3.3 解一元一次方程(二)——去括号与去分母(3)

合集下载

3.3 解一元一次方程 (二)——去括号与去分母 (3)

3.3 解一元一次方程 (二)——去括号与去分母 (3)

5.解方程 2x3-1-3x4-4=1时,去分母正确的是( B )
A.4(2x-1)-9x-12=1
B.4(2x-1)-3(3x-4)=12
C.4(2x-1)-9x+12=1
D.8x-4+3(3x-4)=12
课后巩固
6.解方程 2x3+1-10x6+1 =1时,去分母正确的
是( C )
A.4x+1-10x+1=1 B.4x+2-10x-1=1 C.4x+2-10x-1=6 D.4x+2-10x+1=6
课堂导学
知识点:去分母解方程
【例题】解方程:
x1+01-
x-1 5
=1.
【解析】方程两边同时乘10,约去分母,注意等号右
边的“1”也要乘10.
【答案】解:去分母,得x+1-2(x-1)=10. 去括号,得x+1-2x+2=10. 移项,得x-2x=10-1-2. 合并同类项,得-x=7.
系数化为1,得x=-7.
整理得,2x-1=x+3-6,解得x=-2.

感谢聆听
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/132021/9/132021/9/132021/9/139/13/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月13日星期一2021/9/132021/9/132021/9/13 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/132021/9/132021/9/139/13/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/132021/9/13September 13, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/132021/9/132021/9/132021/9/13

3.3解一元一次方程去括号与去分母(教案)

3.3解一元一次方程去括号与去分母(教案)
4.教学效果评价:从学生的课堂表现和课后作业来看,大多数学生能够掌握去括号和去分母的解题方法,但仍有少数学生需要进一步巩固。在今后的教学中,我将更加关注这部分学生的需求,提供有针对性的指导。
5.教学改进措施:针对本节课的教学反思,我计划在以下几个方面进行改进:
a.加强基础知识的教学,让学生熟练掌握分配律、交叉相乘等基本运算方法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程去括号与去分母的基本概念。去括号是指将方程中的括号通过分配律展开,简化方程形式。去分母是指通过交叉相乘等方法,将含有分数的方程转化为整数形式,便于求解。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个含有括号和分数的一元一次方程简化并求解。
-方程解的检验:强调解完方程后对解进行检验的重要性,确保解满足原方程。
举例:在解方程3x + 4 = 2(x + 3)时,学生需要运用分配律将方程转化为3x + 4 = 2x + 6,进而求解。
2.教学难点
-多项式括号的处理:对于复杂的多项式括号,如2(x - 3y + 4z) = 5(x + y - 2z),学生需要能够正确分配并合并同类项。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时1ห้องสมุดไป่ตู้分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.3解一元一次方程去括号与去分母(教案)

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5 B.3x﹣2x﹣6=5 C.3x﹣2x+3=5 D.3x﹣2x+6=52.把方程去分母,下列变形正确的是()A.2x﹣x+1=1 B.2x﹣(x+1)=1 C.2x﹣x+1=6 D.2x﹣(x+1)=63.下列方程变形中,正确的是()A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为()A.x=1 B.x=﹣1 C.x=﹣12 D.x=125.解方程时,把分母化为整数,得()A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为()A.x=﹣2 B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣4二、填空题11.当x=时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为.13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a 的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。

二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。

(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。

2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。

(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。

三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。

2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。

3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。

4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。

5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。

四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。

2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。

3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。

4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。

五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。

2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。

3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。

3.3解一元一次方程(二)去括号与去分母(3)

3.3解一元一次方程(二)去括号与去分母(3)

15 x-18 x-4 x=3+6-8
合并同类项,得
-7 x=1
系数化为1,得
1 x=- . 7
4.基础训练 应用拓展
3 8 11 2 2 5 (3) x+ = x- ; (4) ( x+4)=1. 8 3 9 7 9 7
思考:
1.通过以上练习,对于解一元一次方程的步骤
我们有什么新的发现?
答:要根据具体方程的形式和特点,恰当 地选择便于解题的步骤和方法.
解一元一次方程的一般步骤:
变形名称 去分母 具体的做法 依据等式性质2 各项都乘所有的分母的最小公倍数. 依据去括号法则和乘法分配律先去 小括号,再去中括号,最后去大括号.
去括号
依据等式性质1 移项 注意“过桥变号” 依据乘法分配律 合并同类项 将未知数的系数相加,常数项相加. 依据等式性质2 系数化为1 在方程的两边除以未知数的系数.
3.巩固新知 例题规范
例3 解下列方程: x+1 2-x -1=2+ (2)小心漏乘,添括号 (1) 2 4 解:去分母(方程两边乘4),得
注意:(1)分母的最小 公倍数是4
2( x+1)-4=8+(2-x )
去括号,得 移项,得
2 x+2-4=8+2-x

2 x+x=8+2-2+4
合并同类项,得
分析:设这个数为x. 根据题意,得
2 1 1 x+ x+ x+x=33 3 2 7
问题2. 这个方程与前面学过的一元一次方程有 什么不同?怎样解这个方程呢?
2.合作交流 探究方法
问题3 不同的解法各有什么特点?通过比较你 认为采用什么方法比较简便? 这样做的依 方法1: 据是什么? 方法2: 合并同类项, 方程两边同乘各分母的最小 得 公倍数,则得到

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。

在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。

通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。

但是,学生在实际操作中可能会遇到去括号和去分母的困惑。

因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。

三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。

四. 教学重难点1.去括号与去分母的步骤和技巧。

2.在实际问题中,如何正确运用去括号与去分母的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。

2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。

3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。

4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。

5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。

6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。

7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。

3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

根据等式的性质2,在这个方程的两边乘各分母的 最小公倍数42,得
28 x 21x 6 x 42 x 1386
合并同类项,得 97 x 1386 .
1386 系数化为1,得 x . 97
你能解这个方程吗?
这个 方程 中各 分母 的最 小公 倍数 是多 少?
3x 1 3x 2 2x 3 2 2 10 5
A.15x-5(x+1)=1-3(x+3)
B. 15x-(x-1)=15-3(x+3) C.x-5(x-1)=1-3(x+3) D. 15x-5(x-1)=15-3(x+3) x 1 x +7 2 4.如果方程 的解也是方程 3 6 7. 那么a的值是
2 ax 0 3
的解,
5.小张和小王从甲地去乙地,小张早出发1小时,却晚到 1小时,他的速度为4千米/时,小王的速度为6千米/时, 则甲、乙两地的距离是 24 千米.
2
3
互为相反数.
6.解下列方程:
19 21 () 1 x ( x 2); 100 100 (2) x 1 x 2 ; 2 4
5 x 1 3x 1 2 x 3x 2 2x 1 2x 1 (3) ; (4) 1 . 4 2 1 3 2 5 9 4
x=21
B.4x+2-x+1=12 D.x=3
B.7 C.8 D.-1 x 1 3 2x 5 4.方程 的解是( C ) 4 6 2 A.x=-1 B.x=-2 C.x=-3 D.x=-4
1 1 ( x 1) 3.若式子 与 ( x 2)的值相等,则x的值是( B ) 2 3
13 3 2x 2 x 5.当x=____ 时,式子 与 8

人教版初一七年级上册数学 课时练《 解一元一次方程(二)—去括号与去分母》03(含答案)

人教版初一七年级上册数学 课时练《 解一元一次方程(二)—去括号与去分母》03(含答案)

人教版七年级上册数学《3.3解一元一次方程(二)—去括号与去分母》课时练一、单选题1.关于x 的方程(a +1)x =a ﹣1有解,则a 的值为()A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±12.方程()3235x x --=去括号变形正确的是()A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=3.下列方程变形中,正确的是()A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C .方程23x =32,未知数系数化为1,得x =1D .方程10.2x -﹣0.5x=1化成3x =64.在解方程123123x x -+-=时,去分母正确的是()A .3(1)2(23)1x x --+=B .3(1)2(23)1x x -++=C .3(1)2(23)6x x --+=D .3(1)2(23)6x x --+=5.已知有理数x 滴足:31752233x xx -+-³-,若32x x --+的最小值为a ,最大值为b ,则a b -=()A .3-B .4-C .5-D .6-6.若方程()2160x --=与关于x 的方程313a x-=的解互为相反数,则a 的值为().A .13-B .13C .73D .1-7.将方程0.50.2 1.550.90.20.5x x--+=变形正确的是()A .521550925x x --+=B .521550.925x x--+=C .52155925x x--+=D .520.93102x x -+=-8.解方程21132x x a-+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是()A .3x =-B .2x =-C .13x =D .13x =-9.将方程211132x x -+-=去分母得到()221316x x --+=,错在()A .分母的最小公倍数找错B .去分母时漏乘项C .去分母时分子部分没有加括号D .去分母时各项所乘的数不同10.若关于x 的方程2123kx k kx ++=+的解为非正整数,那么符合条件的所有的整数k 之和为()A .32B .29C .28D .2711.把方程102.07.015.03.0=--xx 分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132xx --=12.小强在解方程时,不小心把一个数字用墨水污染成了x +2=1-2x -·,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是()A .5B .3C .-3D .-513.若1x =是方程36m x x -+=的解,则关于y 的方程()()3225m y m y --=-的解是()A .10y =-B .3y =C .43y =D .4y =14.小明解一道一元一次方程的步骤如下0.10.20.20.510.60.3x x x +--=+解:2251 (63)x x x +--=+①()()622256.......x x x -+=-+②624106..............x x x --=-+③46106 2...............x x x ---=--+④1114............................x -=-⑤14 (11)x =⑥以上6个步骤中,其依据是等式的性质有()A .①②④B .②④⑥C .③⑤⑥D .①②④⑥二、填空题15.解一元一次方程3141136x x --=-时,为达到去分母目的,第一步应该在方程的两边同乘以各分母的最小公倍数________.16.关于x 的方程4(1)3(1)2x k +--=的解是1=-x k ,则k 的值是_________.17.若52x +与27-+x 的值互为相反数,则2x -=_______.18.定义一种新运算:a *b =12a ﹣13b .若(x +3)*(2x ﹣1)=1,则根据定义的运算求出x 的值为_____.19.已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______.三、解答题20.解下列方程:(1)113424x -=(2)75348x -=(3)215168x x -+=(4)192726x x --=(5)11(32)152x x --=(6)2151136x x +--=(7)1(214)427x x+=-(8)329(200)(300)300101025x x +--=´21.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y .22.若方程126x -+13x +=1-214x +与关于x 的方程x +63x a -=6a -3x 的解相同,求a 的值.23.小明同学在解方程21133x x a-+=-去分母时,方程右边的1-没有乘3,因而求得方程的解为3x=,试求a的值,并正确地解方程.24.规定符号(a,b)表示a、b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(3,1)=1,[3,1]=3.(1)计算:(-2,3)+[23-,(2,34-)];(2)若(m,m-2)+3[-m,-m-1]=-5,求m的值.参考答案1.C 2.D 3.D 4.D 5.B 6.A7.D 8.A 9.C 10.B11.B 12.A13.B14.B15.617.-518.519.y =-673解:∵关于x 的一元一次方程320212021xx a +=+①的解为x =2021,∴关于y 的一元一次方程()3232021322021y y a --=--②中-(3y -2)=2021,解得:y =-673,故答案为:y =-673.20.(1)5x =;(2)1314x =;(3)1x =-;(4)203x =-;(5)2512x =;(6)3x =-;(7)78x =;(8)216x =解:(1)移项,得131442x =+,合并同类项,得1544x =,系数化为1,得5x =;(2)去分母,得2(75)3x -=,去括号,得14103x -=,移项,得14310x =+,合并同类项,得1413x =,系数化为1,得1314x =;(3)去分母,得4(21)3(51)x x -=+,去括号,得84153x x -=+,移项,得81543x x -=+,合并同类项,得77x -=,系数化为1,得1x =-;(4)去分母,得34292x x -=-,移项,得39242x x -=-+,合并同类项,得640x -=,系数化为1,得203x =-;(5)去括号,得13152x x -+=,移项,得13152x x +=+,合并同类项,得6552x =,系数化为1,得2512x =;(6)去分母,得2(21)(51)6x x +--=,去括号,得42516x x +-+=,移项,得45621x x -=--,合并同类项,得3x -=,系数化为1,得3x =-;(7)去括号,得22427x x +=-,移项,得22427x x +=-,合并同类项,得1627x =,系数化为1,得78x =;(8)去括号,得3260601081010x x +-+=,移项,得3210860601010x x +=+-,合并同类项,得11082x =,系数化为1,得216x =.21.(1)23x =;(2)45y =-.解:(1)根据题意列方程为:()()1.24 3.614x x +=-去括号得:1.2 4.8 3.650.4x x +=-,移项、合并同类项得: 2.455.2x -=-系数化为1得:23x =.(2)根据题意列方程为:3 1.5124y y +-=去分母得:2(3 1.5)1y y +=-去括号得:631y y +=-,移项、合并同类项得:54y =-系数化为1得:45y =-.22.6解:121211634x x x -+++=-,2(12)4(1)123(21)x x x -++=-+,24441263x x x -++=--,63x =,12x =,把12x =代入6336x a ax x -+=-,得:1332362a a -+=-,3629a a +-=-,318a -=-,6a =,∴a 的值为6.23.3a =,1x =解:把3x =代入方程()211x x a -=+-,得()6131a -=+-,解得3a =.把3a =代入21133x x a-+=-,得213133x x -+=-.去分母,得2133x x -=+-,移项,得2331x x -=-+,合并同类项,得1x =.24.(1)83-;(2)m =32.解:(1)(2,34-)=34-,(-2,3)=-2,[23-,(2,34-)]=[23-,34-]=23-,则(-2,3)+[23-,(2,34-)]=-2+(23-)=83-;(2)根据题意得:m-2+3×(-m)=-5,解得m=3 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑狼口中学课堂教学设计
七年级上册学科:数学主备人:纪文静授课人:审核人:卢志祥
教学设计:
一、探究新知
问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.
1、设这个数为x,则它的三分之二可以表示为________,它的一半可以表示为_____,它的七分之一可以表示为_________.
2.根据题意中的等量关系,列出的方程是___________________________.这个方程和以前学过的方程不同之处在于_____________.
问题:解方程
通过上面的两个为题你能总结解一元一次方程的一般步骤是什么?
1、去分母
2、去括号
3、移项
4、合并同类项
5、系数化为1
二、练习巩固
(1)
(2)
通过探究活动,对于解一元一次方程的步骤我们有什么新的发现?
1.前面所归纳的解方程的步骤只是一般步骤,不是一成不变的.
2.要根据具体方程的形式和特点,恰当地选择便于解题的步骤和方法.
通过本节课的学习,你有什么收获?
1.在解一元一次方程的过程中,有哪些容易出现的错误?我们应该怎样避免?
2.如何理解解一元一次方程的一般步骤?
课堂小结:
1.解方程时要注意:
(1)确定最简公分母.
(2)去分母要方程两边同乘最简公分母.
(3)分子要加括号.
(4)去括号时要用乘法分配律.
(5)移项要变号.
2.选择解法步骤要灵活,根据具体方程选择最优法.
布置作业:
教科书第98页习题3.3第3、5题。

相关文档
最新文档