2017九年级数学上册 4.7 相似三角形的性质 第2课时 相似三角形的周长和面积的性质习题课件 (新版)北师大
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计

(五)总结归纳
1.让学生回顾本节课所学的相似三角形的性质,总结性质的应用和证明方法。
2.引导学生将相似三角形的性质与全等三角形的性质进行对比,明确它们的联系与区别。
3.强调相似三角形在实际生活中的应用,激课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好铺垫。
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,如对应角相等、对应边成比例,并能运用这些性质解决实际问题。
2.使学生能够运用相似三角形的性质,进行几何图形的证明和计算,提高学生的逻辑思维能力和解题技巧。
3.培养学生运用相似三角形的性质,解决与生活实际相关的问题,如地图比例尺、摄影中的相似变换等。
1.学生对相似三角形定义的理解程度,是否能顺利过渡到性质的学习。
2.学生在几何证明方面的能力,是否能运用已知性质进行严密的逻辑推理。
3.学生在实际问题中运用相似三角形性质的能力,是否能够将理论知识与生活实际相结合。
针对以上情况,教师应采取生动形象的教学方法,如运用多媒体、实物模型等辅助教学,帮助学生形象地理解相似三角形的性质。同时,设计具有启发性的问题和例题,引导学生积极参与课堂讨论,提高他们的逻辑思维能力和解题技巧。在课后,关注学生的作业完成情况,及时发现并解决他们在学习过程中遇到的问题,确保学生对相似三角形性质的理解和应用。
(3)采用小组合作法,鼓励学生相互交流、讨论,共同解决几何证明和实际问题;
(4)实施启发式教学法,教师通过提问、引导学生思考,激发学生的思维潜能。
2.教学策略:
(1)逐步引导:从复习相似三角形的定义入手,逐步过渡到性质的学习,让学生在已有知识的基础上自然过渡;
4.7 第2课时 相似三角形的周长和面积之比

新课讲解
想一想:怎么证明这一结论呢? 求证:相似三角形的周长比等于相似比. 证明:设△ABC∽△A1B1C1,相似比为k,
A C B1
A1 C1
B AB kA 1B 1 , BC kB 1C1 , CA kC1 A 1,
AB BC CA k, A1 B1 B1C1 C1 A1
A F B E
C.
1 6
D
1 D. 8
( B)
C
随堂即练
4. 若△ABC ∽△ A′B′C′ ,它们的周长分别为60 cm和72 cm, 且AB=15 cm,B′C′=24 cm,求BC、AC、A′B′、A′C′的长. 解:∵ △ABC ∽△ A′B′C′ ,它们的周长分别为60 cm和 72 cm,
AB BC CA kA1 B1 kB1C1 kC1 A1 有 k. A1 B1 B1C1 C1 A1 A1 B1 B1C1 C1 A1
新课讲解
相似三角形周长的比等于相似比.
新课讲解
AB BC AC 5 , △ABC 例1 如图,△ABC和△EBD中, EB BD ED 3 与△EBD的周长之差为10 cm,求△ABC的周长. 解:设△ABC与△EBD的周长分别
AE AD 3 , 解:∵∠BAD=∠DAE,且 AC AB 5 ∴△ABC ∽△ADE ,
A
E
∴它们的相似比为5:3, 面积比为25:9. 又∵△ABC的面积为100 cm2 , B
D
C
∴△ADE的面积为36 cm2 .
∴四边形BCDE的面积为100-36=64(cm2) .
随堂即练
1.连结三角形两边中点的线段把三角形截成的一个小三 1:2 面积比等于 角形与原三角形的周长比等于______, 1:4 _______.
北师大版九年级上册数学 4.7 第2课时 相似三角形的周长和面积之比 学案

第2课时 相似三角形的周长和面积之比学习目标:1. 理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.2. 能用三角形的性质解决简单的问题.重点:相似三角形的性质与运用.难点:相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.【预习案】1.复习提问:已知: ∆ABC ∽∆A’B’C’,根据相似的定义,我们有哪些结论?(从对应边上看; 从对应角上看:)问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论?【探究案】(1)如果两个三角形相似,它们的周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?推导见教材P109.结论:相似三角形的性质:性质1 相似三角形周长的比等于相似比.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么 k A C C B B A CA BC AB =''+''+''++. 性质2 相似三角形面积的比等于相似比的平方.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么 22)(k B A AB S S C B A ABC =''='''∆∆. 四、例题讲解例 1(补充) 已知:如图:△ABC ∽△A ′B ′C ′,它们的周长分别是 60 cm 和72 cm ,且AB =15 cm ,B ′C ′=24 cm ,求BC 、AB 、A ′B ′、A ′C ′的长.【训练案】(1)如果两个相似三角形对应边的比为3∶5 ,那么它们的相似比为________,周长的比为_____,面积的比为_____.(2)如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________.(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于_______.(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为________cm,面积为_______cm2.3.如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形相似吗?如果相似,求出△A1B1C1和△A2B2C2的面积比.(第3题)。
4.7 相似三角形的性质(数学北师大版九年级上册)

(1)对应角平分线之比等于
;
(2)对应高线之比等于
;
(3)对应中线之比等于
;
(4)周长之比等于
;
(5)面积之比等于
.
例 2 如图,在□ABCD中,AE:EB=1:2.
(1)求△AEF和△CDF的周长之比;
(2)如果
,求 和 .
(3)连结BD交AC于点O,求AF:FO.
根据图形 你能求出 什么?
AE
A' A
B
DC
B'
△ABC∽△A' B' C'
D' C'
相似三角形的面积之比等于相似比的平方。
例 1 如图,在正方形方格图上有△ABC和△DEF.
(1)这两个三角形相似吗?如果相似,请给出证明; (2)这两个三角形的周长之比是多少? 面积之比呢?
A
B
C
E
F
D
当堂练习
1.如果两个三角形相似,相似比为3:5,那么
B
F
O
D
C
F
AE
B
O
D
C
AE
B
F
D
C
A2 B O
D
4
C
例 3 如图所示,在△ABC和△EBD中,
.
(1)求证:∠ABD=∠CBE;
(2)若△ABC和△EBD的周长差为60cm,求这两个三角形的周长;
(3)若△ABC和△EBD的面积和为812cm2,求这两个三角形的面积。
A
D
C
B
E
当堂练习
1.如图,在△ABC中,AD:DB=1:2,DE∥BC,若△ABC的面积为9, 求S四边形DBCE
北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计

4.反思与总结:
-要求学生完成一份学习反思,内容包括本节课学到的知识、遇到的问题、解决方法以及收获等,帮助学生建立自我评价和反思的习惯。
-教师在批改作业时,要及时给予评价和反馈,关注学生的进步,鼓励学生持续努力。
-新知探究:组织学生分组讨论,合作探究相似三角形的性质,教师适时引导和点拨。
-性质应用:设计不同层次的例题和练习,让学生在解决问题的过程中运用相似三角形的性质。
-总结提升:引导学生归纳相似三角形性质的关键点,总结解题策略和方法。
-课堂反馈:通过课堂练习和小结,了解学生的学习情况,及时调整教学策略。
3.教学评价:
-注重培养学生的几何直观和逻辑思维能力,通过逐步引导,帮助学生建立知识体系。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将以生活实例为基础,引导学生从实际问题中发现相似三角形的性质。首先,我会向学生展示一组图片,包括放大镜下的三角形、不同尺寸的国旗图案等,让学生观察并思考这些图形之间是否存在某种关系。通过学生的回答,我会引导他们回顾全等三角形和相似三角形的定义,为新课的学习做好铺垫。
接着,我会提出一个具有挑战性的问题:“如果我们在一个三角形中,知道两边和它们夹角的比例关系,我们能否求出第三边的长度?”这个问题将激发学生的好奇心,促使他们积极思考。在此基础上,导入相似三角形的性质,为接下来的新知学习奠定基础。
(二)讲授新知
在讲授新知阶段,我会采用讲解、示范、引导相结合的方式,让学生逐步理解并掌握相似三角形的性质。
3.引导学生通过观察、实践、探索,发现相似三角形在生活中的应用,提高学生将数学知识应用于实际问题的能力。
4.7《相似三角形的性质》第2课时 数学北师大版 九年级上册教学课件

课堂练习
3.两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这
两个三角形的周长分别为( A ).
A.75,115
B.60,100
C.85,125
D.45,85
4.如图,在△ABC中,BC=2,
DE是△ABC的中位线,下面三个结论:
(1)DE=1(2)△ADE∽△ABC(3)△ADE的面积与△ABC的面积之比为
∴△GEC∽△ABC(两角分别相等的两个三角形相似).
∴
S△GEC S△ABC
EC BC
2
EC 2
BC2 (相似三角形的面积比等于相似比的平
方),即 1 EC 2 . 2 22
A
D
∴EC2=2.即EC= 2.
G
∴BE=BC-EC 2 2 ,
即△ABC平移的距离为 2 2 . B
E
C
F
课堂练习
第四章 图形的相似
4.7 相似三角形的性质 第 2 课时
学习目标
1.巩固相似三角形的性质定理:相似三角形对应高的比、对应角 平分线的比、对应中线的比都等于相似比. 2.了解相似三角形的性质定理:相似三角形的周长比对应相似比, 面积比等于相似比的平方.
复习引入
相似三角形的性质: 1.相似三角形的对应角相等,对应边成比例. 2.相似三角形对应高的比,对应中线的比与对应角平分线的 比都等于相似比.
结论:两个相似多边形的周长比等于相似比面积比等于相似比的平方.
典例精析
例 如图,将△ABC沿BC方向平移得到△DEF,△ABC 与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的 一半.已知BC=2,求△ABC平移的距离.
A
D
度北师大版数学九年级上册第2课时相似三角形中周长和面积的性质课件

解:∵
= = ,∠A=∠A,
∴△ADE∽△ABC,
△
∴
=( ) = ,
△
∵△ABC的面积为100 ,
∴△ADE的面积是 ×100 =36 ,
∴四边形BCDE的面积是100 ﹣36 =64 ,
答:四边形BCDE的面积是64 .
b d
n
b d ... n a
贰
讲授新知
讲授新知
知识点1 类似三角形的周长比与类似比的关系
如图所示△ABC∽△DEF,类似比为k,那么周长比是多少?
解:∵△ABC∽△CDE,且类似比为3:2,
∴
=
=
=k ;
根据等比性质:即周长比是k源自++=
++
肆
课堂小结
课堂小结
1.类似多边形对应线段(高、中线、角平分线)的比,
周长比都等于类似比,
2.类似多边形面积比等于类似比的平方
基础题:1.课后习题 第 1,2,3题。
提高题:2.请学有余力的同学采取合理的方式,搜集
整理与本节课有关的“好题”,被选中的同学下节课
为全班展示。
课后作业
谢谢
学习目标
学习目标
1.掌握类似三角形的周长比,面积比与类似比
的关系.
2.熟练运用类似三角形性质解决实际问题.
3.经历探索类似三角形的性质的过程,培养学
生的探索能力.体会知识迁移、温故知新的好
处.
目录
新
壹
讲
贰
当
叁
课
课
授
北师大版九年级数学上册课件4.7.2相似三角形的周长与面积比

,第7题图)
=3,AC 与 BD 相交于点 O,△AOD 的面积为 3,则△BOC 的面
积是___2_7___.
8.如图,在△ABC中,点D,E分别在AB,AC上,∠AED=
3.两个相似三角形的对应边上的中线之比为2∶3,周长之和为 20,那么这两个三角形的周长分别是( A )
A.8和12 B.9和11 C.7和13 D.6和14 4.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分 线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG= 4 2,则△EFC的周长为( D ) A.11 B.10 C.9 D.8
10.(2014·随州)如图,△ABC中,两条中线BE,CD相交于点O,
则S△DOE∶S△COB=( A ) A.1∶4 B.2∶3
C.1∶3
D.1∶2
11.(2014·宁波)如图,四边形ABCD中,AD∥BC,∠B=∠ACD =90°,AB=2,DC=3,则△ABC与△DCA的面积比为( C )
240 1 200 240 7 .∵ 37 < 7 ,∴乙种剪法得到的正方形面积较大
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月11日星期一上午10时2分16秒10:02:1622.4.11
A.8 和 12 B.9 和 11 C.7 和 13 D.6 和 14 4.如图,在平行四边形 ABCD 中,AB=6,AD=9,∠BAD 的平分 线交 BC 于点 E,交 DC 的延长线于点 F,BG⊥AE 于点 G,BG= 4 2,则△EFC 的周长为( D ) A.11 B.10 C.9 D.8