2013年中考数学试卷分类汇编-6、幂运算
2013全国各地中考数学试题分类汇编

2013全国各地中考数学试题分类汇编
2013年全国各地中考数学试卷分类汇编:等腰三角形
2013年全国各地中考数学试卷分类汇编:直角三角形
2013年全国各地中考数学试卷分类汇编:全等三角形
2013年全国各地中考数学试卷分类汇编:三角形的边与角
2013年全国各地中考数学试卷分类汇编:矩形菱形与正方形
2013年全国各地中考数学试题分类汇编:圆
2013年全国各地中考数学试卷分类汇编:圆的有关性质
2013年全国各地中考数学试卷分类汇编:点直线与圆的位置关系
2013年全国各地中考数学试卷分类汇编:有理数
2013年全国各地中考数学试卷分类汇编:函数与一次函数
2013年全国各地中考数学试卷分类汇编:二次函数
2013年全国各地中考数学试卷分类汇编:反比例函数
2013年全国各地中考数学试卷分类汇编:二次根式
2013年全国各地中考数学试卷分类汇编:不等式(组)
2013年全国各地中考数学试卷分类汇编:动态问题
2013年全国各地中考数学试卷分类汇编:规律探索
精心整理,仅供学习参考。
2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013中考全国100份试卷分类汇编:实数运算(含答案)

2013中考全国100份试卷分类汇编:实数运算(含答案)。
cnXXXX年河北)在下面的计算中,正确的是+B1+的结果是()C.4﹣3 7 D。
cn13-a9 = 3B-8 = 2C .(-2)0 = 0D . 21 =2答案:d3分析:9是9的算术平方根,9 = 3,所以A是错误的;-8 =-2,b错了,(-2) 0 = 1,c也错了,选择d。
(XXXX年京5: 14)计算:(1?3)0??2?2cos45??()?1 .分辨率:1428,(13年山东青岛,8年)计算:2?1?回答:在XXXX,安徽省得了8分,计算:2 sin 300+(1) 2-2?231.(XXXX佛山)计算:2?5?(?2)?(??4?2)。
分析:根据负整数指数幂、绝对值和幂运算的性质,先计算幂,再计算乘除,最后计算加法解决方案:2×[5+(2)]﹣| | ﹣4 | > 2 = 2×(5-8)﹣4÷= ﹣6-﹣8)= 2。
备注:本主题主要考察实数运算。
本主题中需要注意的知识点是:当负整数指数为幂时,a=35.(XXXX深圳)计算:|-8|+()?1-4英寸45英寸?-(XXXX,湛江,广东)计算:-6+9???1?..解决方案:原始形式?6?3?12?837.(XXXX黄石公园)计算:3?3?tan30??38岁?(XXXX) (1)计算:2?1?1??sin45?8?2;?解决方案:原始公式=-1 1|×2(2 +1) 2 +|1- 2 2 21= - +(2 -1) ×2(2 +1)41= - +2[(2 )2 -12]41= 2-47= 465.(XXXX德阳市)计算:12013+(分析:一,一,二1 | 3 1 27 |+3 Tan 60 2。
【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)

第一单元数与式一、实数1、绝对值、相反数、倒数2、科学记数法3、实数的概念及其运算二、整式1.幂的运算、整式的乘除2.因式分解三、分式四、二次根式第二单元方程(组)与不等式组一、一次方程(方程组)二、一元一次不等式与一元一次不等式组三、一元二次方程四、分式方程第三单元函数及其图像一、函数及其图像二、一次函数三、反比例函数四、二次函数五、函数的应用第四单元图形的认识与三角形一、角、相交线与平行线二、三角形与全等三角形三、等腰三角形与直角三角形第五单元四边形一、多边形与平行四边形二、矩形、菱形、正方形三、梯形第六单元圆一、圆的有关概念及性质二、点、直线、圆和圆的位置关系三、和圆有关的计算第七单元图形与变换一、尺规作图、视图与投影二、图形的对称、平移与旋转三、图形的相似与位似四.锐角三角函数和解直角三角形第八单元概率与统计一、统计二、概率第二单元 方程(组)与不等式组一、一次方程(方程组) 1、(2013黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有( )A .1种B .11种C .6种D .9种解析:设6人的帐篷有x 顶,4人的帐篷有y 顶,依题意,有:6x+4y=60,整理得y=15-1.5x ,因为x 、y 均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从2到10的偶数共有5个,所以x 的取值共有6种可能,即共有6种搭建方案. 答案:C2.(2013广安)如果y x b a 321与12+-x y b a 使同类项,则( )A. ⎩⎨⎧=-=32y xB.⎩⎨⎧==3-2y xC.⎩⎨⎧=-=3-2y xD.⎩⎨⎧==32y x解析:y x b a 321 与12+-x y b a 是同类项,∴⎩⎨⎧+==123x y y x ,解得:⎩⎨⎧==32y x 。
答案:D3、(2013凉山州)已知方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值为 ( )A .-1B .0C .2D .3 解析:利用两式相加得:9)(3=+y x ,3=+y x .答案:D4、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 ( )A .60元B .80元C .120元D .180元 解析:设衣服的进价为x 元,依题意得300×80%-x=60,解得x=180.因此这款服装每件的标价比进价多300-180=120(元).答案:C5、(2013淄博)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是 ( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩ +=1225.35+70=20x y D x y ⎧⎨⎩ 解析:确定等量关系:总票数=承认票数+儿童票数,总票钱数=成人票钱数+儿童票钱数.依据等量关系列出方程组即可.答案:B6、(2013•永州)已知(x-y+3)2+y x +2=0,则x+y 的值为( ) A .0 B .-1 C .1 D .5解析:∵ 02)3(2=+++-y x y x ,∴⎩⎨⎧=+=+-0203y x y x ,解得⎩⎨⎧=-=21y x∴121=+-=+y x 答案:C7、(2013南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15解析:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得,解得:2x+2y=16.答案:C答案:B8、(2013毕节)二元一次方程组⎩⎨⎧=-=+112312y x y x 的解是_。
初中数学幂的运算专题讲解及典型题练习(含答案)

初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
中考数学专题-幂的运算

第11讲 幂的运算经典·考题·赏析【例1】下列算式,正确的个数是( ) ①3412a a a ⋅= ②5510a a a += ③336()a a =④236(2)6a a --A .0个B .1个C .2个D .3个【解法指导】①同底数幂相乘,底数不变,指数相加,结果应为7a ;②合并同类项,结果为52a ;③幂的乘方,底数不变,指数相乘,即过位9a ;④积的乘方,等于积的每一个因式分别乘方,结果为68a -,故选A .【变式题组】 01.计算212()()nn c c+⋅的结果是()A .42n c+B .44n c +C .22n c+D .34n c+02.计算100101(2)(2)-+-=_______________03.如果3915()nma b b a b ⋅=,则m =_________,n =____________ 04.计算2323()()()nn x y x y +-⋅-=_______________【例2】若2n+12448n +=,求n 的值.【解法指导】将等式的左右两边变形为同底数幂的形式. 解:∵2n+12448n +=,∴2n+122248n +=,22222232n n n ⋅+=⋅,243232n ⋅=⋅,∴24,2n n == 【变式题组】01.若24m =,216n =,求22m n+的值02.若35nx=,求代数式2332(2)4()n n x x -+的值03.若3m x =,6n x =,则32m nx-=________.04.已知33ma=,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值05.已知232122192m m ++-=,求m 的值【例3】(希望杯)552a =-,443b =-,335c =-,226d =-,那么a 、b 、c 、d 的大小关系为( ) A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c【解法指导】逆用幂的乘方公式()mnm n a a =,将a 、b 、c 、d 变为指数相同的幂的形式.解:∵55511112(2)32a =-=-=-,44411113(3)81b =-=-=-,33311115(5)125c =-=-=-,22211116(6)36d =-=-=-,∴a >d >b >c.故选D .【变式题组】01.已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是()A .a >b >cB .a >c >bC .a <b <cD .b >c >a02.已知503a =,404b =,305c =,则a 、b 、c 的大小关系为()A .a <b <cB .c <a <bC .c <b <aD .b <c <a【例4】求满足200300(1)3x ->的x 的最小正整数【解法指导】将左右两边变成指数相同的幂的形式 解:∵200300(1)3x ->∴21003100[(1)](3)x ->∴2(1)27x -> ∵x 为正整数∴1x ->1x >∴x 的最小正整数为7【变式题组】 01.求满足2003005n <的最大整数值n.02.如果x 、y 是正整数,且2232xy⋅=,求满足条件的整数x 、y演练巩固 反馈提高01.(无锡)下列运算正确的是()A .3412x x ⋅=B .623(6)(2)3x x x -÷-=C .23a a a -=-D .236(2)6x x -=-02.(泰州)下列各式计算正确的是()A .23523a a a +=B .235(2)6b b = C .2(3)()3xy xy xy ÷= D .56236x x x ⋅=03.当n 为正整数时,221()n x +-等于()A .42n x+-B .41n x+-C .41n x +D .42n x+04.计算3224()a a a +⋅的结果为()A . 92aB .62aC .68a a +D .12a05.下列命题中,正确的个数是()(1)m 为正奇数时,一定有等式(4)4mm-=- (2)等式(2)2mm-=,无论m 为何值时都不成立(3)三个等式:236326236()()[))]a a a a a a -=-=--=,,((都不成立; (4)两个等式:3434(2)2mmmm x y x y -=-,3434(2)2n n n n x y x y -=-都不一定成立.A .1个B .2个C .3个D .4个06.下列各题中,计算正确的是()A .322366()()m n m n --=B .322331818[()()]m n m n --=-C .2222398()()m n mn m n --=- D .232399()()m n mn m n --=- 07.已知22|2||238|0yxx x y x y y x -+-+=⋅-⋅,则=_______________08.32125a a x x xx +⋅⋅=,则关于y 的方程ay =a +14的解是________________09.在555511(2)(3)()()23----,,,中,最大的数是_________________ 10.一块长方形草坪的长是1m a-米,宽是3m a+米(m 、n 均为大于1的正整数),则该长方形草坪的面积是______________2米. 11.计算⑴2001100021()(2)34-⋅=_______________ ⑵200120022003113(1)(1)()345⋅-⋅-=____________________12.计算 ⑴122n n y y y y +⋅-⋅⑵4344()()2()()x x x x x x x -+⋅-+⋅---⋅⑶4224223322()()()()()()x x x x x x x x +-⋅--⋅-⋅-⑷232223()7()()()x y x x y -+⋅-⋅-培优升级 奥赛检测01.(江苏竞赛)若1122222n n n n x y +--=+=+,,其中n 为整数,则x 与y 的数量关系为( )A .x =4yB .y =4xC .x =12yD .y =12x02.化简4322(2)2(2)n n n ++-得( )A .1128n +- B .12n +- C .78D .7403.化简2231424m m m ++--=__________________04.15825⨯的位数为_____________________05.2001200220033713⨯⨯所得积的末位数字是____________________06.若3436xy==,,求2927x yx y --+的值07.是否存在整数a 、b 、c 满足91016()()()28915ab c⋅⋅=?若存在,求出a 、b 、c 的值;若不存在,说明理由.08.如果整数x 、y 、z 满足10981()()()271615256x y z ⋅⋅=,求()x yx y z ---的值09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值。
2013年中考数学试题分87个专题整理汇编

2013年中考数学试题分87个专题整理汇编2013中考全国100份试卷分类汇编一次函数1、(2013陕西)如果一个正比例函数的图象经过不同象限的两点A (2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n0D.m考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A,B是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A与点B的横纵坐标可以知:点A与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A与点B在二、四象限:点A在四象限得m2、(2013陕西)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。
解析:设y=kx+b,将表格中的对应的x,y的值代入得二元一次方程组,解方程组得k,b的值,回代x=0时,对应的y的值即可。
设y=kx+b,解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A.3、(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.4、(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.5、(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.6、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x考点:一次函数的性质.分析:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.解答:解:A、B、D选项中的函数解析式k值都是整数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选C.点评:本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、(2013•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.8、(2013•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2考点:一次函数图象上点的坐标特征.分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k的值.解答:解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.9、(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
2013年全国各地中考数学试卷分类汇编:实数

实数一、选择题1.(2013贵州安顺,8,3分)下列各数中,3.14159,38-,0.131131113……,-π,25,71-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】:B .【解析】由定义可知无理数有:0.131131113…,﹣π,共两个.【方法指导】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.已知实数a,b ,若a>b ,则下列结论正确的是A . a -5<b -5B . 2+a <2+bC .33ba < D . 3a>3b 【答案】 D .【解析】不等式有性质有三条,分别是:(1)不等式两边同时加(或减去)一个数,不等号方向不变;由此确定选项A 、B 都是错的;(2)不等式两边同时乘(或除以)一个正数,不等号方向不变;由此确定选项C 是错的;(3)不等式两边同时乘(或除以)一个负数,不等号方向改变;由此确定选项D 是正确的.故答案选D .【方法指导】关于不等式性质的考查,通常都有两种形式,第一种形式就是本题这种形式,即对原不等式两边进行加、减、乘、除运算,让学生根据不等式基本性质作出正确判断,解决这类题,基本方法就是先弄清不等号两边进行了什么运算,然后再看这种运算是否符合不等式的基本性质;第二种形式是设计为填空题,先给定一个不等式,然后对这个不等式的不等号两边进行四则运算,要学生根据这个运算确定不等号方向是否发生改变,要求学生填不等号.3.(2013浙江湖州,1,3分)实数π,15,0,-1中,无理数是( ) A .π B .15C .0D .-1 【答案】A【解析】A 、是无理数;B 、是分数,是有理数,故选项错误;C 、是整数,是有理数,选项错误;D 、是整数,是有理数,选项错误.故选A .【方法指导】此题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2013广东广州,7,4分)实数a 在数轴上的位置如图4所示,则|a -2.5|=( )A . a -2.5B . 2.5- aC . a +2.5D . -a -2.5【答案】 B . 【解析】(1)因为绝对值符号里面的a -2.5是负数,去掉绝对值之后,结果为它的相反数,所以答案为2.5- a ,故答案选B .(2)由题中的图可知,|a -2.5|表示的意义是数a 与数2.5所表示的两点之间的距离,而这两点之间的距离为2.5- a ,故答案选B .【方法指导】解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉绝对值;二是根据绝对值的几何意义直接计算.5.(2013广东广州,8,4分)若代数式1-x x有意义,则实数x 的取值范围是( ) A . 1≠x B . 0≥x C . 0>x D . 0≥x 且1≠x 【答案】 D .【解析】列不等式组⎩⎨⎧≠-≥010x x ,解这个不等式组,得0≥x 且1≠x ,∴答案选D .【方法指导】对于求代数式中或函数式中x 的取值范围的题,通常都是关于二次根式和分式的意义:6.(2013山东德州,1,3分)下列计算正确的是A 、231-⎪⎭⎫⎝⎛=9 B 、()22-=-2 C 、()02-=-1 D 、35--=2【答案】 A【解析】根据负指数、零指数幂,数的开方、乘方,有理数绝对值意义分别计算.∵93113122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-,2422==-)(,∴()02-=-1 ,8835=-=--. 【方法指导】实数运算中、数的开方、乘方、正整数、0、负指数幂、绝对值运算等是中考考查的核心知识点.主要体现基本技能、基本运算.7.(2013湖南永州,6,3分)已知2(3)0x y -+=,x y +则的值为A . 0B . -1C . 1D . 5 【答案】C.【解析】∵30x y -+≥,20x y +≥,而2(3)20x y x y -+++=,所以30x y -+=,20x y +=,解得1x =-,2y =,所以x y +=1.【方法指导】初中阶段学习了三个非负数, 1.0a ≥;2.20a ≥;3.0a ≥题目一般是其中的两个的和(少数有三个的和)为零,让你得出一个方程组,解方程组,再代入求值,这是常见的题,再难一点的就要去配方,化成这个形式,然后一样的来解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、幂运算1、(2-1整式·2013东营中考)下列运算正确的是( )A .a a a =-23B .632a a a =⋅C .326()a a =D . ()3393a a =2.C.解析:3a 与2a 不能合并同类项,故选项A 错误.23235a a a a +==,所以选项B 错误.3333(3)327a a a ==,选项D 错误.2、(2013•新疆)若a ,b 为实数,且|a+1|+=0,则(ab )2013的值是( )3、(2013•新疆)下列各式计算正确的是( )、﹣=3=,运算正确,故本选项正确;、4、(2013•曲靖)下列等式成立的是( ).≠+=5、(2013山西,5,2分)下列计算错误的是( )A .x 3+ x 3=2x 3B .a 6÷a 3=a 2C =D .1133-⎛⎫= ⎪⎝⎭【答案】B 【解析】a 6÷a 3=633a a -=,故B 错,A 、C 、D 的计算都正确。
6、(2013杭州)下列计算正确的是( )A .m 3+m 2=m 5B .m 3m 2=m 6C .(1﹣m )(1+m )=m 2﹣1D .考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A .不是同类项,不能合并,故选项错误;B .m 3m 2=m 5,故选项错误;C .(1﹣m )(1+m )=1﹣m 2,选项错误;D .正确.故选D .点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.7、(2013年临沂)下列运算正确的是(A)235x x x +=. (B)4)2(22-=-x x . (C)23522x x x ⋅=. (D)()743x x =.答案:C解析:对于A ,不是同类项不能相加,故错;完全平方展开后有三项,故B 也错;由幂的乘方知()4312x x =,故D 错,选C 。
8、(2013年江西省)下列计算正确的是( ). A .a 3+a 2=a 5 B .(3a -b )2=9a 2-b 2 C .a 6b ÷a 2=a 3b D .(-ab 3)2=a 2b 6【答案】 D .【考点解剖】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】 根据法则直接计算.【解答过程】 A.3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222(3)96a b a ab b -=-+;C.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为624a b a a b ÷=;D.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选D.【方法规律】 熟记法则,依法操作.【关键词】 单项式 多项式 幂的运算9、(2013年南京)计算a 3.( 1 a)2的结果是 (A) a (B) a 5 (C) a 6 (D) a 9答案:A 解析:原式=321aa a=,选A 。
10、(2013凉山州)你认为下列各式正确的是( )A .a 2=(﹣a )2B .a 3=(﹣a )3C .﹣a 2=|﹣a 2|D .a 3=|a 3| 考点:幂的乘方与积的乘方;绝对值.专题:计算题.分析:A 、B 选项利用积的乘方与幂的乘方运算法则计算即可做出判断;C .D 选项利用绝对值的代数意义化简得到结果,即可做出判断.解答:解:A .a 2=(﹣a )2,本选项正确;B .a 3=﹣(﹣a )3,本选项错误;C .﹣a 2=﹣|﹣a 2|,本选项错误;D .当a=﹣2时,a 3=﹣8,|a 3|=8,本选项错误, 故选A 点评:此题考查了幂的乘方与积的乘方,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.11、(2013•宁波)下列计算正确的是( )12、(2013成都市)下列运算正确的是( ) A.1-=3⨯(3)1 B.5-8=-3 C.-32=6 D.0-=0(2013)答案:B 解析:13×(-3)=-1,3128-=,(-2013)0=1,故A 、C 、D 都错,选B 。
13、(2013•攀枝花)下列计算中,结果正确的是( )=2﹣=14、(2013•眉山)下列计算正确的是()15、(2013•泸州)下列各式计算正确的是()16、(2013•广安)下列运算正确的是()17、(2013•衢州)下列计算正确的是()18、(2013•嘉兴)下列运算正确的是()19、(2013•雅安)下列计算正确的是()20、(2013•遂宁)下列计算错误的是()=2,本选项正确.故选21、(2013•巴中)下列计算正确的是()分析:根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可解:A、a2与a3,不是同类项不能直接合并,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a2•a3=a5,故本选项错误;D、(a4)3=a12,计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的乘除、合并同类项的知识,解答本题的关键是掌握各部分的运算法则.22、(2013•烟台)下列各运算中,正确的是()23、(2013泰安)下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3x C.()2=x6D.﹣3(2x﹣4)=﹣6x﹣12考点:整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方;负整数指数幂.分析:根据合并同类项的法则、整式的除法法则、幂的乘方法则及去括号的法则分别进行各选项的判断.解答:解:A.3x3﹣5x3=﹣2x3,原式计算错误,故本选项错误;B.6x3÷2x﹣2=3x5,原式计算错误,故本选项错误;C.()2=x6,原式计算正确,故本选项正确;D.﹣3(2x﹣4)=﹣6x+12,原式计算错误,故本选项错误;故选C.点评:本题考查了整式的除法、同类项的合并及去括号的法则,考察的知识点较多,掌握各部分的运算法则是关键.24、(2013泰安)(﹣2)﹣2等于()A.﹣4 B.4 C.﹣14D.14考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行运算即可.解答:解:(﹣2)﹣2==14.故选D.点评:本题考查了负整数指数幂的知识,解答本题的关键是掌握负整数指数幂的运算法则.25、(2013菏泽)如果a的倒数是﹣1,那么a2013等于()A.1 B.﹣1 C.2013 D.﹣2013考点:有理数的乘方;倒数.分析:先根据倒数的定义求出a的值,再根据有理数的乘方的定义进行计算即可得解.解答:解:∵(﹣1)×(﹣1)=1,∴﹣1的倒数是﹣1,a=﹣1,∴a2013=(﹣1)2013=﹣1.点评:本题考查了有理数的乘方的定义,﹣1的奇数次幂是﹣1.26、(2013•德州)下列计算正确的是()=﹣2C27、(2013•宁夏)计算(a)的结果是()28、(2013•呼和浩特)下列运算正确的是()29、(2013•铁岭)下列各式中,计算正确的是()30、(2013•徐州)下列各式的运算结果为x6的是()31、(2013•株洲)下列计算正确的是()32、(2013•张家界)下列运算正确的是().、33、(2013•淮安)计算(2a)3的结果是()34、(2013•娄底)下列运算正确的是()35、(2013•常州)下列计算中,正确的是()36、(2013•益阳)下列运算正确的是()37、(2013•衡阳)下列运算正确的是()38、(2013•郴州)下列运算正确的是()39、(2013•常德)下面计算正确的是()40、(2013•孝感)下列计算正确的是()C、41、(2013•宜昌)下列式子中,一定成立的是()42、(2013•咸宁)下列运算正确的是()43、(2013•十堰)下列运算中,正确的是()44、(2013•黄冈)下列计算正确的是()45、(2013•荆门)下列运算正确的是()46、(2013•白银)下列运算中,结果正确的是()47、(2013•恩施州)下列运算正确的是()48、(2013•鄂州)下列计算正确的是().、通过开平方可以求得=数幂的乘法以及解一元二次方程﹣﹣因式分解法.注意,任何不为零49、(2013•绥化)下列计算正确的是()50、(2013•牡丹江)下列运算正确的是(),本选项错误;=4,故选51、(2013哈尔滨)下列计算正确的是( )..(A)a3+a2=a5 (B)a3·a2=a6 (C)(a2)3=a6 (D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。
分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.52、(2013•遵义)计算(﹣ab2)3的结果是()﹣﹣a﹣ab(﹣﹣a53、(2013•黔东南州)下列运算正确的是()+=2+=2+54、(2013•黔东南州)(﹣1)的值是()55、(2013•六盘水)下列运算正确的是()56、(2013•毕节地区)下列计算正确的是()57、(2013年广东湛江)下列运算正确的是( ).A 236a a a ⋅= .B ()426a a = .C 43a a a ÷= .D ()222x y x y +=+ 解析:本题考查到的公式:1、幂指数运算:(),,,n m n m n m mn m n m n aa a a a a a a +-⋅==÷= 2、完全平方和公式:()2222x y x xy y +=++,∴选C 58、(2013年深圳市)下列计算正确的是( ) A.222)(b a b a +=+ B.22)ab (ab = C.523)(a a = D.32a a a =⋅答案:D解析:对于A ,因为,对于B :,对于C :,故A ,B ,C 都错,选D 。
59、(2013年广州市)计算:()23m n 的结果是( )A 6m n B 62m n C 52m n D 32m n 分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题60、(2013年佛山市)下列计算正确的是( )A .1243a a a =⋅B .743)(a a =C .3632)(b a b a =D .)0( 43≠=÷a a a a分析:根据同底数幂乘法、幂的乘方、积的乘方的运算性质,利用排除法求解解:A 、应为a 3•a 4=a 7,故本选项错误;B 、应为(a 3)4=a 12,故本选项错误;C 、每个因式都分别乘方,正确;D 、应为a 3÷a 4=(a≠0),故本选项错误.故选C .点评:本题考查了同底数幂的乘法,积的乘方和幂的乘方,需熟练掌握且区分清楚,才不容易出错61、(2013年广东省3分、7)下列等式正确的是A.1)1(3=--B. 1)4(0=-C. 6322)2()2(-=-⨯-D. 2245)5()5(-=-÷-答案:B解析:(-1)-3=-1,(-2)2×(-2)3=25,(-5)4÷(-5)2=(-5)2,所以,A 、C 、D 都错,选B 。