第三章 圆 单元测试3(数学北师大版九年级下册)
北师大版数学九年级下册第三章 圆 单元测试卷

第三章 圆 单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1. 已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .122.如图,在⊙O 中,AB =AC ,若∠ABC =57.5°,则∠BOC 的度数为( )A. 132.5° B .130° C .122.5° D .115°第2题图 第4题图 第5题图 第6题图 第7题图3.在平面直角坐标系xOy 中,若点P (4,3)在⊙O 内,则⊙O 的半径r 的取值范围是( )A .0<r <4B .3<r <4C .4<r <5D .r >54.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠CDA =122°,则∠C 的度数为( )A .22°B .26°C .28°D .30°5.如图,正方形ABCD 内接于⊙O ,AB =22,则的长是( ) A. π B .23π C .2π D .21π 6.如图所示方格纸中,点A ,B ,C ,D ,O 均为格点,则点O 是( )A .△ABC 的内心B .△ABC 的外心 C .△ACD 的内心 D .△ACD 的外心7.一把直尺、含60°角的直角三角尺和光盘如图所示摆放,A 为60°角与直尺的交点,B 为直尺与光盘的切点.若AB =3,则光盘的直径是( )A .3B .33C .6D .63第8题图 第9题图 第10题图8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A ,与y 轴交于B ,C 两点,M 的坐标为(3,5),则B 的坐标为( )A .(0,5)B .(0,7)C .(0,8)D .(0,9)9.如图,一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π﹣293 B .6π﹣93 C .12π﹣293 D .49 10.如图,在等边三角形ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,F 是AC 上的点,下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若BE =23EC ,则AC 是⊙O 的切线 二、填空题(本大题6小题,每小题4分,共24分)11. 如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE = °.第11题图 第13题图 第14题图 第15题图 第16题图12.已知⊙O 的半径为3 cm ,点A ,B ,C 是直线l 上的三个点,点A ,B ,C 到圆心O 的距离分别为2 cm ,3 cm ,5 cm ,则直线l 与⊙O 的位置是 .13.如图,点 A ,B ,C 均在6×6的正方形网格格点上,过A ,B ,C 三点的圆除经过A ,B ,C 三点外还能经过的格点数为 .14. 如图,Rt △ABC 的内切圆⊙I 分别与斜边AB ,直角边BC ,CA 切于点D ,E ,F ,AD=3,BD=2,则Rt △ABC 的面积为 .15.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O 于点A ,并使较长边与⊙O 相切于点C .记角尺的直角顶点为B ,量得AB =2 cm ,BC =4 cm ,则⊙O 的半径是 cm .16.如图,⊙O 的直径为25 cm ,弦AB ⊥弦CD 于点E ,连接AD ,BC ,若AD =4 cm ,则BC 的长为 cm .三、解答题(本大题7小题,共66分)17.(6分)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC ,求证:=.第17题图 第18题图 第19题图18. (8分)如图,I 是△ABC 的内心,AI 的延长线交△ABC 的外接圆于点D ,试判断DB 与DI 相等吗?说明理由.19. (8分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10 mm 的小钢球紧贴在孔道边缘,测得钢球顶端离孔道口的距离为8 mm ,求这个孔道的直径AB .20.(10分)如图,以等边三角形ABC 的边AB 为直径的圆,与另两边BC ,AC 分别交于点E ,F ,请仅用无刻度的直尺作出△ABC 的边AB 上的高CD .第20题图 第21题图 第22题图21.(10分)如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.(1)求证:△ADE是等腰三角形;(2)若∠D=90°,⊙O的半径为5,BC∶DC=1∶2,求△CBE的周长.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,C是⊙O外一点且∠DBC=∠A,连接OE并延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE 交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.①②③第23题图第24题图24.我们知道,如图①,AB是⊙O的弦,F是的中点,过点F作EF⊥AB于点E,易得E是AB的中点,即AE=EB.若⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图②),过点F作EF⊥AC于点E,求证:E是“折弦ACB”的中点,即AE=EC+CB;(2)当点C在弦AB的下方时(如图③),其他条件不变,则上述结论是否仍然成立?若成立,说明理由;若不成立,那么AE,EC,CB满足怎样的数量关系?(直接写出,不必证明.)第三章 圆 单元测试卷 参考答案 答案详解 10.C 提示:连接OE ,如图所示,则OB =OE.因为∠B =60°,所以∠BOE =60°.因为∠BAC =60°,所以∠BOE =∠BAC.所以OE ∥AC.因为EF ⊥AC ,所以OE ⊥EF.所以EF 是⊙O 的切线.选项A 正确;因为EF 是⊙O 的切线,所以OE ⊥EF.由A 知OE ∥AC ,所以AC ⊥EF. 选项B 正确;因为∠B =60°,OB =OE ,所以BE =OB.因为BE =CE ,所以BC =AB =2BO.所以AO =OB.如图,过点O 作OH ⊥AC 于点H ,所以∠OHA=90°.因为∠BAC =60°,所以∠AOH=30°. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -= 222OA OA ⎛⎫- ⎪⎝⎭=23AO ≠OB. 选项C 错误;因为BE =23EC ,所以CE =332BE.因为AB =BC ,BO =BE ,所以AO =CE =332OB. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -=23AO =OB.所以AC 是⊙O 的切线. 选项D 正确.16.2 提示:如图,作直径DH ,连接AH ,CH ,AC .因为DH 是直径,所以∠DCH =∠DAH =90°.因为AB ⊥CD ,所以∠AED =∠DCH =90°.所以CH ∥AB.所以∠CAB =∠ACH.所以=.所以AH =BC. 在Rt △ADH 中,AH =22224)52(-=-AD DH =2(cm ),所以BC =AH =2 cm .三、17.证明:因为OB =OD ,所以∠D =∠B.因为BD ∥OC ,所以∠D =∠COD ,∠AOC =∠B.所以∠AOC =∠COD.所以=.18.解:DB =DI.理由:连接BI.由圆周角定理,得∠DBC =∠DAC.因为I 是△ABC 的内心,所以∠ABI =∠CBI ,∠BAD =∠CAD. 由三角形的外角的性质,知∠DIB =∠IBA+∠BAI.又∠DBI =∠DBC+∠IBC ,所以∠DIB =∠DBI.所以DB =DI .19.解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD.答案速览一、1. D 2.B 3.D 4.B 5.A 6.D 7. D 8.D 9.A 10.C二、11. n 12.相交 13.5 14. 6 15.5 16.2三、解答题见“答案详解”因为钢球的直径是10 mm ,所以钢球的半径是5 mm ,即OA=5 mm.因为钢球顶端离孔道口的距离为8 mm ,所以OD =3 mm.在Rt △AOD 中,由勾股定理,得AD =222235-=-OD OA =4(mm ), 所以AB =8 mm . 20.解:如图所示,CD 即为所求.21.(1)证明:因为四边形ABCD 是⊙O 的内接四边形,所以∠A+∠DCB=180°.又∠DCB+∠BCE=180°,所以∠A =∠BCE.因为BE =BC ,所以∠BCE =∠E.所以∠A =∠E.所以DA =DE ,即△ADE 是等腰三角形.(2)解:连接AC.设BC =k ,则CD =2k.因为∠D =90°,所以∠CBE =90°,AC 是⊙O 的直径.因为BE =BC ,所以∠E =45°.所以BE =BC =k ,EC =2k.所以DA=DE =22k.在Rt △DAC 中,由勾股定理,得AC =10k.因为⊙O 的半径为5,所以10k =10,解得k =10.所以BC+BE+CE=210+25,即△CBE 的周长为210+25.22.(1)证明:连接OB.因为E 是弦BD 的中点,所以BE =DE ,OE ⊥BD ,=12.所以∠BOE =∠A ,∠OBE+∠BOE =90°.因为∠DBC =∠A ,所以∠BOE =∠DBC.所以∠OBE+∠DBC =90°.所以∠OBC =90°,即BC ⊥OB.所以BC 是⊙O 的切线.(2)解:因为OB =6,BC =8,BC ⊥OB ,所以OC =22BC OB +=10.因为△OBC 的面积=12OC •BE =12OB •BC ,所以BE =OB BC OC ⋅=6810⨯=4.8.所以BD =2BE =9.6,即弦BD 的长为9.6. 23.证明:(1)因为AB 是⊙O 的直径,所以∠ADB =90°.所以∠A+∠ABD =90°.因为∠A =∠DEB ,∠DEB =∠DBC ,所以∠A =∠DBC.所以∠DBC+∠ABD =90°.所以BC 是⊙O 的切线.(2)连接OD.因为BF =BC =2,∠ADB =90°,所以∠CBD =∠FBD.因为OE ∥BD ,所以∠FBD =∠OEB.因为OE =OB ,所以∠OEB =∠OBE.所以∠OBE=∠FBD.所以∠CBD =∠FBD =∠OBE =13∠ABC =13×90°=30°.所以∠C =60°,∠A =30°.所以AC=4. 在Rt △ABC 中,由勾股定理,得AB =22AC BC -=23,所以⊙O 的半径为3.因为OA=OD ,所以∠ODA =∠A=30°.所以∠DOB=60°. 在Rt △ABD 中,由勾股定理,得AD=22AB BD -=3.所以S 阴影=S 扇形DOB -S △DOB =61π×(3)2-12×12×3×3=2π-433. 24.(1)证明:在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,如图①所示.因为F 是的中点,所以FA=FB.在△FAG和△FBC中,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FAG≌△FBC(SAS).所以FG=FC.因为FE⊥AC,所以EG=EC.所以AE=AG+EG=BC+CE. (2)解:结论AE=EC+CB不成立,新结论为CE=BC+AE.理由:在CA上截取CG=CB,连接FA,FB,FC,如图②所示.因为F 是的中点,所以FA=FB ,.所以∠FCG=∠FCB.在△FCG和△FCB中,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FCG≌△FCB(SAS).所以FG=FB.所以FA=FG.因为FE⊥AC,所以AE=GE.所以CE=CG+GE=BC+AE.①②第24题图。
(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(答案解析)

一、选择题1.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1032.下列命题说法正确的有( )①三点确定一个圆;②长度相等的弧是等弧;③等边三角形都相似;④直角三角形都相似;⑤平分弦的直径垂直于弦.⑥一条弧所对的圆周角等于它所对的圆心角的一半.A .1个B .2个C .3个D .4个 3.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 4.如图,AB 是O 的直径,8AB =,点C 、D 、E 在O 上,45CAB ∠=︒,CD DE EB ==,P 是直径AB 上的一动点,则PCE 周长的最小值为( )A .243+B .43+C .83+D .12 5.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒6.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .347.已知⊙O 的半径是一元二次方程2690x x -+=的解,且点O 到直线AB 的距离为2,则⊙O 与直线AB 的位置关系为( )A .相交B .相切C .相离D .无法确定 8.已知O 的半径为8cm ,如果一点P 和圆心O 的距离为8cm ,那么点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .不能确定 9.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S <<10.图中的三块阴影部分由两个半径为1的圆及其外公切线分割而成,如果中间一块阴影的面积等于上下两块面积之和,则这两圆的公共弦长是( )A .52B .62C .21252π-D .21162π- 11.如图,四边形ABCD 中,对角线AC ,BD 交于点E . 若BAC BDC ∠=∠,则下列结论中正确的是( )①AE BE DE CE = ②ABE △与DCE 的周长比为BE CE③ADE ABC =∠∠ ④ABE DCE ADE BCE SS S S ⋅=⋅ A .③④B .①②③C .①②④D .①②③④ 12.如图,点,,A B C 为O 上三点,40OAB ∠=︒,则ACB ∠的度数等于( )A .100︒B .80︒C .50︒D .40︒二、填空题13.圆锥的底面半径是13_____. 14.如图,AB 、CD 是O 的两条弦,连接AD 、BC .若60BAD ∠=︒,则BCD ∠的度数为______度.15.如图,ABC 内接于O ,∠BAC=70°,D 是BC 的中点,且∠AOD=156°,AE ,CF 分别是BC ,AB 边上的高,则∠BCF 的度数是____________.16.如图,在矩形ABCD 中,线段DF 平分ADC ∠交BC 边于点F ,点E 为BC 边上一动点,连接AE ,若在点E 移动的过程中,点B 关于AE 所在直线的对称点有且只有一次落在线段DF 上,则:BC AB =_____________.17.已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 18.如图,PA ,PB 是圆O 的切线,切点为A 、B ,∠P =50°,点C 是圆O 上异于A ,B 的点,则∠ACB 等于_____.19.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.20.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:三、解答题21.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,连接AC ,若CA =CP ,∠A =30°.(1)求证:CP 是⊙O 的切线;(2)若OA =1,求弦AC 的长.22.如图,AB 为⊙O 的直径,D 为AB 延长线上的点,AC 为弦,且∠A =∠D =30°. (1)求证:DC 是⊙O 的切线;(2)若⊙O 的半径为1cm ,求图中阴影部分的面积.23.如图,AB 是O 的弦,半径OE AB ⊥,交AB 于点,G P 为AB 延长线上一点,PC 与O 相切于点,C CE 与AB 交于点F .(1)求证:PC PF =;(2)连接,OB BC ,若3//,32,tan 4OB PC BC P ==,求FB 的长.24.如图,AB 为O 的直径,点C 在O 上,AD 与过点C 的切线互相垂直,垂足为D ,连接BC 并延长,交AD 饿延长线于点E .(1)求证:AE AB =;(2)若20AB =,16BC =,求CD 的长.25.已知EF 为O 的一条弦,OB EF ⊥交O 于点B ,A 是弦EF 上一点(不与E ,F 重合),连接BA 并延长交O 于点C ,过点C 作O 的切线交EF 的延长线于点D .(1)如图1,若EF 在圆心O 的上方,且与OB 相交于点H ,求证:ACD △是等腰三角形;(2)如图2,若EF 是O 的直径,25AB =O 的半径为4,求线段DC 的长; (3)如图3,若EF 在圆心O 的下方,且与BO 的延长线相交于点H ,试判断线段DA ,DE ,DF 之间的数量关系,并说明理由.26.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上.(1)若40AOD ∠=︒,求DEB ∠的度数;(2)若3OC =,5OA =,求弦AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OC ,设弧CED 所在圆的半径为R ,则OC =R ,OM =6−R ,根据垂径定理求出CM ,根据勾股定理得出方程,求出即可.【详解】解:连接OC ,设弧CED 所在圆的半径为R ,则OC =R ,OM =6−R ,∵EM 经过圆心O ,EM ⊥CD 于M ,CD =4,∴CM =DM =2,在Rt △OMC 中,由勾股定理得:OC 2=OM 2+CM 2,R 2=(6−R )2+22,R =103, 故选:D .【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中. 2.B解析:B【分析】根据确定圆的条件对①进行判断;根据等弧的定义对②进行判断;根据相似三角形的判定对③④进行判断;根据垂径定理对⑤进行判断;根据圆周角定理对⑥进行判断.【详解】解:①不在同一直线上的三点确定一个圆,故①错误;②在同圆或等圆中,长度相等的弧是等弧,故②错误;③等边三角形的三个角都是60°,根据“两个三角形的两个角分别对应相等,则这两个三角形相似”可判定等边三角形都相似,故③正确;④直角三角形只有一个直角可以确定对应相等,其他条件不确定,故④错误;⑤平分弦(非直径)的直径垂直于弦,故⑤错误;⑥圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,故⑥正确.故选B.【点睛】本题考查了确定圆的条件,等弧的定义,相似三角形的判定,垂径定理,圆周角定理等知识.熟练掌握基本知识是解题的关键.3.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE==故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.B解析:B【分析】根据圆周角定理可知∠COB=90°,结合圆的对称性可知PCE 周长的最小值为CE C E '+,根据圆周角定理可得90CEC '∠=︒,再根据弧与圆心角的关系可知30CC E '∠=︒,解直角三角形即可.【详解】解:如下图所示,连接CO 并延长至C ',连接CE ,OE ,EC ',∵45CAB ∠=︒,∴∠COB=90°,∴C 点与C '点关于AB 所在直线对称,故当P 为EC '与AB 的交点时,PCE 周长的最小,此时CP PE C E '+=,∵CD DE EB ==, ∴1303BOE BOC ∠=∠=︒ ,60COE BOC BOE ∠=∠-∠=︒, ∴30CC E '∠=︒,∵CC '为直径,∴90CEC '∠=︒,8CC AB '==,∴2214,()432CE CC C E CC CE '''===-=, ∴PCE 周长为CE EP CP ++,最小值为443CE C E '+=+,故选:B .【点睛】本题考查圆周角定理,弧、圆心角的关系,勾股定理,圆的对称性,含30°角的直角三角形.能结合圆的对称性正确作出辅助线是解题关键.5.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.6.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.A解析:A【分析】解方程确定圆的半径为3,圆心距d=2,比较半径与圆心距的大小,根据法则判断即可.【详解】∵2690x x-+=,∴123x x==,∴圆的半径为3,∵点O到直线AB的距离为2,即d=2,∴d<R,∴直线与圆相交,故选A.【点睛】本题考查了用半径、圆心距判定直线和圆的位置关系,熟练解方程,熟记d,R法则是解题的关键.8.B解析:B【分析】根据点与圆的位置关系进行判断即可;【详解】∵圆的半径为8cm,P到圆心O的距离为8cm,即OP=8,∴点P在圆上故选:B.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种:设OO的半径为r,点P到圆心的距离OP=d,则有:点P在圆外→d>r;点P在圆上→d=r;点P在圆内→d<r;9.B解析:B【分析】设出半径,作出△COB底边BC上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)π-R >26πR >23R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.10.D解析:D【分析】由题意得到四边形ABCD 为矩形,BC=2,再根据中间一块阴影的面积等于上下两块面积之和,得到BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,可求出AB=2π,则OP=12AB=4π,在Rt △OEP 中,利用勾股定理可计算出EP ,即可得到两圆的公共弦长EF . 【详解】解:∵AB ,CD 为两等圆的公切线,∴四边形ABCD 为矩形,BC=2,设中间一块阴影的面积为S ,∵中间一块阴影的面积等于上下两块面积之和,∴BC•AB -(S 半圆AD +S 半圆BC -S )=S ,即2AB-π•12+S=S ,∴AB=2π.如图,EF 为公共弦,PO ⊥EF ,OP=12AB=4π, ∴EP=22OE OF -=222161()4ππ--=, ∴EF=2EP=21162π-. 故选:D .【点睛】本题考查了垂径定理、勾股定理,公切线,连心线的性质,熟练掌握相关知识是解题的关键.11.C解析:C【分析】根据相似三角形可得①②正确,由四点共圆可知③不符合题意,面积比转化成边长比可得④正确.【详解】解:∵BAC BDC ∠=∠,AEB DEC ∠=∠∴ABE DCE ∴AE BE DE CE= ∴①正确;相似三角形周长比等于相似比,②正确∵BAC BDC ∠=∠,且△BDC 和△BAC 共有底BC∴得到A ,B ,C ,D 四点共圆;若ADE ABC =∠∠,则=ADE ABC ACB =∠∠∠,则AB=AC ,但题目中并没有告诉这个条件,所以③不一定正确;∵△ABE 和△ADE 共有高, ∴ABEADE SBE S DE =, ∵△CBE 和△CDE 共有高, ∴BCE DCE BE S DE S = ∴ABEBCEADE DCE S BE S S DE S ==即,ABE DCE ADE BCE S S S S ⋅=⋅,故 ④正确;∴①②④正确,选C.【点睛】此题主要考查了相似三角形的判断及其性质,解决本题的关键是合理作辅助圆,熟练掌握相似三角的性质定理.12.C解析:C【分析】根据等边对等角得到40OBA OAB ∠=∠=︒,利用三角形内角和可得100AOB ∠=︒,根据圆周角定理即可求解.【详解】解:∵OA OB =,∴40OBA OAB ∠=∠=︒,∴100AOB ∠=︒, ∴1502ACB AOB ∠=∠=︒, 故选:C .【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键. 二、填空题13.180°【分析】先根据勾股定理求出圆锥的母线为2进而求得展开图的弧长然后根据弧长公式即可求解【详解】解:设圆锥的母线为a 根据勾股定理得:a ==2设圆锥的侧面展开图的圆心角度数为n°根据题意得2π•1解析:180°【分析】先根据勾股定理求出圆锥的母线为2,进而求得展开图的弧长,然后根据弧长公式即可求解.【详解】解:设圆锥的母线为a ,根据勾股定理得:a 2,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=2180n π⋅⋅,解得n =180, 即圆锥的侧面展开图的圆心角度数为180°.故答案为:180°.【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】利用同圆中同弧上的圆周角相等求解即可【详解】∵∴故答案为:60°【点睛】本题考查了圆的基本性质熟练掌握性质并灵活运用是解题的关键解析:【分析】利用同圆中,同弧上的圆周角相等求解即可.【详解】∵BAD ∠=BCD ∠,60BAD ∠=︒∴60BCD ∠=︒,故答案为:60°.【点睛】本题考查了圆的基本性质,熟练掌握性质并灵活运用是解题的关键.15.23°【分析】连接OBOC 根据垂径定理求出再根据角的性质计算出根据计算出从而能够求出最后根据⊥求出的大小【详解】连接OBOC ∵D 是BC 的中点∴∵∴∴∵⊥∴故答案为:【点睛】本题考查圆的垂径定理圆周角解析:23°【分析】连接OB 、OC ,根据垂径定理求出BOD ∠,再根据角的性质计算出AOB ∠,根据OA OB =计算出ABO ∠,从而能够求出ABC ∠,最后根据CF ⊥AB ,求出BCF ∠的大小.【详解】连接OB 、OC∵OB OC =,D 是BC 的中点 ∴1702BOD BOC BAC ===︒∠∠∠ 1567086AOB AOD BOD =-=︒-︒=︒∠∠∠∵OA OB =∴18086472ABO ︒-︒==︒∠ 907020OBC =︒-︒=︒∠∴472067ABC ABO OBC =+=︒+︒=︒∠∠∠∵CF ⊥AB∴90906723BCF ABC =︒-=︒-︒=︒∠∠故答案为:23︒【点睛】本题考查圆的垂径定理,圆周角和圆心角关系,以及直角三角形的性质,属于基础题. 16.:1【分析】先找到点B 关于AE 所在直线的对称点H 由直角三角形的性质可求解【详解】解:如图以点A 为圆心AB 为半径的圆与DF 相切于点H 则点H 为点B 关于AE 所在直线的对称点∴AB=AHAH ⊥DF ∵DF 平分解析:2:1【分析】先找到点B 关于AE 所在直线的对称点H ,由直角三角形的性质可求解.【详解】解:如图,以点A 为圆心,AB 为半径的圆与DF 相切于点H ,则点H 为点B 关于AE 所在直线的对称点,∴AB=AH ,AH ⊥DF ,∵DF平分∠ADC,∴∠ADF=∠CDF=45°,∴∠ADF=∠DAH=45°,∴AH=DH,∴AB,∴BC::1,1.【点睛】本题考查了矩形的性质,轴对称的性质,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.17.3π【分析】根据扇形的面积公式即可求解【详解】解:扇形的面积==3πcm2故答案是:3π【点睛】本题考查了扇形的面积公式正确理解公式是解题的关键解析:3π【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.18.65°或115°【分析】连接OAOB进而求出∠AOB=130°再分两种情况:当C在劣弧AB上当C在劣弧AB上理由圆周角定理和圆内接四边形的性质即可得出结论【详解】解:如图连接OAOB∵PAPB分别切解析:65°或115°.【分析】连接OA,OB,进而求出∠AOB=130°,再分两种情况:当C在劣弧AB上,当C在劣弧AB 上,理由圆周角定理和圆内接四边形的性质,即可得出结论.【详解】解:如图,连接OA、OB,∵PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;在四边形APBO中,∠P=50°,∴∠AOB=360°﹣∠OAP﹣∠P﹣∠OBP=360°﹣50°﹣90°﹣90°=130°①当点C在优弧AB上时,∠ACB=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠ACB=65°;当点C在劣弧AB上时,记作C',由①知,∠ACB=65°,∵四边形ACBC'是⊙O的内接四边形,∴∠AC'B=180°﹣∠ACB=180°﹣65°=115°,故答案为:65°或115°.【点睛】本题考查了切线的性质,圆周角定理,圆内接四边形的性质,求出∠AOB是解本题的关键.19.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n,由题意得()21803602n-︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.20.【分析】根据点A的取法罗列出部分点A的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题解析:20172018π-22【分析】根据点A的取法,罗列出部分点A的横坐标,由此可发现规律,即n A的横坐标为:)12n-,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A 的横坐标为:2,3A 的横坐标为:()22,⋯,∴n A 的横坐标为:()12n -n B ∴的横坐标为:()12n -()()()404020192019201720182020452122223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:()12n -这一规律.三、解答题21.(1)见解析;(2)AC =3.【分析】(1)连接OC ,由等腰三角形的性质得出∠A=∠ACO=30°,∠P=30°,求出∠ACP 的度数,则可求出答案;(2)连接BC ,由勾股定理可求出答案.【详解】解:(1)证明:连接OC ,如图1,∵OA =OC ,∠A =30°,∴∠A =∠ACO =30°,∵CA =CP ,∴∠A =∠P =30°,∴∠ACP =180°﹣∠A ﹣∠P =180°﹣30°﹣30°=120°,∴∠OCP =∠ACP ﹣∠ACO =120°﹣30°=90°,∴OC ⊥CP ,∴CP 是⊙O 的切线;(2)解:如图2,连接BC,∵OA=OB=1,∴AB=2,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=30°,∴BC=12AB=1,∴AC=22AB BC-=3.【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,圆周角定理,直角三角形的性质,熟练掌握切线的判定是解题的关键.22.(1)见解析;(2)36π-【分析】(1)连接OC.由圆周角定理得:∠COD=2∠A =60°.根据三角形内角和可求∠OCD=90°即可;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积即可.【详解】解:(1)证明:连接OC,∵∠A =∠D=30°,由圆周角定理得:∠COD=2∠A =60°.∴∠DCO=180°﹣∠COD-∠D=180°-60°﹣30°= 90°,∴OC⊥CD.∵OC为半径,∴DC 是⊙O 切线.(2)在Rt △OCD 中,∠D =30°,OC =1cm ,∴OD =2cm ,由勾股定理得:DC =3cm . ∴图中阴影部分的面积21601313236026OCD OB SS S 扇形C . 【点睛】此题综合考查了圆周角性质、切线的判定方法、扇形的面积计算方法,解题的关键是用割补法求引用面积阴影部分的面积OCD OB SS S 扇形C .23.(1)见解析;(2)2FB =【分析】(1)由切线的性质可得∠OCP=90°,由等腰三角形的性质可得∠E=∠OCE ,可得∠CFP=∠FCP ,可得PC=PF ;(2)过点B 作BH ⊥PC ,垂足为H ,由题意可证四边形OCHB 是正方形,由勾股定理可得BH=CH=3,可求PH ,BP 的长,即可求BF 的长.【详解】解:(1)连接OC .OE AB ⊥,90EGF ∴∠=︒. PC 与C 相切于点C ,90OCP ∠=︒,90E EFG OCF PCF ∴∠+∠=∠+∠=︒.OE OC =,E OCF ∴∠=∠,EFG PCF ∴∠=∠.EFG PFC ∠=∠,PCF PFC ∴∠=∠,PC PF ∴=.(2)过点B 作BH PC ⊥于点H .//,90OB PC OCP ∠=︒,90BOC ∴∠=︒.OB OC =,∴四边形OCHB 是正方形,∴BH=CH ,∵BH2+CH 2=BC 2,BC=∴BH=CH=3,在Rt BHP 中,4tan BH PH P==, ∴PF=PC=3+4=7,5BP =,752FB ∴=-=.【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,正方形的判定与性质,平行线的性质,以及锐角三角函数等知识,需要学生灵活运用所学知识.24.(1)见解析;(2)485CD =【分析】(1)连接AC 、OC ,由题意易得OC CD ⊥,进而可得//OC AE ,然后有2AE OC =,最后根据圆的基本性质可求解;(2)由题意及(1)可得12CE CB ==,20AE AB ==,进而可得12AC =,然后根据等积法可求解.【详解】(1)证明:连接AC 、OC ,∵CD 是O 的切线,∴OC CD ⊥,∵CD AE ⊥,∴//OC AE ,∵O 是AB 中点,∴OC 是ABE △的中位线,∴2AE OC =,∵22AB OA OC ==,∴AE AB =;(2)解:∵AB 是O 的直径,∴90ACB ∠=︒, ∵20AB =,16BC =,AB=AE∴16CE CB ==,20AE AB ==,∴在Rt △ACB 中,由勾股定理可得12AC =, ∵1122ACE S AE CD AC CE =⋅=⋅, ∴20CD 1612⨯=⨯, ∴485CD =. 【点睛】 本题主要考查切线的性质定理,熟练掌握切线的性质是解题的关键.25.(1)见解析;(2)线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由见解析.【分析】(1)连接OC ,由题意易得OC DC ⊥,∠B=∠OCB ,则有9090DCA ACO B ∠=︒-∠=︒-∠,进而可得DAC DCA ∠=∠,然后问题可求证; (2)连接OC ,则OC DC ⊥,由勾股定理可得2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,然后再由勾股定理可求DC 的长;(3)连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF ,由题意可得9090DCA OCB HBA ∠=︒-∠=︒-∠,则有DA DC =,进而可得CED DCF ∠=∠,然后有CDF EDC ∽△△,则根据相似三角形的性质及线段的等量关系可求解.【详解】(1)证明:如图,连接OC ,则OC DC ⊥,∵OB=OC ,∴∠B=∠OCB ,∴9090DCA ACO B ∠=︒-∠=︒-∠,又∵90DAC BAH B ∠=∠=︒-∠,∴DAC DCA ∠=∠,∴DA DC =,∴ACD △是等腰三角形;(2)如图,连接OC ,则OC DC ⊥,∵在Rt ABO △中,25AB =,O 的半径为4,∴2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,∴在Rt OCD △中,()22242x x +=+, ∴3x =,即线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由:如图,连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF , ∵DC 为O 的切线,∴9090DCA OCB HBA ∠=︒-∠=︒-∠,又∵90BAH HBA ∠=︒-∠,CAD BAH ∠=∠,∴∠=∠DCA CAD ,∴DA DC =,∵CG 是O 的直径,∴90CFG ∠=︒,∴90CED CGF GCF ∠=∠=︒-∠,又∵90DCF GCF ∠=︒-∠,∴CED DCF ∠=∠,又∵D D ∠=∠,∴CDF EDC ∽△△, ∴DC DF DE DC=, ∴2DC DE DF =⋅,∴2DA DE DF =⋅.【点睛】 本题主要考查相似三角形的性质及切线的性质定理,熟练掌握相似三角形的性质及切线的性质定理是解题的关键.26.(1)20°;(2)8【分析】(1)欲求DEB ∠,又已知一圆心角,可利用圆周角与圆心角的关系求解; (2)利用垂径定理可以得到142A C B C B A ===,从而得到结论. 【详解】解:(1)OD AB ⊥,∴AD BD =,11402022DEB AOD ∴∠=∠=⨯︒=︒. (2)3OC =,5OA =,且⊥OD AB ,4AC ∴=,OD AB ⊥,∴12AD BD AB ==, 142AC BC AB ∴===, 8AB ∴=.【点睛】 此题考查了圆周角与圆心角定理以及垂径定理,熟练掌握垂径定理得出4AC CB ==是解题关键.。
北师大版九年级数学下册第三章-圆 单元测试题(含答案)

九年级数学圆单元测试题一、选择题1.若⊙O 所在平面内一点 P 到⊙O 上的点的最大距离为 a ,最小距离为 b (a>b ),则此圆的 半径为( )A .2a b + B .2a b- C .2a b +或2a b - D . a + b 或a - b 2.如图 24—A —1,⊙O 的直径为 10,圆心 O 到弦 AB 的距离 OM 的长为 3,则弦 AB 的 长是( ) A .4 B .6 C .7 D .8 3.已知点 O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120° 4.如图 24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°图 24—A —2图 24—A —3 图 24—A —4 图 24—A —55.如图 24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 OA 、OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8 个 单位,OF=6 个单位,则圆的直径为( ) A .12 个单位 B .10 个单位 C .1 个单位 D .15 个单位 6.如图 24—A —4,AB 为⊙O 的直径,点 C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30° 7.如图 24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于 A 、B ,CD 切⊙O 于点 E ,分 别交 PA 、PB 于点 C 、D ,若 PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .10 8.若粮仓顶部是圆锥形,且这个圆锥的底面直径为 4m ,母线长为 3m ,为防雨需在粮仓顶 部铺上油毡,则这块油毡的面积是( )A .6m 2B . 6πm 2C .12m 2D .12πm 29.如图 24—A —6,两个同心圆,大圆的弦 AB 与小圆相切于点 P ,大圆的弦 CD 经过点 P ,且 CD=13,PC=4,则两圆组成的圆环的面积是( ) A .16π B .36π C .52π D .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .103 B .125C .2D .311.如图 24—A —7,两个半径都是 4cm 的圆外切于点 C ,一只蚂蚁由点 A 开 始依 A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的 8 段长度相等的路径 绕行,蚂蚁在这 8 段路径上不断爬行,直到行走 2006π cm 后才停下来,则蚂蚁 停的那一个点为( )A .D 点B .E 点C .F 点D .G 点二、填空题12.如图 24—A —8,在⊙O 中,弦 AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点 C ,则∠ AOC= 。
九年级下册数学课本答案北师大版

九年级下册数学课本答案北师大版【篇一:北师大版数学九年级下册教材目录】书)第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30o,45o,60o角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计庶阳棚第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题课题学习媒体中的数学总复习【篇二:最新北师大版九年级数学下册单元测试题全套及答案】p class=txt>本文档含本书3章的单元测试题,同时含期中,期末试题,共5套试题第一章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.把△abc三边的长度都扩大为原来的3倍,则锐角a的正弦函数值( a ) 11 222318131213a.4 b.2513134433a.- b. c. d.-5554,第5题图) ,第6题图),第7题图)5.小强和小明去测量一座古塔的高度(如图),他们在离古塔60 m的a处,用测角仪器6.如图,bd是菱形abcd的对角线,ce⊥ab于点e,交bd于点f,且点e是ab中点,则tan∠bfe的值是( d )13b.2 c. d.3 233 b.2 c.3 3+28.如图,要在宽为22米的九洲大道ab两边安装路灯,路灯的灯臂cd长为2米,且a.(11-22)米 b.(113-22)米 c.(11-23)米 d.3-4)米,第8题图),第9题图),第10题图)a.2-3 b.2+3 c.+1 d.-13a.(2,23) b.(,2-3)23c.(2,4-3) d.(4-3)2二、细心填一填(每小题3分,共24分)?sina-12.在△abc中,∠a,∠b的度数满足:?__.22214.如果方程x2-4x+3=0的两个根分别是rt△abc的两条边,△abc最小角是∠a,那么tana的值为.15.如图,cd是rt△abc斜边上的高,ac=4,bc=3,则cos∠bcd的值是,第15题图),第16题图),第17题图)=9,bc=12,则cosc=____.,第18题图)16.如图,△abc中,de是bc的垂直平分线,de交ac于点e,连接be,若be.(结果保留根号)418.如图,点d在△abc的边bc上,∠c+∠bad=∠dac,tan∠badad=765,cd=13,则线段ac的长为.三、用心做一做(共66分)-14=5 2(2)如果tan∠bcd=求cd的长.3cd3由勾股定理得k2+(3k)2=12,解得k1=10103,k2=-(不合题意,舍去),∴cd 101010ef.解:连接ae,在rt△abe中,已知ab=3,be=3,∴aeab+be=3.又be333(m) 23≈1.732)3≈1.732)23203,∴ce=cf+fd+de=15+3+2=17+3≈51.64≈51.6 cm 2结果可保留根号)(1)求两渔船m,n之间的距离;(结果精确到1米)解:(1)在rt△pen中,en=pe=30米.在rt△pem中,me==【篇三:北师大版九年级下数学课本目录(最新版)】txt>2011 2012年印刷内容一样 2007年5月第4版 206页。
北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
北师大版九年级数学下册 第3章 圆 单元测试试题 (有答案)

北师大版九年级数学下册第3章圆单元测试题一.选择题(共10小题)1.圆心角是90°,半径为20的扇形的弧长为()A.5πB.10πC.20πD.25π2.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.123.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20°B.25°C.30°D.50°4.如图,已知点A、B、C、D都在⊙O上,且∠BOD=110°,则∠BCD为()A.110°B.115°C.120°D.125°5.⊙O的直径为4,点A到圆心O距离为3.则()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.点A与⊙O的位置关系不能确定6.如图正六边形ABCDEF内接于⊙O,⊙O的半径为3,则正六边形ABCDEF的边长为()A.3B.6C.3D.37.如图,∠ACB=30°,点O是CB上的一点,且OC=6,则以4为半径的⊙O与直线CA的公共点的个数为()A.0个B.1个C.2个D.无法确定8.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°9.如图,已知OB为⊙O的半径,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,则CD 长为()A.3cm B.6cm C.12cm D.24cm10.⊙O的半径r=10cm,圆心到直线l的距离OM=6cm,在直线l上有一点P,且PM=3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内二.填空题(共8小题)11.如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是.12.如图,若∠BOD=140°,则∠BCD=.13.如图,某下水道的横截面是圆形的,水面CD的宽度为2米,F是线段CD的中点,EF经过圆心O交⊙O与点E,EF=3米,则⊙O直径的长是米.14.如图,点A、B、C、D在⊙O上,B是的中点,过C作⊙O的切线交AB的延长线于点E.若∠AEC=84°,则∠ADC=°.15.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,则△ABC的面积为.16.如图,在Rt△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD的长为.17.如图,某种齿轮有20个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于°.18.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.三.解答题(共8小题)19.如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且DB=DC,求证:AD平分∠CAE.20.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=8,OG=10,求⊙O的半径.21.如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.22.若△ABC内接于⊙O,OC=6cm,AC=cm,则∠B等于.23.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB =∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=2,BP=1,求⊙O的半径.24.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.25.如图,正方形ABCD内接于⊙O,M为的中点,连接AM,BM.(1)求证:;(2)求的度数.26.如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=2,AE=1,求劣弧BD的长.参考答案与试题解析一.选择题(共10小题)1.解:圆心角是90°,半径为20的扇形的弧长==10π.故选:B.2.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.3.解:∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=,∴∠ADC=∠BOC=25°.故选:B.4.解:∵∠A=∠BOD=×110°=55°,而∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°.故选:D.5.解:∵⊙O的直径为4cm,∴⊙O的半径为2cm,而点A到圆心O的距离为3cm,∴点A在⊙O外.故选:A.6.解:∵正六边形ABCDEF内接于⊙O,⊙O的半径为3,而正六边形可以分成六个边长的正三角形,∴正多边形的半径即为正三角形的边长,∴正三角形的边长为3,∴正六边形ABCDEF的边长为3,故选:A.7.解:过O作OD⊥OA于D,∵∠AOB=30°,OC=6,∴OD=OC=3<4,∴以4为半径的⊙O与直线CA的公共点的个数为2个,故选:C.8.解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:AC.9.解:∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM===6(cm),∴CD=2CM=12cm,故选:C.10.解:∵过点O作OM⊥l,连接OP,∴MP=3cm,OM=6cm,∴CO===3,∵⊙C的半径r=10cm,∴d=3<10,∴点P在圆内,.故选:A.二.填空题(共8小题)11.解:∵∠BCD=30°,∴∠BOD=2∠BCD=60°,∴阴影部分的面积==π.故答案为π.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:如图,连接OC,∵F是弦CD的中点,EF过圆心O,∴EF⊥CD.∴CF=FD.∵CD=2,∴CF=1,设OC=x,则OF=3﹣x,在Rt△COF中,根据勾股定理,得12+(3﹣x)2=x2.解得x=,∴⊙O的直径为.故答案为:.14.解:连接BD、BC,∵B是的中点,∴=,∴,∵四边形ABCD是圆内接四边形,∴∠EBC=∠ADC,∵EC是⊙O的切线,切点为C,∴∠BCE=∠BDC=∠ADC,∵∠AEC=84°,∠AEC+∠BCE+∠EBC=180°,∴84°+∠ADC+∠ADC=180°,∴∠ADC=64°.故答案为64.15.解:设CE=x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC∴S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12;故答案为:12.16.解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.17.解:由题意这是正二十边形,中心角α==18°,故答案为18.18.解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.三.解答题(共8小题)19.证明:∵DB=DC,∴∠DBC=∠DCB,∵∠EAD+∠BAD=180°,∠BAD+∠DCB=180°,∴∠EAD=∠DCB,∵∠DAC=∠DBC,∴∠EAD=∠DAC,∴AD平分∠CAE.20.(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG.(2)解:设⊙O的半径为r.则AG=OA+OG=r+10,∵CA=CG,CD⊥AB,∴AE=EG=,EC=ED=4,∴OE=AE﹣OA=,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=()2+42,解得r=或(舍弃),∴⊙O的半径为.21.(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.22.解:如图1,连接OA,OC,过O作OD⊥AC于D,∵OD⊥AC,OD过圆心O,∴AD=CD=AC=3,由勾股定理得:OD===3,即OD=OC,∴∠DCO=30°,∠COD=60°,同理∠AOD=60°,∵∠B=∠AOC,∴∠B=60°.②如图2∵由垂径定理得CM═3,OC=6,由勾股定理得:OM=3,∴∠OCM=30°,∴∠MOC=60°,∴∠AOC=2∠MOC=120°,由圆周角定理得:∠D=60°,∵A、D、C、B四点共圆,∴∠ABC=120°,故答案为:60°或120°.23.(1)证明:∵弧AC=弧AC,∴∠ABC=∠ADC,∵∠AFB=∠ABC,∴∠ADC=∠AFB,∴CD∥BF,∵CD⊥AB,∴AB⊥BF,∵AB是圆的直径,∴直线BF是⊙O的切线;(2)解:设⊙O的半径为r,连接OD.如图所示:∵AB⊥BF,CD=2,∴PD=PC=CD=,∵BP=1,∴OP=r﹣1在Rt△OPD中,由勾股定理得:r2 =(r﹣1)2+()2解得:r=3.即⊙O的半径为3.24.解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.25.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴=,∵M为的中点,∴=,∴+=+,∴;(2)解:连接OM,OA,OB,∵正方形ABCD内接于⊙O,∴∠AOB=90°,∴∠AOM=∠BOM=(360°﹣90°)=135°,∴的度数时135°.26.(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴1:=:BE,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵tan∠EOD==,∴∠EOD=60°,∴∠BOD=120°,∴的长==π.。
2021-2022学年北师大版九年级数学下册第三章 圆单元测试试题(含详细解析)

北师大版九年级数学下册第三章 圆单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O 中,90AOC ︒∠=,则ABC ∠等于( )A .35︒B .40︒C .45︒D .50︒2、如图,在圆内接五边形ABCDE 中,425C CDE E EAB ∠+∠+∠+∠=︒,则CDA ∠的度数为( )A .75︒B .65︒C .55︒D .45︒3、如图,AB 为O 的直径,C 、D 为O 上两点,30CDB ∠=︒,3BC =,则AB 的长度为( )A .6B .3C .9D .124、如图,点A ,B ,C 在O 上,OAB 是等边三角形,则ACB ∠的大小为( )A .60°B .40°C .30°D .20°5、如图,有一个弓形的暗礁区,弓形所含的圆周角50C ∠=︒,船在航行时,为保证不进入暗礁区,则船到两个灯塔A ,B 的张角ASB ∠应满足的条件是( )A .sin sin 25ASB ∠>︒B .sin sin50ASB ∠>︒C .sin sin55ASB ∠>︒D .cos cos50ASB ∠>︒6、下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心7、如图,ABC 中,90ACB ∠=︒,AC BC =,点D 是边AC 上一动点,连接BD ,以CD 为直径的圆交BD 于点E .若AB 长为4,则线段AE 长的最小值为( )A 1B .2C .D 8、已知⊙O 的半径为5,若点P 在⊙O 内,则OP 的长可以是( )A .4B .5C .6D .79、如图,△ABC 内接于⊙O ,∠BAC =30°,BC =6,则⊙O 的直径等于( )A .10B .C .D .1210、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为( )A.8πB.172πC.192πD.12π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为________.2、已知某扇形的半径为5cm,圆心角为120°,那么这个扇形的弧长为 _____cm.3、如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料800 mm,则此圆弧所在圆的半径为________mm.4、在Rt ABC 中,90BAC ∠=︒,4AC AB ==,D ,E 分别是AB ,AC 的中点,若等腰Rt ADE △绕点A 逆时针旋转,得到等腰11Rt AD E ,记直线1BD 与1CE 的交点为P ,则点P 到AB 所在直线的距离的最大值为________.5、如图,五边形ABCDE 是⊙O 的内接正五边形,则ODC ∠的度数是____.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ABC ∆中,AB AC =,以AB 为直径的O 交BC 于点P ,PD AC ⊥于点D .(1)求证:PD 是O 的切线;(2)若120CAB ∠=︒,6AB =,求BC 的值.2、如图,AB 为⊙O 的切线,B 为切点,过点B 作BC ⊥OA ,垂足为点E ,交⊙O 于点C ,连接CO 并延长CO 与AB 的延长线交于点D ,连接AC .(1)求证:AC 为⊙O 的切线;(2)若⊙O 半径为2,OD =4.求线段AD 的长.3、已知:如图,△ABC 为锐角三角形,AB =AC求作:一点P ,使得∠APC =∠BAC作法:①以点A 为圆心, AB 长为半径画圆;②以点B 为圆心,BC 长为半径画弧,交⊙A 于点C ,D 两点;③连接DA 并延长交⊙A 于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠_________=∠_________∠CAD∴∠BAC=12∵点D,P在⊙A上,∴∠CPD=1∠CAD(______________________)(填推理的依据)2∴∠APC=∠BAC4、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;O的半径.(2)若AD=5、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧CD的长.-参考答案-一、单选题1、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:∵∠ABC和∠AOC是弧AC所对的圆周角和圆心角,90∠=,AOC︒∴∠ABC=1∠AOC=45︒.2故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半.2、B【分析】先利用多边的内角和得到540EAB B C CDE E ∠+∠+∠+∠+∠=︒,可计算出115B ∠=︒,然后根据圆内接四边形的性质求出CDA ∠的度数即可.【详解】解:∵五边形ABCDE 的内角和为()52180540-⨯︒=︒,∴540EAB B C CDE E ∠+∠+∠+∠+∠=︒,∵425EAB C CDE E ∠+∠+∠+∠=︒,∴540425115B ∠=︒-︒=︒,∵四边形ABCD 为O 的内接四边形,∴180B CDA ∠+∠=︒,∴18011565CDA ∠=︒-︒=︒.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键.3、A【分析】连接AC ,利用直角三角形30°的性质求解即可.【详解】解:如图,连接AC .∵AB是直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,∴AB=2BC=6,故选:A.【点睛】本题考查圆周角定理,含30°角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、C【分析】由OAB∆为等边三角形,得:∠AOB=60°,再根据圆周角定理,即可求解.【详解】解:∵OAB∆为等边三角形,∴∠AOB=60°,∴ACB∠=12∠AOB =12×60°=30°.故选C.【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键.5、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,∠AEB=∠C=50°,而∠AEB是△SEB的一个外角,由∠AEB>∠S,即当∠S<50°时船不进入暗礁区.所以,两个灯塔的张角∠ASB应满足的条件是∠ASB<50°.∴cos∠ASB>cos50°,故选:D.【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.【详解】解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.7、D【分析】如图,连接,CE 由CD 为直径,证明E 在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AEAO OE 最小,再利用锐角的正弦与勾股定理分别求解,AO OE ,即可得到答案.【详解】解:如图,连接,CE 由CD 为直径,90,CED BECE ∴在以BC 的中点O 为圆心,BC 为直径的O 上运动,连接,AO 交O 于点,E 则此时AE AO OE 最小,90ACB ∠=︒,AC BC =,4,AB =45,ABC BAC ∴∠=∠=︒AC BC AB OB OC OEsin4522,2,22AO22210,AE10 2.故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.8、A【分析】根据点与圆的位置关系可得5OP<,由此即可得出答案.【详解】解:O的半径为5,点P在O内,∴<,5OP观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.9、D【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=6,∴△OBC是等边三角形,∴OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10、C【分析】如图(见解析),先分别求出扇形①、②、③、④和⑤的圆心角的度数,再利用弧长公式即可得.【详解】解:如图,扇形①、③和⑤的圆心角的度数均为360906060150︒-︒-︒-︒=︒,扇形②和④的圆心角的度数均为180606060︒-︒-︒=︒,则图中扇形的弧长总和150********322 18018022πππππ⨯⨯⨯+⨯=+=,故选:C.【点睛】 本题考查了求弧长,熟记弧长公式(180n r l π=,其中l 为弧长,n ︒为圆心角的度数,r 为扇形的半径)是解题关键.二、填空题1、2π【分析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 分的面积【详解】解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中, AH =22AB BH - =22231-=,∴AC =23 ,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴()260?232360CAE S ππ==扇形∴图中阴影部分的面积为2π,故答案为:2π.【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.2、103π 【分析】根据弧长公式代入求解即可.【详解】解:∵扇形的半径为5cm ,圆心角为120°,∴扇形的弧长=120510=1803ππ︒⨯⨯︒. 故答案为:103π.【点睛】 此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:180n r π,其中n 是扇形圆心角的度数,r 是扇形的半径.3、900【分析】由弧长公式l =180n R π得到R 的方程,解方程即可. 【详解】解:根据题意得,800π=160180R π,解得,R =900(mm ). 答:这段圆弧所在圆的半径R 是900 mm .故答案是:900.【点睛】本题考查了弧长的计算公式:l =180n R π,其中l 表示弧长,n 表示弧所对的圆心角的度数.4、1##【分析】首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【详解】解:如图,作PG ⊥AB ,交AB 所在直线于点G ,∵D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,∵∠CAB =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点,∴AD =AE 1=AD 1=PD 1=2,则BD1=故∠ABP =30°,则PB∴PG =12PB =1,故点P 到AB 所在直线的距离的最大值为:PG =1故答案为:1+【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG 的最长时P 点的位置是解题关键.5、54︒【分析】根据圆内接正五边形的定义求出∠COD ,利用三角形内角和求出答案.【详解】解:∵五边形ABCDE 是⊙O 的内接正五边形,∴∠COD=360725︒=︒, ∵OC=OD ,∴ODC ∠=(180)5412COD ︒-∠=︒,故答案为:54︒.【点睛】此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键.三、解答题1、(1)见解析;(2)BC =【分析】(1)根据等腰三角形的性质证得OPB C ∠=∠,进而证得OP ∥AC ,再根据平行线的性质和切线的判定即可证得结论;(2)连接AP ,根据圆周角定理和等腰三角形的性质可得90APB ∠=︒,BP CP =,30B ∠=︒,再根据含30°角的直角三角形性质求出BP 即可求解.【详解】(1)证明:AB AC =,B C ∴∠=∠,OP OB =,B OPB ∴∠=∠,OPB C ∴∠=∠,∴OP ∥AC ,PD AC ⊥,OP PD ∴⊥,又OP 是半径, PD ∴是O 的切线;(2)解:连接AP ,如图, AB 为直径,90APB ∴∠=︒,∵AB=AC ,∠CAB =120°, BP CP ∴=,(180120)230B ∠=-÷=︒, 在Rt△APB 中,6AB =,30B ∠=︒, 132AP AB ∴==,BP ∴=2BC BP ∴==【点睛】本题考查等腰三角形的性质、平行线的判定与性质、切线的判定、圆周角定理、含30°角的直角三角形性质、三角形内角和定理,熟练掌握这些知识的联系与运用是解答的关键.2、(1)见解析;(2)【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sin D=OBOD=ACAD,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE=BE,∴AC=AB,在△AOB 和△AOC 中,AB AC AO AO BO CO =⎧⎪=⎨⎪=⎩, ∴△AOB ≌△AOC (SSS ),∴∠ACO =∠ABO =90°,即AC ⊥OC ,∴AC 是⊙O 的切线;(2)在Rt△BOD 中,由勾股定理得,BD∵sin D =OB OD =AC AD ,⊙O 半径为2,OD =4. ∴24解得AC =∴AD =BD +AB =【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.3、(1)见解析;(2)BAC =BAD ,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可解:(1)如图所示,(2)证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠BAC=∠BAD∠CAD∴∠BAC=12∵点D,P在⊙A上,∠CAD(圆周角定理)(填推理的依据)∴∠CPD=12∴∠APC=∠BAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.4、(1)见详解;(2)4.【分析】(1)连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角(2)根据平行四边形的性质得到BC=AD三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC⊥BC,∴∠ACB=90°,∴∠BAC=30°,∵BE=AB,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE=60°,∴∠E=∠BAE=30°,∵OA=OB,∴∠ABO=∠OAB=30°,∴∠OBC=30°+60°=90°,∴OB⊥CE,∴EC是⊙O的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.5、(1)作图见解析;(2 【分析】(1)由于D 点为⊙O 的切点,即可得到OC =OD ,且OD ⊥AB ,则可确定O 点在∠A 的角平分线上,所以应先画出∠A 的角平分线,与BC 的交点即为O 点,再以O 为圆心,OC 为半径画出圆即可;(2)连接CD 和OD ,根据切线长定理,以及圆的基本性质,求出∠DCB 的度数,然后进一步求出∠COD 的度数,并结合三角函数求出OC 的长度,再运用弧长公式求解即可.【详解】解:(1)如图所示,先作∠A 的角平分线,交BC 于O 点,以O 为圆心,OC 为半径画出⊙O 即为所求;(2)如图所示,连接CD 和OD ,由题意,AD 为⊙O 的切线,∵OC⊥AC,且OC为半径,∴AC为⊙O的切线,∴AC=AD,∴∠ACD=∠ADC,∵CD=BD,∴∠B=∠DCB,∵∠ADC=∠B+∠BCD,∴∠ACD=∠ADC=2∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,即:3∠DCB=90°,∴∠DCB=30°,∵OC=OD,∴∠DCB=∠ODC=30°,∴∠COD=180°-2×30°=120°,∵∠DCB=∠B=30°,∴在Rt△ABC中,∠BAC=60°,∵AO平分∠BAC,∴∠CAO=∠DAO=30°,∴在Rt△ACO中,tan6=∠==OC AC CAO∴CD==.【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.。
第一单元 圆 单元测试 北师大版数学六年级上册

第一单元圆单元测试北师大版数学六年级上册时间:60分钟,满分:100分一、选择题(每题3分,共15分)1.关于圆,下列说法错误的是()。
A.圆有无数条半径B.圆有无数条对称轴C.半径越大,周长越大D.面积越大,周长越小2.将圆规两脚的距离定为3厘米,所画圆的周长是()厘米。
A.6B.9.42C.18.84D.28.263.一个圆的周长扩大到原来的3倍,它的面积就扩大到原来的()倍。
A.3 B.6 C.9 D.124.圆的半径由3cm增加到4cm,这个圆的面积增加了()平方厘米。
A.1B.7C.3.14D.21.985.在长为8厘米,宽为6厘米的长方形中剪一个最大的圆,这个圆的面积是()。
A.50.24平方厘米B.18.84平方厘米C.28.26平方厘米D.25.12平方厘米二、判断题(每题3分,共15分)6.在一个圆中,只有一条直径和两条半径。
()7.任意一个圆都有无数条对称轴。
()8.圆的面积越大,圆的周长就越大。
()9.一个圆的半径为2cm,它的周长和面积相等。
()10.草地上有一个木桩,把一头牛用绳拴在木桩上,若绳子长4米,这头牛最多可以吃到12.56平方米的草。
()三、填空题(每空2分,共20分)11.在同一个圆里,有个圆心,条半径,半径的长度是直径的。
12.用一根长12.56米的绳子围成一个圆,这个圆的直径是米,面积是平方米。
13.如图,把一个圆分成若干等份,然后把它剪开,如图的样子拼起来,拼成一个近似长方形,这个图形的周长比原来圆的周长增加了6厘米,原来圆的周长是厘米。
14.一个时钟的分针长12厘米,当它正好走一圈时,分针的尖端走了厘米,分针扫过的面积是平方厘米。
15.刘师傅有一根长15.7cm的铁丝,将它弯成一个最大的圆形铁环,它的半径是cm,圆的面积是cm2。
四、计算题(共6分)16.求阴影部分的面积。
(单位:厘米)五、操作题(共6分)17.在圆心为O、半径为r的下图上,用圆规补充画一个完整的圆,并用d表示直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O 图3-49B A C
B'A'
C'【测试与评价】
A 卷
一、填空题(每小题3分,共30分)
1. 若圆的一条弦长为12 cm ,它到圆心的距离等于8 cm ,则该圆的直径长等于 ;
2. 已知A 是半径为5 cm 的⊙O 内的一点, OA = 3 cm ,则经过点A 且长度小于8 cm 的弦共有 条;
3. 如图3-48,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,若AB = 2 cm ,则⊙O 的半径OA 为 cm ;
4. 如图3-49,已知⊙O 是等边△ABC 的外接圆,且是等边△A ’B ’C ’的内切圆,若AB = a ,则A ’B ’ = ;
5. 已知两圆的半径分别为3 cm 和4 cm ,两圆的圆心距为10 cm ,则这两圆的位置关系是 ;
6. 如图3-50,在△ABC 中,∠C = 90°,AB = 10,AC = 8,以AC 为直径作圆与斜边AB 交于点D ,则BD 的长为 ;
7. 在半径为1的圆中,弦AB 、AC 的长分别是3、2,则∠BAC = ;
8. 已知一圆锥的侧面展开图的面积为15πcm 2
,母线长为5 cm ,则该圆锥的底面半径为 ;
9. 如图3-51所示的曲边三角形可按下述方法作出:分别以等边三角形的三个顶点为圆心,以边长为半径画弧,使其经过其他两个顶点,然后擦去等边三角形,三段圆弧所围成的图形就是一个曲边三角形. 如果一个曲边三角形的周长为π,那么它的面积为 ;
10.如图3-52,施工工地的水平地面上,两两外切地码放着三根外径都是1米的水泥管,则其最高点到地面的距离是 ;
二、选择题(每小题3分,共18分)
11.下列图形中,既是轴对称图形,又是中心对称图形的是( );
A. 等边三角形、矩形
B. 平行四边形、圆
C. 等腰梯形、正方形
D. 圆、菱形
12.如图3-53,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB = 10,CD = 8,那么AE 的长为( );
A. 2
B. 3
C. 4
D. 5 13.下列说法中,正确的是( );
A. 到圆心的距离等于半径的点在圆内
B. 圆的切线垂直于圆的半径
O
图3-48B A C
O
图3-50
D B A C 图3-51
O 图3-53E
D B A C
C. 等弧所对的圆心角相等
D. 同圆中,圆周角等于圆心角的一半
14.如图3-54,PA 切⊙O 于点A ,PO 交⊙O 于点B ,若PA = 6,PB = 4,则⊙O 的半径等于( );
A. 54
B. 5
2 C. 2 D. 5 15.两圆的圆心坐标分别为(3,0)和(0,1),它们的半径分别为3和5,则这两个圆的位置关系是( );
A. 相离
B. 相交
C. 外切
D. 内切
16.如图3-55,AB 是AB
⌒ 所对的弦,AB 的垂直平分线CD 分别交AB ⌒ 于点C ,交AB 于点D .;AD 的垂直平分线EF 分别交AB ⌒ 于点E ,交AB 于点F ;DB 的垂直平分线GH 分别交AB ⌒ 于点G ,交AB 于点H . 则下面的结论中,不正确的是
( ).
A. AC ⌒ = BC ⌒
B. AE ⌒ = EC ⌒
C. EC ⌒ = CG ⌒
D. EF = GH
三、解答下列各题(17、18、20题各5分,19题7分,共22分)
17.如图3-56,Rt △ABC 中,∠C = 90°,AC = 3 cm ,BC = 4 cm ,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E . 求AD 的长.
18.已知:如图3-57,在⊙O 中,AB ⌒ = AC ⌒ = CD ⌒ ,AB = 3,AE ·ED = 5. 求EC
的长.
19.阅读下面材料:
对于平面图形F ,如果存在一个圆,使图形F 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形F 被这个圆所覆盖.
对于平面图形F ,如果存在两个或两个以上的圆,使图形F 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形F 被这些圆
纠正错解
课后点评
O 图3-54
P B A
图3-55D E B
F A
G C
H 图3-56D E B
A C O
图3-57
D
E
B A
C
所覆盖.
例如,图3-58(1)中的三角形被一个圆所覆盖,图3-58(2)中的四边形被两个圆所覆盖.
解答下列问题:
(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,试求r 的最小值;
(2)边长为1 cm 的等边三角形形被一个半径为r 的圆所覆盖,试求r 的最
小值;
(3)长为2 cm ,宽为1 cm ,的矩形被两个半径都为r 的圆所覆盖,试求r
的最小值及这两个圆的圆心距.
20.如图3-59,以Rt △ABC 的两条直角边AB 、AC 为直径,向三角形内作半圆,两半圆交于BC 上一点D ,设CD = 1 cm ,BD = 3 cm. 求图中阴影部分的面积.
四、证明题(21题4分,22题6分,共10分)
21.如图3-60,在⊙O 中,AB 是直径,CD 是弦,且CD ⊥AB . P 是CAD
⌒ 上一点(不与C 、D 重合),求证:∠CPD =∠BOC .
纠正错解
课后点评
(2)(1)图3-58O
图3-60
P
D
B A
C
22.如图3-61,⊙O 是正方形ABCD 的外接圆,延长BA 到E ,使AE = AB ,连接
DE 、OE ,OE 交AD 于点F . 求证:
(1)直线DE 是⊙O 的切线; (2)EF = 2FO .
测试与评价
A 卷 一、1. 20 cm ; 2. 0; 3. 2; 4. 2a ; 5. 外离; 6. 3.6; 7. 15°或75°; 8. 3 cm ; 9.
23
-π; 10. (
12
3
+)米. 二、11.
D ; 12. A ; 13. C ; 14. B ; 15. D ; 16. B. 三、17. 3.6 cm. 18. 2. 19. (1)2
2
cm ;(2)
33cm ;(3)2
2cm ,1 cm. 20. (3- π3)cm 2
. 四、21. 提示:连接OD ,证明
∠COD = 2∠BOC . 22. (1)提示:连接OD ,证明OD ⊥DE ;(2)提示:过点O 作
OG ⊥AB 于G ,证明AE = 2AG .
纠正错解
课后点评
F C
A
B E
D 图3-61
O。