北师大版必修2全套精品课件:空间图形的基本关系与公理(1)
2019-2020高中北师版数学必修2 第1章 §4 4.1 4.2 第1课时 空间图形的公理(公理1、2、3)课件PPT

栏目导航
法二:∵l1∩l2=A,∴l1,l2确定一个平面α. ∵l2∩l3=B,∴l2,l3确定一个平面β. ∵A∈l2,l2 α,∴A∈α. ∵A∈l2,l2 β,∴A∈β. 同理可证,B∈α,B∈β,C∈α,C∈β. ∵不共线的三个点A,B,C既在平面α内,又在平面β内, ∴平面α和平面β重合,即直线l1,l2,l3在同一平面内.
点A在平面α内 点B在平面α外
图形表示
符号表示 A∉a B∈a A∈α B∉α
栏目导航
直线与直线的 位置关系
直线与平面的 位置关系
平行 相交 平行 线在面内 线面相交
线面平行
a∥b _a_∩_b_=__O__ a 与 b 异面
_a___α_ a_∩__α_=__A__
_a_∥__α_
栏目导航
[解] (1)用符号表示:α∩β=l,a∩α=A,a∩β= B,如图.
(2)用符号表示:A∈α,B∈α,a∩α=C,C∉ AB,如图.
栏目导航
三种语言的转换方法 1用文字语言、符号语言表示一个图形时,首先仔细观察图形 有几个平面、几条直线且相互之间的位置关系如何,试着用文字语 言表示,再用符号语言表示. 2根据符号语言或文字语言画相应的图形时,要注意实线和虚 线的区别.
栏目导航
证明点、线共面问题的理论依据是公理1和公理2,常用方法 有:
1先由部分点、线确定一个面,再证其余的点、线都在这个平 面内,即用“纳入法”;
2.理解异面直线的概念,以及空间图形的基 2.通过学习空间图
高中数学北师大版必修2配套课件:1.4空间图形的基本关系与公理

A在b上
D.任意两条直线不能确定一个平面 [答案] D
[解析]
由公理3得,两个不重合的平面有一个公共点,则
它们相交于过这一点的一条直线,因此有无数个公共点;若两 个平面重合,亦知也有无数个公共点,A正确;如果任意三点 共线,则四点共面,因此B正确;C满足公理3,正确;两条平
行或相交直线,可以确定一个平面,D是错误的.
[答案] ② [解析] 由已知得a与α相交,
空间点、线、面的位置关系
已知长方体 ABCD-A1B1C1D1, 如图所示, AC 与 BD 相交于点 M,则下列说法中正确的是( )
①点M在直线AC上,点B在直线A1B1外;
②直线AC与BD相交,直线AC与A1D1相交; ③平面AA1B1B与平面D1DCC1平行; ④直线AC与平面A1B1C1D1异面; ⑤直线BC与A1B1异面.
作异面直线.
2.空间直线与平面的位置关系
无数个公共点 ,我们称这条直线在这个 (1)直线与平面有______________ 平面内;
一个公共点 ,称这条直线与这个平 (2)直线和平面只有______________
面相交. 没有公共点 ,称这条直线和这个平面平 (3) 直线和平面 ____________ 行.
要学习的内容.
1.空间两条直线的位置关系 没有公共点 ,这样的两 (1) 直线 a与b 在同一平面内,但 _____________ 条直线叫作平行直线; 只有一个公共点 ,这样的两条直线叫作相交 (2)直线a与b________________ 直线; 不同在任何一个平面内 ,这样的两条直线叫 (3)直线a与b______________________
[答案] (1)A∈a,B∈a (2)a α C∈α (3)D∉α b α
高中数学北师大版必修二课件:空间图形的基本关系与公理

理论迁移
知识点三 直线与平面的位置关系 例 3 已知下列命题:
①若直线 l 平行于平面α内的无数条直线,则 l∥α; ②若直线 a 在平面α外,则 a∥α; ③若直线 a∥直线 b,直线 b 平面α,则 a∥α; 无数条直线. 其中真命题的个数为 A.1 B.2 C.3 D.4 ( A )
B
(2)点在平面外
记作: 点B 面线的位置关系有三种:
①平行直线:在同一个平面内,没有公共点的两条直线. ②相交直线:在同一个平面内,有且只有一个公共点的两条直线.
记作:直线a//直线b a b α
b 记作: 直线a 直线b 点O β
a O b b a
不同在任何一个平面内 ③异面直线:
l
A
a
a A B l
理论迁移
知识点二 直线与直线位置关系的判定
例 2 如图所示的正方体 ABCD-A1B1C1D1, 判断下 列直线的位置关系.
平行 ; (1)直线 A1B 与直线 D1C 的位置关系是________ 异面 ; (2)直线 A1B 与直线 B1C 的位置关系是_______ 相交 ; (3)直线 D1D 与直线 D1C 的位置关系是________ 异面 . (4)直线 AB 与直线 B1C 的位置关系是_________
④若直线 a∥直线 b,b α,那么直线 a 平行于平面α内的
解析
①错.因为 l 可能在平面α内.
②错.因为直线 a 在平面α外有两种情形:a∥α和 a 与α相交. ③错.因为 a 可能在平面α内. ④正确.无论 a 在平面α内或 a∥α,在α内都有无 数条直线与 a 平行.
答案
A
变式训练 4 下面命题中正确的个数是 b 的任何一个平面;
北师大版高数必修二第4讲:空间图形的基本关系与公理—(1)

空间图形的基本关系与公理__________________________________________________________________________________ __________________________________________________________________________________理解和掌握平面的性质定理,能合理运用;掌握直线与直线、直线与平面、平面与平面的位置关系; 会判断异面直线、掌握异面直线的求法;会用图形语言、符号语言表示点、线、面的位置关系.一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45o,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:αBAβαABαβαβBAAβαBA a ∈ 点A 在直线a 上A a ∉ 点A 不在直线a 上A α∈ 点A 在平面α内A α∉ 点A 不在平面α内a b A =I 直线a 、b 交于A 点a α⊂直线a 在平面α内a α=∅I 直线a 与平面α无公共点a A α=I直线a 与平面α交于点Al αβ=I 平面α、β相交于直线l二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线上的_____都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的______推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭I 如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈I 公理2的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上今后所说的两个平面(或两条直线),如无特殊说明,均指不同的平面(直线).(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 3. 公理3____________________________________________推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 三、空间两直线的位置关系四、平行直线 1. 公理4 平行公理__________________________________________推理模式://,////a b b c a c ⇒.(1)它是判断空间两条直线平行的依据; (2)它说明平行关系具有传递性 2.等角定理如果一个角的两边和另一个角的两边分别平行,且方向相同,那么这两个角_______. 由球的半径R 计算球表面积的公式:S 球=4πR 2.即球面面积等于它的大圆面积的4倍. 五、异面直线 1. 定义:不在任何一个平面内的两条直线叫做异面直线(1)异面直线既不平行,也不相交,永远不存在一个平面能同时包含这两直线; (2)不能把异面直线误认为:分别在不同平面内的两条直线为异面直线 (3)异面直线一般是对两条直线而言的,没有三条异面直线的说法. 2.异面直线的画法画异面直线时,为了充分显示不共面的特点,常常需要以辅助平面为衬托,以加强直观性.ba αbaαβbaα3.异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线推理模式:l A B B L ααα⊂⎫⎪∉⎪⇒⎬∈⎪⎪∉⎭直线AB 与直线l 是异面直线六、异面直线所成的角 1. 定义:已知a ,b 是两条异面直线,经过空间任意一点O 作直线//,//a a b b '',我们把直线a '和b '所成的锐角(或直角)叫做异面直线a ,b 所成的角.(1)异面直线所成的角与O 点的位置无关.(2)如果两条异面直线所成角是直角,则说这两条异面直线互相垂直,记作a b ⊥. (3)异面直线所成角的范围是______. 2. 求异面直线所成角的步骤(1)恰当选点,由平移构造出一个交角; (2)证平行关系成立;(3)把角放入三角形或其它平面图形中求出;(4)作结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角才是所求异面直线所成的角. 七、直线、平面的位置关系1.空间直线与平面的位置关系有以下三种:(1)直线在平面内:如果一条直线a 与平面α有两个不同的公共点,那么这条直线就在这个平面内,记作a ⊂α.(2)直线与平面相交:直线a 与平面α只有一个公共点A ,叫做直线与平面相交,记作a ∩α=A ,公共点A 叫做直线a 与平面α的交点.(3)直线与平面平行:如果一条直线a 与平面α没有公共点,叫做直线与平面平行,记作a ∥α. 2.两个平面的位置关系有且只有一下两种: (1)两个平面平行---没有交点 (2)两个平面相交---有一条公共直线3.顺次连接不共面的四点A 、B 、C 、D 所构成的图形,叫做空间四边形.这四个点中的各个点叫做空间四边形的顶点;所连接的相邻顶点间的线段叫做空间四边形的边;连接不相邻的顶点的线段叫做空间四边形的对角线.类型一 平面及其性质例1:(2014·邵阳一中月考)对下图的几何图形,下列表示错误的是( )A .l ∈αB .P ∉lC .l ⊂αD .P ∈α练习1:判断下列说法是否正确,并说明理由.(1)平面的形状是平行四边形( ) (2)任何一个平面图形都可以表示平面( ) (3)平面ABCD 的面积为10㎡( ) (4)空间图形中,后引的辅助线是虚线( ) 练习2:1、下列说法正确的个数( )①铺的很平的一张纸是一个平面;②可以一个长20cm 、宽30cm 的平面;③通常300页的书要比10页的书厚一些,那么300个平面重合在一起时一定比10个平面重合在一起厚.A 、0个B 、1个C 、2个D 、3个 练习3:若点Q 在直线b 上,b 在直线平面β内,则,,Q b β之间的关系可记作( )A 、Q b β∈∈B 、Q b β∈⊂C 、Q b β⊂⊂D 、Q b β⊂∈例2:如右图,已知,,,E F G H 分别为空间四边形ABCD 各边,,,AB AD BC CD 上的点,且EF GH P =I ,求证:,,B D P 共线.练习1:已知l 与三条平行线,,a b c 都相交,求证:l 与,,a b c 共面. 练习2:两个不重合的平面有公共点,则公共点的个数是( )A 、2个B 、有无数个且在一条直线上C 、一个或无数个D 、1个练习3:下列命题:①公理1可用集合符号叙述为:若,A l B l ∈∈且,A B αα∈∈,则必有l α∈;②四边形的两条对角线必交于一点;③用平行四边形表示的平面,以平行四边形的四边作为平面边界线;④梯形是平面图形.其中正确的命题个数为( )A 、1B 、2C 、3D 、4 类型二 直线及其位置关系例3:(2014·甘肃嘉峪关市一中高一期末测试)若a 、b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( ) A .相交 B .异面 C .平行 D .异面或相交练习1:在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BD 和CD 的中点,长方体的各棱中与EF 平行的有( )A .1条B .2条C .3条D .4条 练习2:空间四边形ABCD 中,给出下列说法:①直线AB 与CD 异面; ②对角线AC 与BD 相交; ③四条边不能都相等;④四条边的中点组成一个平行四边形. 其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个PH GF EDC BA练习3:a 、b 、c 是空间中三条直线,下面给出几种说法:①若a ∥b ,b ∥c ,则a ∥c ;②若a 与b 相交,b 与c 相交,则a 与c 也相交;③若a 、b 分别在两个相交平面内,则这两条直线不可能平行. 上述说法中正确的是________(仅填序号).例4:已知正方体1111ABCD A B C D -,E 、F 分别为1AA 、1CC 的中点,求证:1//BF ED 练习1:已知棱长为a 正方体1111ABCD A B C D -,M 、N 分别为CD 、AD 的中点, 求证:四边形11MNA C 是梯形练习2:已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,若AE AB =AH AD =12,CF CB =CG CD =13,则四边形EFGH 形状为________. 例5:已知E 、1E 分别是正方体1111ABCD A B C D -的棱AD 、11A D 的中点. 求证:111BEC B E C ∠=∠练习1:如右图,111,,AA BB CC 不共面,且1111//,//BB AA CC AA ,求证:△ABC ≌△111A B C练习2:在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点.求证:∠NMP =∠BA 1D .例6:如右图,已知不共面的直线,,a b c 相交于O 点,M 、P 是直线a 上 两点,N 、Q 分别是直线b 、c 上一点.求证:MN 和PQ 是异面直线. 练习1:两条异面直线是指( )A 、空间没有公共点的两条直线B 、分别位于两个平面内的直线C 、平面内的一条直线与平面外的一条直线D 、既不平行也不相交的两条直线练习2:下列说法正确的有__________.c ba OQP NM①两直线无公共点,则两直线平行;②两直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的连线,与平面内的任一直线均构成异面直线;④和两条一面直线都相交的直线的两直线必是异面直线.练习3:已知,,a b a b A αββ=⊂=I I 且,//c c a α⊂,求证:b ,c 为异面直线.例7:正四面体A BCD -的棱长为a ,E 、F 分别为棱AD 、BC 的中点,求异面直线AF 和CE 所成角的余弦值.练习1:已知m 、n 为异面直线,m α⊂,n β⊂,l αβ=I ,则直线l ( )A 、与m 、n 都相交B 、与m 、n 至少一条相交C 、与m 、n 都不相交D 、至多与m 、n 中的一条相交练习2:在棱长为1的1111ABCD A B C D -中,M 和N 分别为11A B 和1BB 的中点,那么直线AM 与CN 所成角的余弦值是( )ABC 、35D 、25练习3:如右图,等腰直角三角形ABC中,90,,A BC DA AC DA AB ∠==⊥⊥o,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.1.在空间内,可以确定一个平面的条件是( )A 、两两相交的三条直线B 、三条直线,其中的一条与另外两条直线分别相交C 、三个点D 、三条直线,它们两两相交,但不交于同一点E 、两条直线 2.分别和两条异面直线都相交的两条直线的位置关系是( )A .异面B .相交C .平行D .异面或相交3.一条直线与两条平行线中的一条是异面直线,那么它与另一条的位置关系是( )A 、相交B 、异面C 、平行D 、相交或异面4.从空间一点P 分别向BAC ∠的两边,AB AC 作垂线,PE PF ,垂足分别为,E F ,则EPF ∠与BAC ∠的关系为( )A 、互补B 、相等C 、互补或相等D 、以上都不对5.在正四面体A BCD -中,E 为AD 的中点,则AB 与CE 所成角的余弦值为_______._________________________________________________________________________________ _________________________________________________________________________________基础巩固1. 空间有四个点,其中无三点共线,可确定_______个平面;若将此四点两两相连,再以所得线段FE D CBA中点为顶点构成一个几何体,则这个几何体至多有_______个面. 2、三个两两相交的平面最多可把空间分为_______个部分. 3、下面6个命题:①四边相等的四边形是菱形;②两组对边相等的四边形是平行四边形;③若四边形有一组对角相等,则该四边形是圆内接四边形;④在空间,过已知直线外一点,引该直线的平行线,可能不只一条;⑤四条直线两两平行,无三线共面,它们共可确定6个平面.其中正确命题的个数是( )A 、0B 、1C 、2D 、34. 在正方体1111ABCD A B C D 中,与1AD 成60o 的面对角线共有( )A 、4条B 、6条C 、8条D 、10条5. 已已知棱长为a 的正方体ABCD -A ′B ′C ′D ′中,M 、N 分别为CD 、AD 的中点,则MN 与A ′C ′的位置关系是________.能力提升6. (2014·山东泰安肥城高一期末测试)如图,点P 、Q 、R 、S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________.7. 若直线a 、b 与直线l 相交且所成的角相等,则a 、b 的位置关系是( )A .异面B .平行C .相交D .三种关系都有可能8. 如图,在长方体ABCD -A 1B 1C 1D 1中,A 1C 1∩D 1B 1=O ,E 、F 分别是B 1O 和C 1O 的中点,则在长方体各棱中与EF 平行的有________条.9. 如图,a ∥α,A 是α的另一侧的点,B ,C ,D ∈a ,线段AB ,AC ,AD 分别交平面α于E ,F ,G ,若BD =4,CF =4,AF =5,则EG =________.10. 如右图,正方体1111ABCD A B C D 中,求AC 与1A D 所成角的大小课程顾问签字: 教学主管签字:F ED 1C 1B 1A 1DCBA。
北师大版高中数学必修2课件第一章空间图形基本关系的认识空间图形的公理(一)

(3)异面直线:如果直线 a 和 b 不同在□07 任何一个 平面内,这样的两条
直线叫作异面直线.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
4.空间直线与平面的位置关系
(1)直线在平面内:如果直线 a 与平面 α 有 □08 无数 个公共点,我们
称直线 a 在平面 α 内,记作 a α.
提示
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
3.若点 M 在直线 a 上,且 a 在平面 α 内,则 M,α 间的关系为________. 提示:M∈α
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
课堂互动探究
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
例 1 (1)已知 α,β 是两个不同的平面,a,b,l 是三条不同的直线,若 a α,b α,l∩a=A,l∩b=B,l β,那么 α 与 β 的位置关系是________.
课后课时精练
提示
(3)把一张长方形的纸对折两次,打开以后,这些折痕之间有什么关系 呢?
提示:平行.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
2.下列表述中正确的是( ) A.空间三点可以确定一个平面 B.三角形一定是平面图形 C.若 A,B,C,D 既在平面 α 内,又在平面 β 内,则平面 α 和平面 β 重合 D.四条边都相等的四边形是平面图形 提示:B 因为三点不共线时确定一个平面,故 A 错.C 中 A、B、C、 D 四点可在 α 与 β 的交线上.D 显然错误.故选 B.
北师大版高中数学必修二第一章4空间图形的基本关系与公理第1课时

§4 空间图形的基本关系与公理第1课时空间图形的基本关系与公理1~公理3 问题导学1.公理1的应用活动与探究1如图,在正方体ABCD-A′B′C′D′中,M,N分别是所在棱的中点,连接D′M,交C′B′的延长线于点E,连接C′N,交CB的延长线于点F.求证:直线EF平面BCC′B′.迁移与应用如图,在△ABC中,若AB,BC在平面α内,试判断AC是否在平面α内.公理1的作用:(1)用直线检验平面;(2)判断直线是否在平面内,要证明直线在平面内,我们需要在直线上找到两个点,这两个点都在这个平面内,那么直线就在这个平面内.解决问题的关键就在于寻找这样的点.2.公理2的应用活动与探究2已知a∥b,a∩c=A,b∩c=B,求证:a,b,c三条直线在同一平面内.迁移与应用1.经过同一直线上的三个点的平面( ).A.有且只有一个B.有且只有三个C.有无数个D.不存在2.已知A∈l,B∈l,C∈l,D l(如图),求证:直线AD,BD,CD共面.公理2的作用:(1)确定一个平面;(2)证明点、线的共面问题;(3)判断一图形是否为平面图形.对于平面的确定问题,务必分清它们的条件,对于证明几点(或几条直线)共面问题,可先由其中几个点(或直线)确定一个平面后,再证明其他点(或直线)也在该平面内即可.3.公理3的应用活动与探究3已知△ABC在平面α外,它的三边所在的直线分别交平面α于P,Q,R三点(如图),求证:P,Q,R三点共线.迁移与应用如图,在三棱锥S-ABC的边SA,SC,AB,BC上分别取点E,F,G,H,若EF∩GH=P,求证:EF,GH,AC三条直线交于一点.1.公理3的作用:(1)判断两平面是否相交;(2)证明点在直线上;(3)证明共线问题;(4)证明共点问题.证明三点共线问题的常用方法有:方法一是首先找出两个平面,然后证明这三个点都是这两个平面的公共点,根据公理3,这些点都在交线上.方法二是选择其中两点确定一条直线,然后证明另一点在其上.2.证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.当堂检测1.点P在直线l上,而直线l在平面α内,用符号表示为( ).A.P l,lαB.P∈l,l∈αC.P l,l∈αD.P∈l,lα2.如图所示是表示两个相交平面,其中画法正确的是( ).3.下列说法正确的是( ).A.线段AB在平面α内,直线AB不会在α内B.平面α和β有时只有一个公共点C.三点确定一个平面D.过一条直线可以作无数个平面4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线( ).A.AD上B.B1C1上C.A1D1上D.BC上5.如图,O1是正方体ABCD-A1B1C1D1的上底面A1B1C1D1的中心,M是对角线A1C和截面B1D1A 的交点.求证:O1,M,A三点共线.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.答案:课前预习导学预习导引1.(1)点在直线上点在直线外A∈l B l(2)点在平面内点在平面外(3)同一平面没有公共点a∥b只有一个公共点a∩b=P不同在任何一个平面内(4)有无数个公共点只有一个公共点l ∩α=P没有公共点l∥α(5)没有公共点α∥β不重合但有公共点预习交流1 提示:不能.如图所示,a在平面α内,b在平面β内,但是a与b平行.预习交流2 提示:当两直线在同一平面内时,没有公共点就一定平行;在空间中,当两直线不同在任何一个平面内时,没有公共点,是异面直线.2.两点所有的点在平面内lα不在同一条直线上有且只有确定有且只有一个平面α有一个公共点有且只有α∩β=l且A∈l预习交流 3 提示:“有”是说图形存在,“只有一个”是说图形唯一.“有且只有”强调的是存在性和唯一性两个方面,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两个方面.预习交流4 提示:(1)能;(2)能;(3)能.课堂合作探究问题导学活动与探究1 思路分析:要证明直线在平面内,只需证明直线上有两个点在这个平面内.证明:∵B∈平面BCC′B′,C∈平面BCC′B′,∴直线BC平面BCC′B′.又∵C′N∩CB=F,∴F∈CB,∴F∈平面BCC′B′.同理可得E∈平面BCC′B′.∴直线EF平面BCC′B′.迁移与应用解:AC在平面α内,证明如下:∵AB在平面α内,∴A点一定在平面α内.∵BC在平面α内,∴C点一定在平面α内.∴A点、C点都在平面α内.∴直线AC在平面α内.活动与探究2 思路分析:依题意,可先证a与b确定一个平面,再证明c在这个平面内,从而可证a,b,c在同一平面内.证明:∵a∥b,∴a与b确定一个平面α,∵a∩c=A,∴A∈a,从而A∈α;∵b∩c=B,∴B∈b,从而B∈α.于是ABα,即cα,故a,b,c三条直线在同一平面内.迁移与应用1.C2.证明:因为直线l与点D可以确定平面α,所以只需证明AD,BD,CD都在平面α内即可.因为A∈l,所以A∈α.又D∈α,所以ADα.同理BDα,CDα.所以AD,BD,CD都在平面α内,即它们共面.活动与探究3 思路分析:只需证明P,Q,R三点在平面ABC内,又在平面α内,再利用公理3推得结论.证明:方法一:∵AB∩α=P,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------∴P∈AB,P∈平面α.又AB平面ABC,∴P∈平面ABC.∴由公理3可知,点P在平面ABC与平面α的交线上.同理可证Q,R也在平面ABC与平面α的交线上,∴P,Q,R三点共线.方法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.又B∈平面APR,C∈平面APR,∴BC平面APR.又∵Q∈直线BC,∴Q∈平面APR.又Q∈α,∴Q∈PR.∴P,Q,R三点共线.迁移与应用证明:∵E∈SA,SA平面SAC,F∈SC,SC平面SAC,∴E∈平面SAC,F∈平面SAC,∴EF平面SAC.同理可得GH平面ABC.又∵EF∩GH=P,∴P∈平面SAC,P∈平面ABC.∵平面SAC∩平面ABC=AC,∴P∈AC,即直线EF,GH,AC共点于P.当堂检测1.D 2.D 3.D 4.B5.证明:因为上底面中A1C1∩B1D1=O1,A1C 1平面A1C1CA,B1D 1平面AB1D1,所以,O1是平面A1C1CA与平面AB1D1的公共点.又因为A1C∩平面AB1D1=M,A1C平面A1C1CA,所以,M是平面A1C1CA与平面AB1D1的公共点.又因为A∈平面AB1D1,A∈平面A1C1CA,所以,A是平面A1C1CA与平面AB1D1的公共点.所以,O1,M,A都是平面A1C1CA与平面AB1D1的公共点,由公理3可知,O1,M,A三点共线.信达。
高中数学课件-北师大版高中数学必修二1.4《空间图形的基本关系与公理》课件1 最新

• (2)∵EG∩FH = P , P∈EG , EG 平 面 ABC, • ∴P∈平面ABC. • 同理P∈平面ADC. • ∴P为平面ABC与平面ADC的公共点. • 又平面ABC∩平面ADC=AC, • ∴P∈AC, • ∴P、A、C三点共线.
答案: 5
• 1.点共线问题 • 证明空间点共线问题,一般转化为证明这 些点是某两个平面的公共点,再根据公理3 证明这些点都在这两个平面的交线上.
• 2.线共点问题 • 证明空间三线共点问题,先证明两条直线 交于一点,再证明第三条直线经过这点, 把问题转化为证明点在直线上. • 3.证明点线共面的常用方法 • (1) 纳入平面法:先确定一个平面,再证明 有关点、线在此平面内. • (2) 辅助平面法:先证明有关的点、线确定 平面 α ,再证明其余元素确定平面 β ,最后 证明平面α、β重合.
• • • • • •
(2)在平面EFD1C内,由于EF≠CD1, 所以CE与D1F必相交.设CE∩D1F=P, ∵D1F在平面A1ADD1内, ∴P在平面A1ADD1内. 同理,P在平面ABCD内, ∴P 在平面 A1ADD1 与平面 ABCD 的交线 DA 上, • 即CE、D1F、DA三线共点.
• 1.分别在两个平面内的两条直线的位置关 系是( ) • A.异面 B.平行 • C.相交 D.以上都有可能 • 解析: 如图, a∥b , c 与 d 相交, a与 d异 面.
• 答案: D
• 2 .直线 a , b , c 两两平行,但不共面,经 过其中两条直线的平面的个数为( ) • A.1 B.3 • C .6 D.0 • 解析: 以三棱柱为例,三条侧棱两两平 行,但不共面,显然经过其中的两条直线 的平面有3个. • 答案: B
高中数学北师大版必修二 §4.1 空间图形基本关系的认识 课件(38张)

自学导引 1.空间点与直线的位置关系 空间点与直线的位置关系有两种: (1)如果点 P 在直线 a 上 ,记作 P∈a,如图①所示. (2)如果点 P 在直线 a 外 ,记作 P∉a,如图②所示.
2.空间点与平面的位置关系 空间点与平面的位置关系有两种: (1)如果点 P 在平面 α 内 ,记作 P∈α,如图①所示. (2)如果点 P 在平面 α 外 ,记作 P∉α,如图②所示.
8.公理 3 文字语言:如果两个不重合的平面有一个 公共点 ,那么它们 有且只有一条通过这个点的公共直线. 图形语言:如图所示. 符号语言:P∈α∩β⇒α∩β=l 且 P∈l. 作用:它是判定两个平面是否相交的依据,是证明点共线和线 共点的依据.
名师点睛 1.三个公理的作用: 公理 1——判定直线在平面内的依据. 公理 2——判定点共面、线共面的依据. 公理 3——判定点共线、线共点的依据.
(3)异面直线:如果直线 a 和 b 不同在 任何一个 平面内,这样 的两条直线叫作异面直线,如图①②③所示.
画两条异面直线时,为了充分显示出它们既不平行又不相交的 特点,即不共面的特点,通常采用平面衬托法,以加强立体感, 常见的画法如图①②③所示.
4.空间直线与平面的位置关系 空间直线与平面的位置关系有三种: (1)直线在平面内:如果直线 a 与平面 α 有 无数 个公共点,我 们称直线 a 在平面 α 内,记作 a α,如图①所示.
想一想:如何从集合的角度理解点、线、面之间的关系? 提示 (1)直线可以看成无数个点组成的集合,故点与直线的关 系是元素与集合的关系;用“∈”或“∉”表示. (2)平面也可以看成点集,故点与平面的关系也是元素与集合的 关系,用“∈”或“∉”表示. (3)直线和平面都是点集,它们之间的关系可看成集合与集合的 关系,故用“ ”或“ ”表示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D1
A1 B1
C1
D A B
C
二、课堂小结 空间中点、线、面之间的位置关系: (1)空间点与直线的位置关系有__种: (2)空间点与平面的位置关系有__种:
(3)空间两直线的位置关系有__种:
a (4)空间直线与平面的位置关系有__种: c A a // // (5)空间平面与平面的位置关系有__种: // BC
问题提出 1.平面图形由哪些基本图形组成?
2.空间平面图形又由哪些基本图形组成?
§4 空间图形的基本关系与公理(1) 一、探索研究 1.实例分析:
8 个顶点, 观察下图中的长方体, 得到长方体是由____
12 条棱, ___ 6 个面组成的. ____
D A D A B B
C
C
2.抽象概括: 2 种: A (1)空间点与直线的位置关系有__ ①点P在直线a上, 记作: P a c
则直线a与c也是异面直线; (4)若直线a与b是异面直线, 直线b//c, 则直线a与c也
是异面直线.
A
D
c
a
C
B
D A
c
B
b
C
练习3.在正方体ABCD-A1B1C1D1的棱所在直线中, 4 条; (1)与直线AB成异面直线的有_____ 6 条; (2)与直线AB1成异面直线的有_____ 6 条; (3)与直线BD1成异面直线的有_____
P a Pa P P
平行直线. 共面直线 相交直线. 异面直线.
③直线a与b不同在任何一个平面内--- 异面直线. 3 种: (4)空间直线与平面的位置关系有__ ①直线a与平面β有无数公共点--- 直线在平面内. a ②直线c与平面β只有一个公共点---直线与平面相交. c A ③直线a与平面α没有公共点--- 直线与平面平行. a //
D
a
P
C
B
b
C
D ②点P不在直线a上, 记作: P a α 2 种: A (2)空间点与平面的位置关系有__
B b ①点P在平面α内, 记作: P ②点P在平面α外, 记作:P 3 种: (3)空间两直线的位置关系有__ ①直线a与b在同一平面内且没有公共点--- 平行直线. a // b ②直线a与b只有一个公共点--- 相交直线. a b B
2 种: D (5)空间平面与平面的位置关系有__ ①平面与平面没有公共点--平面与平面平行. //
A
C
B
②两个平面不重合, 但有公共点--平面与平面相交. BC
DHale Waihona Puke ABC
3.练习1. 观察下图所示的长方体, 再举出一些点、线、面的位置 关系的例子.
D
A B
a
C
D
A
b
a
C
D
C
B
A
B
D A
c
B
b
C
A
D
B
C
A B
D
C
练习2.判断下列命题是否正确: (1)若 a , b . 则直线a与b是异面直线; (2)若直线a、b不同在 内, 则直线a与b是异面直线;
(3)若直线a与b是异面直线, 直线b与c是异面直线,