是( )A .0B .2C .5D .64.(2017·高考浙江卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)5.(2017·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A .23B .1 C.32D .36.(2017·高考全国卷乙)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.7.(2017·高考全国卷丙)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.专题8 立体几何1. (2017·高考全国卷乙)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .162.(2017·高考全国卷甲)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π3.(2017·高考全国卷丙)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π44.(2017·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1B .π2+3C.3π2+1 D .3π2+35.(2017·高考全国卷丙)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°;其中正确的是________.(填写所有正确结论的编号)6.(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.7. (2017·高考全国卷乙)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A ­PB ­C 的余弦值.8.(2017·高考全国卷甲)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45° ,求二面角M -AB -D 的余弦值.9.(2017·高考全国卷丙)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.专题9 平面解析几何1.(2017·高考全国卷乙)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .102.(2017·高考全国卷甲)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3 C. 2D .2333.(2017·高考全国卷丙)已知双曲线C :x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A .x 28-y 210=1B .x 24-y 25=1C.x 25-y 24=1 D .x 24-y 23=14.(2017·高考全国卷丙)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63B .33C.23 D .135.(2017·高考全国卷乙)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.6.(2017·高考全国卷甲)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=____________.7.(2017·高考山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.8.(2017·高考全国卷乙)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.9.(2017·高考全国卷甲)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.(2017·高考全国卷丙)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.11. (2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.12.(2017·高考天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程.专题10 计数原理、概率、随机变量及其分布1.(2017·高考全国卷乙)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C.12D .π42.(2017·高考全国卷乙)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .353.(2017·高考全国卷甲)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种4.(2017·高考全国卷丙)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .805.(2017·高考山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A .518B .49C.59D .796.(2017·高考全国卷甲)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =________.7.(2017·高考浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)8.(2017·高考山东卷)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.9.(2017·高考全国卷乙)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性; (ii)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得x =116∑i =116x i =9.97,s =116∑i =116(x i -x )2=116⎝ ⎛⎭⎪⎪⎫∑i =116x 2i-16x 2≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.10.(2017·高考全国卷丙)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30) [30,35) [35,40)天数 2 16 36 25 7 4(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2017·高考山东卷)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .12.(2017·高考天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.专题11 统计、统计案例及算法初步1.(2017·高考全国卷乙)下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+22.(2017·高考全国卷甲)执行如图的程序框图,如果输入的a=-1,则输出的S=()A.2 B.3C.4 D.53.(2017·高考全国卷丙)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(2017·高考全国卷丙)执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4C.3 D.25.(2017·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1C.2 D.36.(2017·高考江苏卷)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.7.(2017·高考全国卷甲)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg, 新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg 箱产量≥50 kg旧养殖法新养殖法(3)0.01).附:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).8.(2017·高考北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)专题12 选考部分 选修4-4:坐标系与参数方程1.(2017·高考全国卷乙)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ,(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t ,(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .2.(2017·高考全国卷甲)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.3.(2017·高考全国卷丙)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt ,(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.4.(2017·高考江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设p 为曲线C 上的动点,求点P 到直线l 的距离的最小值.选修4—5:不等式选讲1.(2017·高考全国卷乙)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.2.(2017·高考全国卷甲)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.3.(2017·高考全国卷丙)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.4.(2017·高考江苏卷)已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8.数学理·参考答案与解析 专题1 集合与常用逻辑用语1.解析:选A.集合A ={x |x <1},B ={x |x <0},所以A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A.2.解析:选C.因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3},选择C.3.解析:选B.A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.解析:选A .因为m ,n 是非零向量,所以m ·n =|m |·|n |cos 〈m ,n 〉<0的充要条件是cos 〈m ,n 〉<0.因为λ<0,则由m =λn 可知m ,n 的方向相反,〈m ,n 〉=180°,所以cos 〈m ,n 〉<0,所以“存在负数λ,使得m =λn ”可推得“m ·n <0”;而由“m ·n <0”,可推得“cos 〈m ,n 〉<0”,但不一定推得“m ,n 的方向相反”,从而不一定推得“存在负数λ,使得m =λn ”.综上所述,“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件,故选A.5.解析:选C.因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C.6.解析:选A.法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”.故选A.法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12.故选A. 7.解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1. 答案:1专题2 函 数1.解析:选D.因为函数f (x )在(-∞,+∞)单调递减,且f (1)=-1,所以f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得-1≤x -2≤1,所以1≤x ≤3,故选D.2.解析:选C.由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e-1+1)=0,解得a =12.故选C.3.解析:选A.因为f (x )=3x-⎝⎛⎭⎫13x,且定义域为R ,所以f (-x )=3-x -⎝⎛⎭⎫13-x=⎝⎛⎭⎫13x-3x =-⎣⎡⎦⎤3x -⎝⎛⎫13x=-f (x ),即函数f (x )是奇函数.又y =3x在R 上是增函数,y =⎝⎛⎭⎫13x在R 上是减函数,所以f (x )=3x -⎝⎛⎭⎫13x在R 上是增函数.故选A.4.解析:选B.当0<m ≤1时,需满足1+m ≥(m -1)2,解得0≤m ≤3,故这时0<m ≤1.当m >1时,需满足(m -1)2≥1+m ,解得m ≥3或m ≤0,故这时m ≥3.综上可知,正实数m 的取值范围为(0,1]∪[3,+∞).5.解析:选B.f (x )=⎝⎛⎭⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝⎛⎭⎫-a 2=-a24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.6.解析:选A.根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x 2-x +3≥-⎝⎛⎭⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=⎝⎛⎭⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a .又x 2+2x ≥2,当且仅当x 2=2x ,即x =2时等号成立,所以a ≤2.综上,a 的取值范围是⎣⎡⎦⎤-4716,2.7.解析:当x >0时,f (x )=2x >1恒成立,当x -12>0,即x >12时,f ⎝⎛⎭⎫x -12=2x -12>1,当x -12≤0,即0<x ≤12时,f ⎝⎛⎭⎫x -12=x +12>12,则不等式f (x )+f ⎝⎛⎭⎫x -12>1恒成立.当x ≤0时,f (x )+f ⎝⎛⎭⎫x -12=x +1+x +12=2x +32>1,所以-14<x ≤0.综上所述,x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 8.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况, 在此范围内,x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m=q p,则10n =⎝⎛⎭⎫q p m,此时左边为整数,右边非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分, 且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点, 因此方程f (x )-lg x =0的解的个数为8.答案:89.解析:因为x ∈[1,4],所以x +4x∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 专题3 导数及其应用1.解析:选A.因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)·ex -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.2.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 3.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1). 4.解:(1)f (x )的定义域为(0,+∞).设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0.因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x .当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增.所以x=1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x .设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝⎛⎭⎫0,12时,h ′(x )<0;当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )>0.所以h (x )在⎝⎛⎭⎫0,12单调递减,在⎝⎛⎭⎫12,+∞单调递增.又h (e -2)>0,h ⎝⎛⎭⎫12<0,h (1)=0,所以h (x )在⎝⎛⎭⎫0,12有唯一零点x 0,在⎣⎡⎭⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝⎛⎭⎫0,12得f (x 0)<14. 因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.5.解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增.故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n 得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2,所以m 的最小值为3. 6.解:(1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎫x +a 32+b -a23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝⎛⎭⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a. 因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值;当a >3时,f ′(x )=0有两个相异的实根x 1=-a -a 2-3b3,x 2=-a +a 2-3b3.列表如下:x (-∞,x 1)x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) + 0 - 0 +f (x )极大值极小值故f (x )12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝⎛⎭⎫362,+∞时,g ′(t )>0,从而g (t )在⎝⎛⎭⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab9+2=0. 记f (x ),f ′(x )所有极值之和为h (a ),因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].专题4 三角函数与解三角形1.解析:选D.易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,故选D. 2.解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;。

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=( )A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为( )A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是( )A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为( )A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=( )A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

换元法-高考理科数学解题方法练习题

换元法-高考理科数学解题方法练习题

方法二换元法1.练高考1. 【2017课标3,理11】已知函数有唯一零点,则a=A.B.C.D.1【答案】C【解析】函数的零点满足,设,则,当时,,当时,,函数单调递减,当时,,函数单调递增,当时,函数取得最小值,设,当时,函数取得最小值,2. 【2017课标1,理11】设x、y、z为正数,且,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【答案】D【解析】令,则,,∴,则,,则,故选D.3. 【2017浙江,15】已知向量a,b满足则的最小值是________,最大值是_______.【答案】4,【解析】4.【2017课标II,理】已知函数,且。

(1)求;(2)证明:存在唯一的极大值点,且。

【答案】(1);(2)证明略。

【解析】(2)由(1)知,。

设,则。

当时,;当时,,所以在单调递减,在单调递增。

5.【2017课标3,理21】已知函数 .(1)若,求a的值;(2)设m为整数,且对于任意正整数n,求m的最小值. 【答案】(1);(2)【解析】试题分析:(1)由原函数与导函数的关系可得x=a是在的唯一最小值点,列方程解得;(2)利用题意结合(1)的结论对不等式进行放缩,求得,结合可知实数的最小值为6.【2016高考山东理数】平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.【答案】(Ⅰ);(Ⅱ)(i)见解析;(ii)的最大值为,此时点的坐标为【解析】(Ⅰ)由题意知,可得:.因为抛物线的焦点为,所以,所以椭圆C的方程为.(Ⅱ)(i)设,由可得,所以直线的斜率为,因此直线的方程为,即.设,联立方程得,由,得且,因此,将其代入得,因为,所以直线方程为.联立方程,得点的纵坐标为,即点在定直线上.(ii)由(i)知直线方程为,令得,所以,又,所以,,所以,令,则,当,即时,取得最大值,此时,满足,所以点的坐标为,因此的最大值为,此时点的坐标为.2.练模拟1.已知函数,其在区间上单调递增,则的取值范围为()A. B. C. D.【答案】C【解析】令,则,在区间上单调递增,转化为在上单调递增,又,当时,在恒成立,必有,可求得;当时,在恒成立,必有,与矛盾,所以此时不存在.故选C.2.不等式的解集为()A. B. C. D.【答案】C【解析】原不等式等价于,设解得.即,故选C.3.【2018届内蒙古赤峰市高三上学期期末】若,且,则__________.【答案】【解析】令,则.∵∴∴原式可化为,即∴,即∴∴故答案为.4.点在椭圆上,则点到直线的最大距离和最小距离分别为 .【答案】,.【解析】由于点在椭圆上,可设,则,即,所以当时,;当时,.5.【2018届上海市长宁、嘉定区高三一模】已知函数.(1)求证:函数是偶函数;(2)设,求关于的函数在时的值域的表达式;(3)若关于的不等式在时恒成立,求实数的取值范围.【答案】(1)见解析(2)(3).【解析】试题分析:(1)判断定义域是否关于原点对称,计算判断其与的关系;(2)令,故,换元得,转化为二次函数,分类讨论求其最值即可;(3))由,得,即恒成立,求其最值即可.试题解析:(1)函数的定义域为,对任意,,所以,函数是偶函数.(2),令,因为,所以,故,原函数可化为,,图像的对称轴为直线,当时,函数在时是增函数,值域为;当时,函数在时是减函数,在时是增函数,值域为.综上,(3)由,得,当时,,所以,所以,所以, 恒成立.令,则, ,由,得,所以, .所以, ,即的取值范围为.3.练原创1.若f (ln x )=3x +4,则f (x )的表达式为( )A .f (x )=3ln xB .f (x )=3ln x +4C .f (x )=3e xD .f (x )=3e x+4【答案】D【解析】令ln x =t ,则x =e t,故f (t )=3e t+4,得f (x )=3e x +4,故选D. 2.已知点A 是椭圆25x2+9y2=1上的一个动点,点P 在线段OA 的延长线上,且·=48,则点P 的横坐标的最大值为( )A .18B .15C .10 D.215【答案】C3.已知在数列中,,当时,其前项和满足. (Ⅰ) 求的表达式;(Ⅱ) 设,数列的前项和.证明【答案】 (1);(2)见解析.【解析】(1)当时,代入,得,由于,所以令=,则=2,所以是首项为,公差为2的等差数列∴,即,所以(2)∴所以4. 已知函数.(1)求证:函数的图象与轴恒有公共点;(2)当时,求函数的定义域;(3)若存在使关于的方程有四个不同的实根,求实数的取值范围.【答案】(1).(2)当时,;时,(3).【解析】(1)图象与轴恒有公共点.(2)要使函数有意义,需满足,即,当时,;时,(3)时,,令,是偶函数,只要讨论时函数图象与函数图象有两个公共点即可,以下只讨论时的情形图象恒过点,函数图象对称轴,①时,根据函数图象,与图象只有一个公共点,不符题意,舍去;②且时,单调递减,最大值为,图象与无交点,不符题意,舍去;③且时,只要最大值即可,解得;综上.。

2017高考题数学理真题汇编-正文(含答案)

2017高考题数学理真题汇编-正文(含答案)

2017高考题数学理真题分类汇编专题1 集合与常用逻辑用语1.(2017·高考全国卷乙)已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅2.(2017·高考全国卷甲)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}3.(2017·高考全国卷丙)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .04.(2017·高考北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.(2017·高考江苏卷)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a的值为________.专题2 函 数1.(2017·高考全国卷乙)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]2.(2017·高考全国卷丙)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A .-12B .13C.12D .13.(2017·高考北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数4.(2017·高考山东卷)已知当x ∈[0,1]时,函数y =(mx -1)2 的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞ )C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)5.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.(2017·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A .⎣⎡⎦⎤-4716,2 B .⎣⎡⎦⎤-4716,3916C .[-23,2]D .⎣⎡⎦⎤-23,3916 7.(2017·高考全国卷丙)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.8.(2017·高考江苏卷)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D x ,x ∉D ,其中集合D ={x |x =n -1n ,n ∈N *},则方程f (x )-lg x =0的解的个数是________.9.(2017·高考浙江卷)已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.专题3 导数及其应用1.(2017·高考全国卷甲)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .12.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是________.3.(2017·高考全国卷乙)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.4.(2017·高考全国卷甲)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. 5.(2017·高考全国卷丙)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n <m ,求m 的最小值. 6.(2017·高考江苏卷)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.专题4 三角函数与解三角形1.(2017·高考全国卷乙)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.(2017·高考全国卷丙)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减3.(2017·高考山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A4.(2017·高考天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π245.(2017·高考全国卷甲)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 6.(2017·高考浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.7.(2017·高考全国卷乙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.8.(2017·高考全国卷甲)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B 2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .9.(2017·高考全国卷丙)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.专题5 平面向量、数系的扩充与复数的引入1.(2017·高考全国卷乙)设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 42.(2017·高考全国卷甲)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i 3.(2017·高考全国卷甲)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-14.(2017·高考全国卷丙)设复数z 满足(1+i)z =2i ,则|z |=( ) A .12B .22C. 2 D .25.(2017·高考全国卷丙)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .26.(2017·高考北京卷)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)7.(2017·高考山东卷)已知a ∈R ,i 是虚数单位.若z =a +3i ,z ·z =4,则a =( ) A .1或-1 B .7或-7 C .- 3D . 38. (2017·高考浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 39.(2017·高考全国卷乙)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ________ .10.(2017·高考山东卷)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________11.(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.12.(2017·高考天津卷)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.专题6 数 列1.(2017·高考全国卷乙)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .82.(2017·高考全国卷甲)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏3.(2017·高考全国卷丙)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .84.(2017·高考全国卷甲)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则k =1n1S k =__________.5.(2017·高考全国卷丙)设等比数列{a n }满足a 1 + a 2 =-1, a 1-a 3 =-3,则a 4 = ________.6.(2017·高考山东卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .7.(2017·高考天津卷)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).8.(2017·高考北京卷)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.专题7 不等式、推理与证明1.(2017·高考全国卷甲)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .92.(2017·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .93.(2017·高考山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x +2y 的最大值是( )A .0B .2C .5D .64.(2017·高考浙江卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)5.(2017·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A .23B .1 C.32D .36.(2017·高考全国卷乙)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.7.(2017·高考全国卷丙)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.专题8 立体几何1. (2017·高考全国卷乙)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .162.(2017·高考全国卷甲)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π3.(2017·高考全国卷丙)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π44.(2017·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1B .π2+3C.3π2+1 D .3π2+35.(2017·高考全国卷丙)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°;其中正确的是________.(填写所有正确结论的编号)6.(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.7. (2017·高考全国卷乙)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A ­PB ­C 的余弦值.8.(2017·高考全国卷甲)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45° ,求二面角M -AB -D 的余弦值.9.(2017·高考全国卷丙)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.专题9 平面解析几何1.(2017·高考全国卷乙)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .102.(2017·高考全国卷甲)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3 C. 2D .2333.(2017·高考全国卷丙)已知双曲线C :x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A .x 28-y 210=1B .x 24-y 25=1C.x 25-y 24=1 D .x 24-y 23=14.(2017·高考全国卷丙)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63B .33C.23 D .135.(2017·高考全国卷乙)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.6.(2017·高考全国卷甲)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=____________.7.(2017·高考山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.8.(2017·高考全国卷乙)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.9.(2017·高考全国卷甲)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.(2017·高考全国卷丙)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.11. (2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.12.(2017·高考天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 专题10 计数原理、概率、随机变量及其分布1.(2017·高考全国卷乙)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C.12D .π42.(2017·高考全国卷乙)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .353.(2017·高考全国卷甲)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种4.(2017·高考全国卷丙)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80B .-40C .40D .805.(2017·高考山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A .518B .49C.59D .796.(2017·高考全国卷甲)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =________.7.(2017·高考浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)8.(2017·高考山东卷)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. 9.(2017·高考全国卷乙)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性; (ii)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得x =116∑i =116x i =9.97,s =116∑i =116(x i -x )2=116⎝ ⎛⎭⎪⎪⎫∑i =116x 2i -16x 2≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.10.(2017·高考全国卷丙)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15)[15,20) [20,25) [25,30) [30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2017·高考山东卷)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 12.(2017·高考天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.专题11 统计、统计案例及算法初步1.(2017·高考全国卷乙)下面程序框图是为了求出满足3n -2n >1 000的最小偶数n ,那么在和 两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C.A≤1 000和n=n+1D.A≤1 000和n=n+22.(2017·高考全国卷甲)执行如图的程序框图,如果输入的a=-1,则输出的S=()A.2 B.3C.4 D.53.(2017·高考全国卷丙)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(2017·高考全国卷丙)执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4C.3 D.25.(2017·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1C.2 D.36.(2017·高考江苏卷)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.7.(2017·高考全国卷甲)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50 kg, 新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)(精确到0.01). 附:P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).8.(2017·高考北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)专题12 选考部分 选修4-4:坐标系与参数方程1.(2017·高考全国卷乙)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ,(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t ,(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .2.(2017·高考全国卷甲)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 3.(2017·高考全国卷丙)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt ,(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k ,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.4.(2017·高考江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设p 为曲线C 上的动点,求点P 到直线l 的距离的最小值.选修4—5:不等式选讲1.(2017·高考全国卷乙)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 2.(2017·高考全国卷甲)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.3.(2017·高考全国卷丙)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.4.(2017·高考江苏卷)已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8.数学理·参考答案与解析 专题1 集合与常用逻辑用语1.解析:选A.集合A ={x |x <1},B ={x |x <0},所以A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A.2.解析:选C.因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3},选择C.3.解析:选B.A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.解析:选A .因为m ,n 是非零向量,所以m ·n =|m |·|n |cos 〈m ,n 〉<0的充要条件是cos 〈m ,n 〉<0.因为λ<0,则由m =λn 可知m ,n 的方向相反,〈m ,n 〉=180°,所以cos 〈m ,n 〉<0,所以“存在负数λ,使得m =λn ”可推得“m ·n <0”;而由“m ·n <0”,可推得“cos 〈m ,n 〉<0”,但不一定推得“m ,n 的方向相反”,从而不一定推得“存在负数λ,使得m =λn ”.综上所述,“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件,故选A.5.解析:选C.因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C.6.解析:选A.法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”.故选A. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12.故选A. 7.解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1. 答案:1专题2 函 数1.解析:选D.因为函数f (x )在(-∞,+∞)单调递减,且f (1)=-1,所以f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得-1≤x -2≤1,所以1≤x ≤3,故选D.2.解析:选C.由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e-1+1)=0,解得a =12.故选C.3.解析:选A.因为f (x )=3x-⎝⎛⎭⎫13x,且定义域为R ,所以f (-x )=3-x -⎝⎛⎭⎫13-x=⎝⎛⎭⎫13x-3x=-⎣⎡⎦⎤3x -⎝⎛⎭⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝⎛⎭⎫13x在R 上是减函数,所以f (x )=3x-⎝⎛⎭⎫13x在R 上是增函数.故选A.4.解析:选B.当0<m ≤1时,需满足1+m ≥(m -1)2,解得0≤m ≤3,故这时0<m ≤1.当m >1时,需满足(m -1)2≥1+m ,解得m ≥3或m ≤0,故这时m ≥3.综上可知,正实数m 的取值范围为(0,1]∪[3,+∞).5.解析:选B.f (x )=⎝⎛⎭⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝⎛⎭⎫-a 2=-a24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.6.解析:选A.根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x 2-x +3≥-⎝⎛⎭⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x2+3+a =0,Δ=⎝⎛⎭⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a .又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2.综上,a 的取值范围是⎣⎡⎦⎤-4716,2. 7.解析:当x >0时,f (x )=2x >1恒成立,当x -12>0,即x >12时,f ⎝⎛⎭⎫x -12=2x -12>1,当x-12≤0,即0<x ≤12时, f ⎝⎛⎭⎫x -12=x +12>12,则不等式f (x )+f ⎝⎛⎭⎫x -12>1恒成立.当x ≤0时,f (x )+f ⎝⎛⎭⎫x -12=x +1+x +12=2x +32>1,所以-14<x ≤0.综上所述,x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 8.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况, 在此范围内,x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m=q p ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边非整数,矛盾,因此lg x ∉Q ,故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点, 因此方程f (x )-lg x =0的解的个数为8.答案:89.解析:因为x ∈[1,4],所以x +4x∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 专题3 导数及其应用1.解析:选A.因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,所以-2是x 2+(a+2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)·e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.2.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 3.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1). 4.解:(1)f (x )的定义域为(0,+∞).设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0.因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x .当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增.所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x . 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝⎛⎭⎫0,12时,h ′(x )<0;当x ∈⎝⎛⎭⎫12,+∞时,h ′(x )>0.所以h (x )在⎝⎛⎭⎫0,12单调递减,在⎝⎛⎭⎫12,+∞单调递增.又h (e -2)>0,h ⎝⎛⎭⎫12<0,h (1)=0,所以h (x )在⎝⎛⎭⎫0,12有唯一零点x 0,在⎣⎡⎭⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝⎛⎭⎫0,12得f (x 0)<14. 因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.5.解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增.故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n 得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2,所以m 的最小值为3.6.解:(1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝⎛⎭⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a. 因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值;当a >3时,f ′(x )=0有两个相异的实根x 1=-a -a 2-3b 3,x 2=-a +a 2-3b3.列表如下:故f (12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝⎛⎭⎫362,+∞时,g ′(t )>0,从而g (t )在⎝⎛⎭⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ),因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].专题4 三角函数与解三角形1.解析:选D.易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,故选D. 2.解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,23π上单调递减,在⎝⎛⎭⎫23π,π上单调递增,故D 不正确.所以选D. 3.解析:选A.由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.解析:选A.由f ⎝⎛⎭⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z ),① 由f ⎝⎛⎭⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z ),② 由①②得ω=-23+43(k ′-2k ),又最小正周期T =2πω>2π,所以0<ω<1,ω=23,又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.5.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:16.解析:在△ABC 中,AB =AC =4,BC =2,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =42+22-422×4×2=14,则sin ∠ABC =sin ∠CBD =154,所以S △BDC =12BD ·BC sin ∠CBD =152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB =cos ∠ABC +12=104.。

2017-浙江-高考-数学试题(理-含答案)

2017-浙江-高考-数学试题(理-含答案)

数 学(理科)选择题部分(共50分)1.(2017年浙江)已知集合P={x|-1<x <1},Q={0<x <2},那么P ∪Q=( ) A .(1,2)B .(0,1)C .(-1,0)D .(1,2)1.A 【解析】利用数轴,取P ,Q 所有元素,得P ∪Q=(-1,2).2. (2017年浙江)椭圆x 29+y 24=1的离心率是( )A .133B .53C .23D .592.B 【解析】e=9-43=53.故选B .3. (2017年浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )(第3题图) A .12π+ B .32π+ C .312π+ D .332π+ 3. A 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为V=13×3×(π×122+12×2×1)=π2+1.故选A.4. (2017年浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x≥0,x+y-3≥0,x-2y≤0,则z=x+2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)4. D 【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .5. (2017年浙江)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关5. B 【解析】因为最值f (0)=b ,f (1)=1+a+b ,f (-a 2)=b-a 24中取,所以最值之差一定与b 无关.故选B.6. (2017年浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. C 【解析】由S 4 + S 6-2S 5=10a 1+21d-2(5a 1+10d )=d ,可知当d >0时,有S 4+S 6-2S 5>0,即S 4 + S 6>2S 5,反之,若S 4 + S 6>2S 5,则d >0,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .7. (2017年浙江)函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )(第7题图)7. D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.故选D.8. (2017年浙江)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2)D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)8. A 【解析】∵E (ξ1)=p 1,E (ξ2)=p 2,∴E (ξ1)<E (ξ2),∵D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2),∴D (ξ1)- D (ξ2)=(p 1-p 2)(1-p 1-p 2)<0.故选A .9. (2017年浙江)如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,BQ QC =CRRA =2,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P的平面角为α,β,γ,则( )(第9题图) A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α9. B 【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此α<γ<β.故选B.10. (2017年浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC与BD 交于点O ,记I 1=→OA ·→OB ,I 2=→OB ·→OC ,I 3=→OC ·→OD,则( )(第10题图) A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 310. C 【解析】因为∠AOB=∠COD >90°,OA <OC ,OB <OD ,所以→OB ·→OC >0>→OA ·→OB >→OC ·→OD .故选C.非选择题部分(共100分)11. (2017年浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= . 11. 332 【解析】将正六边形分割为6个等边三角形,则S 6=6×(12×1×1×sin 60°)=332.12. (2017年浙江)已知a ,b ∈R ,(a+bi )2=3+4i (i 是虚数单位)则a 2+b 2=___________,ab =___________.12.5 2 【解析】由题意可得a 2-b 2+2abi=3+4i ,则⎩⎨⎧a 2-b 2=3,ab=2,解得⎩⎨⎧a 2=4,b 2=1,则a 2+b 2=5,ab=2.13. (2017年浙江)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,,则a 4=________,a 5=________.13. 16 4 【解析】由二项式展开式可得通项公式为Cr 3x r Cm 2·22-m = Cr 3·Cm 2·22-m ·x r+m ,分别取r=0,m=1和r=1,m=0可得a4=4+12=16,取r=m,可得a5=1×22=4.14. (2017年浙江)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是___________,cos∠BDC=___________.14. 152104【解析】取BC中点E,由题意,AE⊥BC,△ABE中,cos∠ABE=BEAB=14,∴cos ∠DBC=-14,sin∠DBC=1-116=154,∴S△BCD=12×BD×BC×sin∠DBC=152.∵∠ABC=2∠BDC,∴cos∠ABC=cos 2∠BDC=2cos2∠BDC-1=14,解得cos∠BDC=104或cos∠BDC=-104(舍去).综上可得,△BCD面积为152,cos∠BDC=10 4.15. (2017年浙江)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是_______.15. 4,2 5 【解析】设向量a,b的夹角为θ,由余弦定理有|a-b|=12+22-2×1×2×cos θ=5-4cos θ,|a+b|=12+22-2×1×2×cos (π-θ)=5+4cos θ,则|a+b|+|a-b|=5+4cos θ+5-4cos θ,令y=5+4cos θ+5-4cos θ,则y2=10+225-16cos2θ∈[16,20],据此可得(|a+b|+|a-b|)max=20 =25,(|a+b|+|a-b|)min=16=4,即|a+b|+|a-b|的最小值是4,最大值是25.16. (2017年浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)16. 660 【解析】由题意可得,“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为C4 8×C1 4×C1 3(种)方法,其中“服务队中没有女生”的选法有C4 6×C1 4×C1 3(种)方法,则满足题意的选法有C4 8×C1 4×C1 3- C4 6×C1 4×C1 3=660(种).17. (2017年浙江)已知a ∈R ,函数f (x )=|x+4x -a|+a 在区间[1,4]上的最大值是5,则a 的取值范围是___________.17.(-∞,92]【解析】x ∈[1,4],x+4x ∈[4,5],分类讨论:①当a≥5时,f (x )=a-x-4x +a=2a-x-4x ,函数的最大值2a-4=5,∴a=92,舍去;②当a≤4时,f (x )=x+4x -a+a=x+4x≤5,此时命题成立;③当4<a <5时,[f(x)]max =max{|4-a|+a,|5-a|+a},则⎩⎨⎧|4-a|+a≥|5-a|+a ,|4-a|+a=5或⎩⎨⎧|4-a|+a <|5-a|+a ,|4-a|+a=5解得a=92或a <92.综上可得,实数a 的取值范围是(-∞,92].18. (2017年浙江)已知函数f (x )=sin 2x –cos 2x –23sin x cos x (x ∈R ). (1)求f (2π3)的值.(2)求f (x )的最小正周期及单调递增区间. 18.解:(1)由sin2π3=32,cos 2π3=-12, f (2π3)=(32)2-(-12)2-23×32×(-12).得f (2π3)=2.(2)由cos 2x=cos 2x-sin 2x 与sin 2x=2sin xcos x , 得f(x)=-cos 2x-3sin 2x=-2sin(2x+π6).所以f(x)的最小正周期是π.由正弦函数的性质得π2+2kπ≤2x+π6≤3π2+2kπ,k ∈Z ,解得π6+kπ≤x≤3π2+2kπ,k ∈Z ,所以,f (x )的单调递增区间是[π6+kπ,3π2+2kπ],k ∈Z .19. (2017年浙江)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(第19题图)(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 19.解:(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF=12AD ,又因为BC ∥AD ,BC=12AD ,所以EF ∥BC 且EF=BC , 即四边形BCEF 为平行四边形, 所以CE ∥BF , 因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N ,连接PN 交EF 于点Q ,连接MQ. 因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ ∥CE. 由△PAD 为等腰直角三角形得PN ⊥AD.PABCDE由DC ⊥AD ,N 是AD 的中点得BN ⊥AD . 所以AD ⊥平面PBN , 由BC //AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD=2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt △MQH 中,QH=14,MQ =2,所以sin ∠QMH =28, 所以直线CE 与平面PBC 所成角的正弦值是28. 20. (2017年浙江)已知函数f (x )=(x –2x-1)e -x (x≥12).(1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围.20.解:(1)因为(x –2x-1)′=1-12x-1,(e -x )′=-e -x , 所以f (x )=(1-12x-1)e -x -(x –2x-1)e -x =(1-x)(2x-1-2)e -x 2x-1(x >12).(2)由f′(x )=(1-x)(2x-1-2)e -x2x-1=0解得x=1或x=52.因为又f (x )=12(2x-1-1)2e -x ≥0,所以f (x )在区间[12,+∞)上的取值范围是[0,12e -12].21. (2017年浙江)如图,已知抛物线x 2=y ,点A (-12,14),B (32,94),抛物线上的点p(x,y)(-12<x <32).过点B 作直线AP 的垂线,垂足为Q .(第19题图)(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值. 21. 解:(1)设直线AP 的斜率为k , k=x 2-14x+12=x-12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx-y+12k+14=0,x+ky-94k-32=0,解得点Q 的横坐标是x Q =-k 2+4k+32(k 2+1).因为|P A |=1+k 2(x+12)=1+k 2(k+1),|PQ |=1+k 2(xQ -x)=-(k-1)(k+1)2k 2+1, 所以|PA|·|PQ|=-(k-1)(k+1)3. 令f(k)=-(k-1)(k+1)3, 因为f′(k)=-(4k-2)(k+1)2,所以f (k )在区间(-1,12)上单调递增,(12,1)上单调递减,因此当k =12时,|PA|·|PQ|取得最大值2716.22. (2017年浙江) 已知数列{x n }满足x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1− x n ≤x n x n +12;(3)12n-1≤x n ≤12n-2.22.解:(1)用数学归纳法证明x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若x k+1≤0,则0<x k = x k +1+ln (1+ x k +1)≤0,矛盾,故x k +1>0. 因此x n >0(n ∈N *).所以x n =x n+1+ln (1+x n+1)>x n+1, 因此0<x n+1<x n (n ∈N *). (2)由x n =x n+1+ln (1+x n+1),得x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln (1+x n+1). 记函数f (x )=x2-2x+(x+2)ln (1+x )(x≥0), f′(x )=2x 2+x x+1+ln (1+x )>0(x >0),函数f (x )在[0,+∞]上单调递增,所以f (x )≥f (0)=0, 因此x n+12-2x n+1+(x n+1+2)ln (1+x n+1)=f (x n+1)≥0, 故2x n+1-x n ≤x n x n +12(n ∈N *). (3)因为x n =x n+1+ln (1+x n+1)≤x n+1+x n+1=2x n+1, 所以x n ≥12n-1,由x n x n +12≥2x n+1-x n ,得1x n+1-12≥2(1x n -12)>0, 所以1x n -12≥2(1x n-1-12)≥…≥2n-1(1x 1-12)=2n-2,故x n ≤12n-2.1 2n-1≤x n≤12n-2(n∈N*).综上,。

2017年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)

2017年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2。

设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4。

如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种7。

甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8。

执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C的离心率为( )A .2 BCD10。

(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档

(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档

2017年高考数学理试题分类汇编:三角函数二填空选择题【答案】【答案】【解析】1. (2017年天津卷文)设函数f(X )2sin( x ),x R ,其中o’ 丨兀若 f(5n )2,f0,且f(x)的 最小正周期大2 n ,则2 3 1 3n12 11 n 24(B ) (D)2 3 1 311 n 72 7n 24【解析】由题意得58 11 82匕k2,其中k i ,k 2所以3(k 22kJ -,又 T —23,所以1,所以2k 1,由|也,故选A .2. (2017年天津卷理 )设函数f(x) 2si n(R ,其中)0,且f (x)的最小正周期大于2 ,则(A )12 (B )12 24(D)24【解析】由题意81182k 1 k2所以 2k 11 12 ,3.( 2017年全国川卷文22,其中 k 1,k 2 Z,所以故选A.ABC 内角 3(k2A, B,C 的对边分别为a,b,c ,已知2kJ ,又T 0■,所以015根据正弦定理有:sin 600sin B2 n已知曲线 C 1: y =cos x ,C 2: y =sin (2x +),则下面结论正确的是3冗A •把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2450 A7504.(2017年新课标I ) 9.A.4B.2C.D.B .把C 1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移n 个单位长度,得到曲线12 C 2C . 把C 1上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向右平移n个单位长度,得到曲线6C 2D . 把C 上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向左平移n个单位长度,得到曲线12C2【答案】D6.(2017年浙江卷)14 .已知△ABC , AB = AC =4 , BC =2.点D 为AB 延长线上一点,BD=2,连结CD ,贝U △BDC 的面积是 _____ cos Z BDC = _____ ,8.( 2017年新课标n 文)16.△ ABC 的内角 A,B,C 的对边分别为 a,b,c 若2b cosB= a cosC+c cosA,则B=— 39. ( 2017年新课标n 文)3.函数f x = sin ( 2x+—)的最小正周期为 (C )3【解析】f x 1 cos 2 x , 3cosx3 cos 2x \ 3 cosx -44cosx乜21, x 0,:那么cosx 0,1,当 cosx3时函数取得最大值222【答案】11.【解析】取 BC 中点E , DC 中点F , 由题意:AE BC,BF CD , .15 △ ABE 中,BE 1DBC1DBC 1cos ABCcos一 ,siL 1—AB 44:164SA BCD5. ( 2017年新课标n 卷理)14•函数f x .2sin x 3 cosx 0,2的最大值是-BD BC sin DBC .2 22又 cos DBC 1 2s in DBF1, sin DBF 410 4cos BDC sin DBF综上可得,△ BCD 面积为cos BDC-10 47.(2017年新课标n 文).13函数f x =2cosxsinx 的最大值为10.(2017年浙江卷)11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率 n,理论上能把n 的值计算到任意精度.【解析】本题选择D 选项.4]! tan( -)ta^ 1 丄 4 4 614.(2017年江苏卷 5. tan()若15. (2017年新课标I 文)11 . △ABC 的内角A 、B 、C 的对边分别为 a 、b 、c 。

2017高考题数学理真题汇编-答案

2017高考题数学理真题汇编-答案

数学理·参考答案与解析 专题1 集合与常用逻辑用语1.解析:选A.集合A ={x |x <1},B ={x |x <0},所以A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A.2.解析:选C.因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3},选择C.3.解析:选B.A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.解析:选A .因为m ,n 是非零向量,所以m ·n =|m |·|n |cos 〈m ,n 〉<0的充要条件是cos 〈m ,n 〉<0.因为λ<0,则由m =λn 可知m ,n 的方向相反,〈m ,n 〉=180°,所以cos 〈m ,n 〉<0,所以“存在负数λ,使得m =λn ”可推得“m ·n <0”;而由“m ·n <0”,可推得“cos〈m ,n 〉<0”,但不一定推得“m ,n 的方向相反”,从而不一定推得“存在负数λ,使得m =λn ”.综上所述,“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件,故选A.5.解析:选C.因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C.6.解析:选A.法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故选A.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12.故选A. 7.解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1.答案:1专题2 函 数1.解析:选D.因为函数f (x )在(-∞,+∞)单调递减,且f (1)=-1,所以f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得-1≤x -2≤1,所以1≤x ≤3,故选D.2.解析:选C.由f (x )=x 2-2x +a (e x -1+e -x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e -(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e -x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a =12.故选C.3.解析:选A.因为f (x )=3x -⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x-3x =-⎣⎢⎡⎦⎥⎤3x -⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x在R 上是减函数,所以f (x )=3x -⎝ ⎛⎭⎪⎫13x在R 上是增函数.故选A. 4.解析:选B.当0<m ≤1时,需满足1+m ≥(m -1)2,解得0≤m ≤3,故这时0<m ≤1.当m >1时,需满足(m -1)2≥1+m ,解得m ≥3或m ≤0,故这时m ≥3.综上可知,正实数m 的取值范围为(0,1]∪[3,+∞).5.解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.6.解析:选A.根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x 2-x +3≥-⎝ ⎛⎭⎪⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x2+3+a =0,Δ=⎝ ⎛⎭⎪⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a .又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-4716,2. 7.解析:当x >0时,f (x )=2x >1恒成立,当x -12>0,即x >12时,f ⎝ ⎛⎭⎪⎫x -12=2x -12>1,当x -12≤0,即0<x ≤12时,f ⎝ ⎛⎭⎪⎫x -12=x +12>12,则不等式f (x )+f ⎝ ⎛⎭⎪⎫x -12>1恒成立.当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x +12=2x +32>1,所以-14<x ≤0.综上所述,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞8.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况, 在此范围内,x ∈Q 且x ∉Z 时,设x =q p,q ,p ∈N *,p ≥2且p ,q 互质,若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10nm =qp ,则10n =⎝ ⎛⎭⎪⎫q p m,此时左边为整数,右边非整数,矛盾,因此lg x ∉Q ,故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x =0的解的个数为8.答案:89.解析:因为x ∈[1,4],所以x +4x∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,所以a =92(矛盾),故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,92.答案:⎝⎛⎦⎥⎤-∞,92专题3 导数及其应用1.解析:选A.因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)·e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.2.解析:由f (x )=x 3-2x +e x -1e x,得f (-x )=-x 3+2x +1e x-e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1e x≥3x 2-2+2e x ·1e x=3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12.答案:⎣⎢⎡⎦⎥⎤-1,123.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+lna .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.综上,a 的取值范围为(0,1). 4.解:(1)f (x )的定义域为(0,+∞).设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0.因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x.当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增.所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x . 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0.所以h (x )在⎝ ⎛⎭⎪⎫0,12单调递减,在⎝ ⎛⎭⎪⎫12,+∞单调递增. 又h (e -2)>0,h⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e-2.所以e -2<f (x 0)<2-2.5.解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意;②若a >0,由f ′(x )=1-a x=x -a x知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增.故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n 得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2,所以m 的最小值为3. 6.解:(1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23.当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a .因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a(27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值;当a >3时,f ′(x )=0有两个相异的实根x 1=-a -a 2-3b3,x 2=-a +a 2-3b3.列表如下:故f (12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,ba =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝ ⎛⎭⎪⎪⎫362,+∞时,g ′(t )>0,从而g (t )在⎝ ⎛⎭⎪⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33,故g (aa )>g (33)=3,即b a>3.因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab9+2=0. 记f (x ),f ′(x )所有极值之和为h (a ),因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].专题4 三角函数与解三角形1.解析:选D.易知C 1:y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,故选D.2.解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝ ⎛⎭⎪⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝ ⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,23π上单调递减,在⎝ ⎛⎭⎪⎫23π,π上单调递增,故D 不正确.所以选D.3.解析:选A.由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cosC =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.解析:选A.由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z ),①由f ⎝ ⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z ),②由①②得ω=-23+43(k ′-2k ),又最小正周期T =2πω>2π,所以0<ω<1,ω=23,又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.5.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:16.解析:在△ABC 中,AB =AC =4,BC =2,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14,则sin ∠ABC =sin ∠CBD =154,所以S △BDC =12BD ·BC sin ∠CBD =152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB =cos ∠ABC +12=104.答案:1521047.解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A.由正弦定理得12sin C sin B =sin A 3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A ,即bc =8.由余弦定理得b 2+c 2-bc =9, 即(b +c )2-3bc =9, 得b +c =33.故△ABC 的周长为3+33.8.解:(1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ). 上式两边平方,整理得 17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.9.解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos2π3, 即c 2+2c -24=0.解得c =-6(舍去),c =4. (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为3.专题5 平面向量、数系的扩充与复数的引入1.解析:选B.设复数z =a +b i(a ,b ∈R ),对于p 1,因为1z =1a +b i =a -b ia 2+b 2∈R ,所以b =0,所以z ∈R ,所以p 1是真命题;对于p 2,因为z 2=(a +b i)2=a 2-b 2+2ab i ∈R ,所以ab =0,所以a =0或b =0,所以p 2不是真命题;对于p 3,设z 1=x +y i(x ,y ∈R ),z 2=c +d i(c ,d ∈R ),则z 1z 2=(x +y i)(c +d i)=cx -dy +(dx +cy )i ∈R ,所以dx +cy =0,取z 1=1+2i ,z 2=-1+2i ,z 1≠z -2,所以p 3不是真命题;对于p 4,因为z =a +b i ∈R ,所以b =0,所以z -=a -b i =a ∈R ,所以p 4是真命题.故选B.2.解析:选D.3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,选择D.3.解析:选B.如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2(y -32)2-32,当x =0,y =32时,PA →·(PB →+PC →)取得最小值,为-32,选择B.4.解析:选C.z =2i1+i =2i (1-i )(1+i )(1-i )=i(1-i)=1+i ,所以|z |= 2.5.解析:选A.以A 为坐标原点,AB ,AD 所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,圆C :(x -1)2+(y -2)2=45,因为P 在圆C 上, 所以P ⎝ ⎛⎭⎪⎪⎫1+255cos θ,2+255sin θ,AB →=(1,0),AD →=(0,2),AP →=λAB →+μAD →=(λ,2μ),所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3,tan φ=2,选A. 6.解析:选B.因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a+1,1-a ),又此点在第二象限,所以⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1,故选B.7.解析:选A.法一:由题意可知z =a -3i ,所以z ·z =(a +3i)(a -3i)=a 2+3=4,故a =1或-1.法二:z ·z =|z |2=a 2+3=4,故a =1或-1.8.解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2,故选C.9.解析:易知|a +2b |=|a |2+4a·b +4|b |2=4+4×2×1×12+4=23.答案:2310.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12, 解得λ=33.答案:3311.解析:法一:(|a +b |+|a -b |)2=(a +b )2+(a -b )2+2|a +b |·|a -b |=2a 2+2b 2+2|a +b |·|a -b |=10+2|a +b |·|a -b |,而|a +b |·|a -b |≥|(a +b )·(a -b )|=|a 2-b 2|=3,所以(|a +b |+|a -b |)2≥16,即|a +b |+|a -b |≥4,即|a +b |+|a -b |的最小值为4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为25.法二:由向量三角不等式得,|a +b |+|a -b |≥|(a +b )-(a -b )|=|2b |=4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为25.答案:4 2 5 12.解析:AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.又AB →·AC →=3×2×12=3,所以AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(-AB →+λAC →)=-13AB →2+⎝ ⎛⎭⎪⎫13λ-23AB →·AC →+23λAC →2 =-3+3⎝ ⎛⎭⎪⎫13λ-23+23λ×4=113λ-5=-4,则λ=311. 答案:311专题6 数 列1.解析:选C.设等差数列{a n }的公差为d ,所以⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,所以d =4,故选C. 2.解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得a 1(1-27)1-2=381,解得a 1=3,选择B.3.解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2,又a 1=1,所以d 2+2d =0,又d ≠0,则d =-2,所以a 6=a 1+5d =-9,所以{a n }前6项的和S 6=1-92×6=-24,故选A.4.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意,⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +15.解析:设等比数列{a n }的公比为q ,则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-86.解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.7.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0.又因为q >0,解得q =2. 所以,b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8①.由S 11=11b 4,可得a 1+5d =16②, 联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8. 得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.8.解:(1)c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0, 所以b k -na k 关于k ∈N *单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n . 所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1, 所以{c n }是等差数列.(2)证明:设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n=b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),当d 2>nd 1时,b 1-a 1n ,当d 2≤nd 1时.①当d 1>0时, 取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2,因此c n =b 1-a 1n .此时,c m ,c m +1,c m +2,…是等差数列. ②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1).此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时, 当n >d 2d 1时,有nd 1<d 2.所以c n n=b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c n n>M .专题7 不等式、推理与证明1.解析:选A.法一:作出不等式组⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0对应的可行域,如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15,选择A.法二:易求可行域顶点A (0,1),B (-6,-3),C (6,-3),分别代入目标函数,求出对应的z 的值依次为1,-15,9,故最小值为-15.2.解析:选D.不等式组所表示的平面区域如图中阴影部分所示,是以点A (1,1),B (3,3),C (3,-1)为顶点的三角形及其内部.当直线z =x +2y 经过点B 时,x +2y 取得最大值,所以z max =3+2×3=9,故选D. 3.解析:选C.x ,y 满足的约束条件对应的平面区域如图中阴影部分所示,将直线y =-x 2+z2进行平移,显然当该直线过点A (-3,4)时z 取得最大值,z max =-3+8=5.4.解析:选D.作出不等式组所表示的平面区域如图中阴影部分所示,由z =x +2y ,得y =-12x +z 2,所以z 2是直线y =-12x +z 2在y 轴上的截距,根据图形知,当直线y =-12x +z 2过A 点时,z2取得最小值.由⎩⎪⎨⎪⎧x -2y =0,x +y -3=0,得x =2,y =1,即A (2,1),此时,z =4,所以z ≥4,故选D.5.解析:选D.作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3,选项D 符合.6.解析:画出不等式组⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域如图中阴影部分所示,由可行域知,当直线y =32x -z 2过点A 时,在y 轴上的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +2y =1,2x +y =-1,解得⎩⎪⎨⎪⎧x =-1,y =1.所以z min =-5.答案:-57.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-1专题8 立体几何1.解析:选B.由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.2.解析:选B.法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π. 法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.3.解析:选B.设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.4.解析:选A.由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几何体的体积V =13×12π×3+13×12×2×1×3=π2+1,故选A.5.解析:由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1, 则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD →的方向为x 轴正方向,CB →的方向为y 轴正方向,CA →的方向为z 轴正方向建立空间直角坐标系.则D (1,0,0),A (0,0,1),直线a 的单位方向向量a =(0,1,0),|a |=1.B 点起始坐标为(0,1,0),直线b 的单位方向向量b =(1,0,0),|b |=1. 设B 点在运动过程中的坐标B ′(cos θ,sin θ,0), 其中θ为CB ′→与CD →的夹角,θ∈[0,2π).那么AB ′在运动过程中的向量AB ′→=(cos θ,sin θ,-1),|AB ′→|=2.设直线AB ′与a 所成的夹角为α∈⎣⎢⎡⎦⎥⎤0,π2,cos α=|(cos θ,sin θ,-1)·(0,1,0)||a ||AB ′→|=22|sin θ|∈⎣⎢⎢⎡⎦⎥⎥⎤0,22.故α∈⎣⎢⎡⎦⎥⎤π4,π2,所以③正确,④错误.设直线AB ′与b 所成的夹角为β,则β∈⎣⎢⎡⎦⎥⎤0,π2,cos β=|AB ′→·b ||b ||AB ′→|=|(cos θ,sin θ,-1)·(1,0,0)||b ||AB ′→|=22|cos θ|.当AB ′与a 成60°角时,α=π3,|sin θ|=2cos α=2cos π3=2×12=22. 因为cos 2θ+sin 2θ=1, 所以|cos θ|=22. 所以cos β=22|cos θ|=12. 因为β∈⎣⎢⎡⎦⎥⎤0,π2,所以β=π3,此时AB ′与b 成60°角. 所以②正确,①错误. 答案:②③6.解析:由给定的三视图可知V =1×2×1+2×14×π×12×1=2+π2.答案:2+π27.解:(1)由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF ⊥AD ,垂足为F.由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,FA →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系F ­xyz .由(1)及已知可得A ⎝ ⎛⎭⎪⎪⎫22,0,0,P ⎝ ⎛⎭⎪⎪⎫0,0,22,B ⎝ ⎛⎭⎪⎪⎫22,1,0,C ⎝ ⎛⎭⎪⎪⎫-22,1,0.所以PC →=⎝ ⎛⎭⎪⎪⎫-22,1,-22,CB →=(2,0,0),PA →=⎝ ⎛⎭⎪⎪⎫22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的法向量,则 ⎩⎨⎧n ·PC→=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面PAB 的法向量, 则⎩⎨⎧m ·PA →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.可取m =(1,0,1).则cos 〈n ,m 〉=n ·m|n ||m |=-33.所以二面角A ­PB ­C 的余弦值为-33.8.解:(1)取PA 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD ,又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z 2=22,即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎪⎫1-22,1,62,从而AM →=⎝ ⎛⎭⎪⎪⎫1-22,1,62.设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎨⎧m ·AM →=0,m ·AB →=0,即⎩⎪⎨⎪⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n|m ||n |=105.因此二面角M ­AB ­D 的余弦值为105.9.解:(1)由题设可得,△ABD ≌△CBD ,从而AD =DC . 又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于△ABC 是正三角形,故BO ⊥AC . 所以∠DOB 为二面角D ­AC ­B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长,建立如图所示的空间直角坐标系O ­xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎪⎪⎫0,32,12.故AD →=(-1,0,1),AC →=(-2,0,0),AE →=⎝⎛⎭⎪⎪⎫-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎨⎧n ·AD→=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0.可取n =⎝ ⎛⎭⎪⎪⎫1,33,1. 设m 是平面AEC 的法向量,则⎩⎨⎧m ·AC→=0,m ·AE →=0.同理可取m =(0,-1,3).则cos 〈n ,m 〉=n·m|n||m|=77.所以二面角D ­AE ­C 的余弦值为77.专题9 平面解析几何1.解析:选A.抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,所以|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k 2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16,故选A.2.解析:选A.依题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为bx -ay=0.因为直线bx -ay =0被圆(x -2)2+y 2=4所截得的弦长为2,所以|2b |b 2+a 2=4-1,所以3a 2+3b 2=4b 2,所以3a 2=b 2,所以e = 1+b 2a 2=1+3=2,选择A.3.解析:选B.根据双曲线C 的渐近线方程为y =52x ,可知ba =52 ①,又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9 ②,根据①②可知a 2=4,b 2=5,所以选B.4.解析:选A.以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a2=63,选A.5.解析:双曲线的右顶点为A (a ,0),一条渐近线的方程为y =bax ,即bx -ay =0,圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc ,因为∠MAN =60°,圆的半径为b ,所以b ·sin60°=ab c,即3b 2=ab c ,所以e =23=233.答案:2336.解析:法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),准线x =-2,因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:依题意,抛物线C :y 2=8x 的焦点F (2,0),准线x =-2,因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,则点M 的横坐标为1,所以|MF |=1-(-2)=3,|FN |=2|MF |=6.答案:67.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p 2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p.由⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1, x 22a 2-y 22b 2=1,得kAB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2·x 1+x 2p,则b 2a 2·x 1+x 2p=x 2+x 12p,所以b 2a 2=12⇒ba =22,所以双曲线的渐近线方程为y =±22x . 答案:y =±22x8.解:(1)由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,C 不经过点P 1,所以点P 2在C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故C 的方程为x 24+y 2=1.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).9.解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →得x 0=x ,y 0=22y . 因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2. 由错误!可得y 2-2my -4=0, 则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0,故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4. 所以2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.11.解:(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(xQ -x )=-(k -1)(k +1)2k 2+1, 所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.12.解:(1)设F 的坐标为(-c ,0). 依题意,c a =12,p2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝ ⎛⎭⎪⎫-1,-2m ,故Q ⎝ ⎛⎭⎪⎫-1,2m .将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0,或y =-6m3m 2+4.由点B 异于点A ,可得点B ⎝ ⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4.由Q ⎝ ⎛⎭⎪⎫-1,2m ,可得直线BQ 的方程为⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝ ⎛⎭⎪⎫y -2m =0,令y =0,解得x =2-3m 23m 2+2,故D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62,故12×6m 23m 2+2×2|m |=62,整理得3m 2-26|m |+2=0,解得|m |=63,所以m =±63. 所以,直线AP 的方程为3x +6y -3=0,或3x -6y -3=0.专题10 计数原理、概率、随机变量及其分布1.解析:选B.不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由于正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积为π2,故此点取自黑色部分的概率为π24=π8,故选B.2.解析:选C.(1+x )6展开式的通项T r +1=C r 6x r ,所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.3.解析:选D.因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
xyz
A.0
B.1
C. 9 4
D.3
7.如图,等腰梯形 ABCD 中, AB∥CD 且 AB 2 , AD 1, DC 2x x 0,1 .以 A,B 为焦点,且过
点 D 的双曲线的离心率为 e1 ,以 C, D 为焦点,且过点 A 的椭圆的离心率为 e2 ,则 e1 e2 的取值范围为( )
3 5
,
3 4


C.

3 4
,1
D. (1,3)
11.已知函数
f
(x)

x3

x sinx ,当


0,
π 2

时,恒有
f
(cos2
2msin )
f
(2m 2)
0 成立,则实
数 1 的取值范围( ) 15
A.

,
1 2

B.
2
) B. 1 2
C. 1 2
D. 3 2
9.已知圆 O1 :(x 2)2 y2 16 和圆 O2 : x2 y2 r2 (0 r 2) ,动圆 M 与圆 O1 和圆 O2 都相切,动圆 M
圆心 M 的轨迹为两个椭圆,设这两个椭圆的离心率分别为 e1 和 e2 (e1 e2 ) ,则 e1 2e2 的最小值为( )
A. 3 2 2 4
B. 3 2
C. 2
D. 3 8
10.已知
mR
,函数
f
(x)

| 2x 1 log2 (x
|, x 1 1), x
1

g(x)

x2

2x

2m 1,若函数
y

f
(g(x))
m

6
个零
点,则实数 m 的取值范围是(
A.

0,
3 5

B.

2017 年高考数学(理)专题练习(二)
换元法(测)
一、选择题
1.已知 f (x3)=lgx(x 0) ,则 f (4) 的值为( )
A. 2lg2
B. 1 lg2 3
C. 2 lg2 3
D. 2 lg4 3
2.方程 log 1 (a 2x) 2 x 有解,则 a 的最小值为( )
2
三、解答题
17.已知 A、B 分别在射线 CM、CN(不含端点 C)上运动,MCN 2π ,在△ABC 中,角 A、B、C 所对 3
的边分别是 a、b、c.
(Ⅰ)若 a、b、c 依次成等差数列,且公差为 2.求 c 的值;
(Ⅱ)若 c 3 , ABC ,试用 表示△ABC 的周长,并求周长的最大值.
A. 2, +
B. 5,+
C.

3

3 +1 ,+ 2

D.
5 +1, +
1/3
8.函数
f
x
sin 2x



π 2

的图像向左平移
π 6
个单位后关于原点对称,则函数
f (x) 在 0,
π 2
上的
最小值为( A. 3

,
1 2

C.


1 2
,


D.

1 2
,


12.已知椭圆
x2 a2

y2 b2
1(a
b 0) 的左焦点 F(c,0) 关于直线 bx cy
0 的对称点 M
在椭圆上,则椭圆的
离心率是( )
A. 2 4
二、填空题
B. 3 4
C. 2 2
A. (2 2 2, )
B. (, 2 2 2)
C. (0, 2 2 2)
D. (2 2 2,8)
5.已知 x, y 满足 x2 y2 1,则 z x y 的最大值为( ) 16 9
A.3
B.4
C.5
D.6
6.设正实数 x, y, z 满足 x2 -3xy+4y2 -z=0 ,则当 xy 取得最大值时, 2 1 2 的最大值为( )
3/3
2/3
15.若存在 x0 [1,1] 使得不等式 | 4x0 a 2x0 1| 2x0 1成立,则实数 a 的取值范围是________.
16.已知
f
(x)

g(x)
分别是定义在
R
上的奇函数和偶函数,且
f
(x)

g(x)

(1)x 2
.若存在
x0
[1 ,1] 2
,使
得等式 af (x0 ) g(2x0 ) 2 成立,则实数 a 的取值范围是________.
D. 3 3
13.方程 log2 (9x1 5) log2 (3x1 2) 2 的解为________. 14.如图,四边形 ABCD 和 ADPQ 均为正方形,它们所在的平面互相垂直,动点 M 在线段 PQ 上,E、F 分 别为 AB、BC 的中点.设异面直线 EM 与 AF 所成的角为 ,则 cos 的最大值为________.
A.2
B.1
C. 3 2
D. 1 2
3.若函数 f (x) a 2x 与 g(x) 4x a 1的图像有交点,则 a 的取值范围是( )
A.a 2 2 2 或 a 2 2 2 C. 1 a 2 2 2
B. a 1 D. a 2 2 2
4.已知函数 f (x)=4x t2x t 1 在区间 (0, ) 上的图像恒在 x 轴上方,则实数 t 的取值范围是( )
M
A
NB
C
18.已知数列 an
中,
a1

1, an1

an an
3
(n

N )

(1)求an 的通项公式 an ;
(2)数列bn 满足 bn (3n 1)
n 2n
an
,数列 bn
的前
n
项和为 Tn
,若不等式
(1)n


Байду номын сангаасTn

n 2n1
对一切
n N
恒成立,求 的取值范围.
相关文档
最新文档