BP神经网络的研究及应用

合集下载

bp神经网络的应用综述

bp神经网络的应用综述

bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。

BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。

它可以用来解决实际问题。

首先,BP神经网络可以用来解决分类问题。

它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。

这种模型可以用来解决工业控制问题、专家系统任务等。

例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。

此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。

通常,计算机视觉技术需要两个步骤,即识别和分析。

在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。

此外,BP神经网络还可以用于机器人技术。

它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。

例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。

最后,BP神经网络还可以用于未来的驾驶辅助系统中。

这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。

综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。

然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。

因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

BP神经网络详解与实例

BP神经网络详解与实例

模型,它是一个互联的非线性动力学网络.他解决问题
的方法是一种反复运算的动态过程,这是符号逻辑处理 方法所不具备的性质. 1987年首届国际ANN大会在圣地 亚哥召开,国际ANN联合会成立,创办了多种ANN国际
人工神经网络研究的局限性
(1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。
图6 简单网络
假设有P个训练样本,即有P个输入输出对 (Ip, Tp),p=1,…,P, 其中

输入向量为 :
I p (i p1 ,...,i pm )
pn
T
目标输出向量为(实际上的):
Tp
(t p1 ,...,t
)
T
网络输出向量为 (理论上的)
Op (o p1 ,...,o pn )T
y f ( wi xi )
i 1
• θ 为阈值,f(X)是激发函数;它可以是线性 函数,也可以是非线性函数.
m
例如,若记
z
w x
i 1 i
m
i

取激发函数为符号函数
1, sgn( x) 0,

1, y f ( z) 0,
x 0, x 0.
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算
机,即ANN计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模
式识别、组合优化和决策判断等方面取得传统计
算机所难以达到的效果。
人工神经网络 (Artificial Neural Netwroks -----ANN) -----HZAU 数模基地

多元线性回归与BP神经网络预测模型对比与运用研究

多元线性回归与BP神经网络预测模型对比与运用研究

多元线性回归与BP神经网络预测模型对比与运用研究一、本文概述本文旨在探讨多元线性回归模型与BP(反向传播)神经网络预测模型在数据分析与预测任务中的对比与运用。

我们将首先概述这两种模型的基本原理和特性,然后分析它们在处理不同数据集时的性能表现。

通过实例研究,我们将详细比较这两种模型在预测准确性、稳健性、模型可解释性以及计算效率等方面的优缺点。

多元线性回归模型是一种基于最小二乘法的统计模型,通过构建自变量与因变量之间的线性关系进行预测。

它假设数据之间的关系是线性的,并且误差项独立同分布。

这种模型易于理解和解释,但其预测能力受限于线性假设的合理性。

BP神经网络预测模型则是一种基于神经网络的非线性预测模型,它通过模拟人脑神经元的连接方式构建复杂的网络结构,从而能够处理非线性关系。

BP神经网络在数据拟合和预测方面具有强大的能力,但模型的结构和参数设置通常需要更多的经验和调整。

本文将通过实际数据集的应用,展示这两种模型在不同场景下的表现,并探讨如何结合它们各自的优势来提高预测精度和模型的实用性。

我们还将讨论这两种模型在实际应用中可能遇到的挑战,包括数据预处理、模型选择、超参数调整以及模型评估等问题。

通过本文的研究,我们期望为数据分析和预测领域的实践者提供有关多元线性回归和BP神经网络预测模型选择和应用的有益参考。

二、多元线性回归模型多元线性回归模型是一种经典的统计预测方法,它通过构建自变量与因变量之间的线性关系,来预测因变量的取值。

在多元线性回归模型中,自变量通常表示为多个特征,每个特征都对因变量有一定的影响。

多元线性回归模型的基本原理是,通过最小化预测值与真实值之间的误差平方和,来求解模型中的参数。

这些参数代表了各自变量对因变量的影响程度。

在求解过程中,通常使用最小二乘法进行参数估计,这种方法可以确保预测误差的平方和最小。

多元线性回归模型的优点在于其简单易懂,参数估计方法成熟稳定,且易于实现。

多元线性回归还可以提供自变量对因变量的影响方向和大小,具有一定的解释性。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

BP网络的原理与应用

BP网络的原理与应用

BP网络的原理与应用1. 简介BP神经网络,即反向传播神经网络(Back Propagation Neural Network),是一种常见的人工神经网络模型,广泛应用于模式识别、分类、预测等领域。

它通过训练数据进行反向传播的方式来调整神经网络的权重和偏置,从而实现对输入数据的学习和预测。

2. 原理BP神经网络由输入层、隐藏层和输出层构成,每层由多个神经元组成。

其中,输入层接收外界输入的数据,隐藏层进行信号的处理和转换,最终输出层给出模型的预测结果。

BP网络的训练过程主要由两个阶段组成:前向传播和反向传播。

2.1 前向传播在前向传播阶段,输入数据经过一次性的计算和传递,从输入层逐层向前,最终记录到输出层的神经元中。

具体步骤如下: 1. 将输入数据传递给输入层神经元,每个神经元计算输入数据与其对应权重和偏置的乘积之和。

2. 将计算结果经过激活函数(如Sigmoid函数)进行处理,得到隐藏层神经元的输出。

3. 重复以上步骤,将隐藏层的输出作为下一层的输入,直到传递到输出层。

2.2 反向传播在反向传播阶段,根据训练数据与实际输出之间的差距,计算输出误差,并根据误差大小调整权重和偏置,以达到提高网络性能的目的。

具体步骤如下: 1. 计算输出层的误差,即实际输出与训练数据的差值。

2. 通过链式法则逐层计算隐藏层的误差,以及权重和偏置的调整值。

3. 更新每个神经元的权重和偏置,通过选择合适的优化算法(如梯度下降法)进行调整。

4. 重复以上步骤,通过多次迭代,不断减小预测误差和损失函数,提高网络的精确度和泛化能力。

3. 应用BP神经网络广泛应用于许多领域,如图像识别、语音识别、文本分类、金融预测等。

下面列举一些常见的应用场景:•图像识别:通过训练大量图像数据,可以实现对不同物体、人脸等的自动识别和分类。

•语音识别:通过训练大量语音数据,可以实现对语音信号的识别和转换,用于语音助手、智能家居等。

•文本分类:通过训练大量文本数据,可以实现对文本内容的分类和情感分析,用于垃圾邮件过滤、情感识别等。

BP神经网络的研究及应用

BP神经网络的研究及应用

为第k次迭代的神经网络输出误差对个权值或阈值的梯度向量。

负号代表梯度的反方向,即梯度的最速下降方向。

,分别代入式(2.1)中,就可以逐次修正其权值和阈值,并使总的误差向减小的方向变化,最终求出所要求的误差性能。

(2)冲量BP算法(momentum backpropagation,MOBP)因为反向传播算法的应用广泛,所以已经开发出了很多反向传播算法的变体。

其中最常见得事在梯度下降算法的基础上修改公式(2.1)的权值更新法则,即引入冲量因子<1的常数。

更新后的公式为:0≤为学习率,范围在0.001~1之间。

这种方法所加的冲量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,来改善收敛性。

冲量法降低了网络对误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小值。

(3)学习率可变的BP算法(variable learnling rate backprop-agation,VLBP)标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛慢;反之,则有可能修正的过头,导致振荡甚至发散。

因此可以采用图3所示的自适应方法调整学习率。

图3自适应学习自适应调整学习率的梯度下降算法,在训练的过程中,力求使算法稳定,而同时又使学习的不长尽量地大,学习率则是根据局部误差曲面作出相应的调整。

学习率则是通过乘上一个相应的增量因子来调整学习率的大小。

即公式(2.5)所示:(2.5)其中:为使步长减小的增量因子;(3.1)其中:n为隐含层节点数;m为输入节点数;t为输出节点数;a为1~10之间的常数。

根据本文要预测的数据及输入和输出节点的个数,则取隐含层个数为10。

(4)传输函数BP神经网络中的传输函数通常采用S(sigmoid)型函数:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为第k次迭代的神经网络输出误差对个权值或阈值的梯度向量。

负号代表梯度的反方向,即梯度的最速下降方向。

,分别代入式(2.1)中,就可以逐次修正其权值和阈值,并使总的误差向减小的方向变化,最终求出所要求的误差性能。

(2)冲量BP算法(momentum backpropagation,MOBP)
因为反向传播算法的应用广泛,所以已经开发出了很多反向传播算法的变体。

其中最常见得事在梯度下降算法的基础上修改公式(2.1)的权值更新法则,即引入冲量因子
<1的常数。

更新后的公式为:
0≤为学习率,范围
在0.001~1之间。

这种方法所加的冲量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,来改善收敛性。

冲量法降低了网络对误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小值。

(3)学习率可变的BP算法(variable learnling rate backprop-agation,VLBP)
标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛慢;反之,则有可能修正的过头,导致振荡甚至发散。

因此可以采用图3所示的自适应方法调整学习率。

图3自适应学习
自适应调整学习率的梯度下降算法,在训练的过程中,力求使算法稳定,而同时又使学习的不长尽量地大,学习率则是根据局部误差曲面作出相应的调整。

学习率则是通过乘上一个相应的增量因子来调整学习率的大小。

即公式(2.5)所示:
(2.5)
其中:为使步长减小的增量因子;
(3.1)
其中:n为隐含层节点数;m为输入节点数;t为输出节点数;a为1~10之间的常数。

根据本文要预测的数据及输入和输出节点的个数,则取隐含层个数为10。

(4)传输函数
BP神经网络中的传输函数通常采用S(sigmoid)型函数:。

相关文档
最新文档