八年级数学期中(一)模拟B卷

合集下载

八年级数学期中模拟卷(湖北省卷专用)(全解全析)

八年级数学期中模拟卷(湖北省卷专用)(全解全析)

(考试时间:120分钟 试卷满分:1202024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。

5.难度系数:0.65。

第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A .1,2,3B .3,4,C .4,5,10D .6,9,2【解答】解:根据三角形的三边关系,得:A 、1+2=3,不能构成三角形,不符合题意;B 、3+4>5,能构成三角形,符合题意;C 、4+5<10,不能构成三角形,不符合题意;D 、2+6<9,不能构成三角形,不符合题意.故选:B .2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A .B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下:……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBD AB =BC ∠GAB =∠DCB,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。

2020-2021学年度人教版八年级数学下册期中试卷B

2020-2021学年度人教版八年级数学下册期中试卷B

2020-2021学年下学期(人教)八年级数学教学质量检测评估期中调研联考卷B(考试时间120分钟,满分120分)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合题目要求,将正确答案的字母代号填入下表相应题号的空格内)题号1 2 34 5 6 7 8 9 1得分1.下面选项中的四边形不一定是轴对称图形的是( )A.平行四边形B.矩形C.菱形D.正方形2.下列各组数中,能构成直角三角形的是( )A.1,1,2B.5,12,13C.17,24,25D.6,18,203.下列命题中,逆命题是真命题的是( )A.平行四边形的两组对角分别相等B.正多边形的每条边都相等C.成中心对称的两个图形一定全等D.矩形的两条对角线相等4.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( ) A.5 m B.12m C.13m D.18m5.函数y=x+2x2-4中自变量x的取值范围是( )A.x≥-2B.x>-2C.x≥-2且x≠±2D.x>-2且x≠26.如图,点A,B是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A,B两点间的距离为( )A.2B. 5C.2 2D.107.如图,小正方形边长为1,连接小正方形的三个顶点得到△ABC,则AC 边上的高是 ( )A.3105 B.322 C.455 D.3558.如图,菱形ABCD 的边长是5,0是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为 ( )A.221B.421C.12D.249.已知a 满足2018-a +a -2019 =a,则a -20182=________ ( )A.0B.1C.2018D.201910.如图,在正方形ABCD 中,点E,F,H 分别是AB,BC,CD 的中点,CE,DF 交于点G,连接AG,HG,下列结论:①CE⊥DF;②AG =AD ;③∠CHG =∠DAG;④HG=12 AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.写出一个可以与 3 合并的式子________ 12.如图,在数轴上点A 表示的实数是________13.如图,在□OABC 中,OA =3,C(1,2),则点B 的坐标为________14.一艘轮船在小岛A 的北偏东60°方向距小岛60海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°方向的C 处,则该船行驶的速度为________海里/时15.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上将该纸片沿EF折叠,使点A的对应点G落在边DC上,折痕EF与AG交于点Q,点K为GH的中点,则随着折痕EF位置的变化,△GQK周长的最小值为________三、解答题(本大题共8个小题,共75分解答应写出文字说明、证明过程或演算步骤)16.(8分)计算:(1)24 ×13-4×18×(1- 2 )0;(2) 3 ( 2 - 3 )-24 - 6 -3 .17.(8分)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6 +32-a ,求此三角形的面积18.(8分)如图,在平行四边形ABCD中,点E,F在AC上,且AE=CF求证:四边形BEDF是平行四边形19.(8分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=15米,∠A=60°,BC=20米,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由20.(8分)观察下列各式,发现规律:1+13=213;2+14=314;3+15=415;…(1)填空:4+16=________,5+17=________;(2)计算(写出计算过程):2014+12016;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来21.(10分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长22.(12分)先阅读下列一段文字,再回答问题已知平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2 .同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为x2-x1或y2-y1 .(1)已知点A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知点A,B所在的直线平行于y轴,点B的纵坐标为-1,A,B两点间的距离等于6.试求点A的纵坐标;(3)已知一个三角形各顶点的坐标分别为A-3,-2),B(3,6),C(7,-2),你能判断三角形ABC的形状吗?说明理由23.(13分)如图1,在正方形ABCD中,点O是对角线AC的中点,点P为线段AO上一个动点(不包括两个端点),为CD 边上一点,且∠BPQ=90°(1)①∠ACB=________度(直接填空);②求证:∠PBC=∠PQD;③直接写出线段PB与线段PQ的数量关系;(2)若BC+CQ=6,则四边形BCQP的面积为________(直接填空);(3)如图2,连接BQ交AC于点E,直接用等式表示线段AP,PE,EC之间的数量关系【参考答案及解析】1.A [解析]A.不一定是轴对称图形本选项正确;B.是轴对称图形,本选项错误;C.是轴对称图形,本选项错误;D.是轴对称图形,本选项错误.故选A.2.B [解析]52+122=132.故选B.3.A [解析]A.平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;B.正多边形的每条边都相等的逆命题是每条边都相等的多边形是正多边形,是假命题;C.成中心对称的两个图形一定全等的逆命题是两个图形全等一定成中心对称,是假命题;D.矩形的两条对角线相等的逆命题是两条对角线相等的四边形是矩形,是假命题.故选A.4.D [解析]由题意得,斜边的长=122+52=13(m),则旗杆折断之前的高度是13+5=18(m).故选D.5.D [解析]根据题意得⎩⎨⎧x+2≥0x 2-4≠0,解得x>-2且x≠2.故选D.6.B [解析]如图,连接AB,在Rt△ABC 中,AC =1,BC =2,可得AB =22+12=5,故选B.7.D [解析]∵三角形ABC 的面积等于正方形的面积减去三个直角三角形的面积, 即S △ABC =2×2-12 ×1×2-12 ×1×2--12 ×1×1=32 ,AC =22+12= 5 ,∴AC 边上的高=32 ÷12 ÷ 5 =3 55 .故选D8.A [解析]连接AC,BD,如图所示∵菱形ABCD 的边长是5,是两条对角线的交点,BD =4 ∴AB =5,OB =OD =12BD =2,OA =OC,AC⊥BD,∴OA =AB 2-OB 2=52-22=21 ,∴AC=2OA =221 , ∴菱形ABCD 的面积=12 AC×BD=12×221 ×4=421 .∵O 是菱形两条对角线的交点,∴阴影部分的面积=12 菱形ABCD 的面积=221 .故选A.9.D [解析]∵等式2018-a +a -2019 =a 成立,∴a≥2019,∴a-2018+a -2019 =a ∴a -2019 =2018.∴a-2019=20182∴a-20182=2019.故选D. 10.D [解析]∵四边形ABCD 是正方形,AB =BC =CD =AD,∠B=∠BCD=90° ∵点E,F,H 分别是AB,BC,CD 的中点,∴△BCE≌△CDF∴∠ECB=∠CDF∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF,故①正确;在Rt△CGD 中,∵H 是边CD 的中点,∴HG=12 CD =12 AD,故④正确;连接AH,交DG 于点K,同理可得:AH⊥DF.∵HG =HD =12 C D,∴DK=GK.∴AH 垂直平分DG 。

人教版2024-2025学年八年级数学上册期中试卷(原卷版)

人教版2024-2025学年八年级数学上册期中试卷(原卷版)

2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D. 2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( )A. 2>cB. 16c <C. 216c ≤≤D. 216c << 3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A 6cm B. 7cm C. 4cm D. 3cm4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm 6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( ).A 2AB BF = B. 12ACE ACB ∠=∠ C. AE BE = D. CD BE ⊥7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC = 8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21 9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC =,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28 11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( ).A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15° B. 30° C. 45° D. 60°二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.14. 若等腰三角形一个内角为36°,则这个等腰三角形顶角的度数为_____________. 15. 点P (1,-2)关于y 轴的对称点的坐标是_________.16. 过12边形的一个顶点可以画对角线的条数是____.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.三. 解答题(本大题满分62分).的19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.24. ABC 在平面直角坐标系中位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. (3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.的26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标; (2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.。

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。

8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:华东师大版第11章数的开方~第13章全等三角形。

5.难度系数:0.68。

第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。

北京市海淀区2023-2024学年八年级上学期期中模拟数学试题B卷

北京市海淀区2023-2024学年八年级上学期期中模拟数学试题B卷

北京市海淀区2023-2024学年八年级上学期期中模拟数学试题B 卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2023年9月,第19届亚运会在杭州举行,这是继1990年北京亚运会、2010年广州亚运会之后,中国第三次举办亚洲最高规格的国际综合性体育赛事.如图所示的是此届亚运会中所出现的部分体育图标,其中轴对称图形有几个?()A .0个B .1个C .2个D .3个2.正八边形的外角和为()A .45︒B .135︒C .360︒D .1080︒3.如图,已知ABC 中,点D ,E 分别是边AB ,AC 的中点.若ABC 的面积等于12,则BDE △的面积等于()A .2B .3C .4D .54.如果一个三角形的两边长分别为4和6,第三边长为偶数,那么这个三角形的周长最大值是()A .12B .14C .16D .185.飞飞将一副三角板按图中方式叠放,则EFA Ð等于()A .10︒B .15︒C .30︒D .45︒6.下列所给条件中,能画出唯一的ABC 的是()A .::3:4:5AB AC BC =B .4AB =,3BC =,45C ∠= C .60A ∠= ,70B ∠=o ,5AC =D .90C = ∠,6AB =7.如图是叠放在一起的两张长方形卡片,则图中相等的是()A .∠1与∠2B .∠2与∠3C .∠1与∠3D .三个角都相等8.如图1,ABC 中,AB AC =,D 为BC 中点,把ABC 纸片沿AD 对折得到ADC △,如图2,点E 和点F 分别为AD ,AC 上的动点,把ADC △纸片沿EF 折叠,使得点A 落在ADC △的外部,如图3所示.设12α∠-∠=,则下列等式成立的是()A .BAC α∠=B .2BAC α∠=C .2BAC α∠=D .32BAC α∠=11.如图,在ABC 中,B ∠BD =.12.如图,AD 为ABC 的角平分线,比为.13.如图,AF ,AD 分别是△=.14.如图,在Rt ABC △沿DE 折叠得FDE V ,且满足15.如图,弹性小球从点(0,3)P 出发,沿所示方向运动,每当小球碰到长方形边时反弹,反弹时反射角等于入射角,当小球第碰到矩形的边时的点为2P ,…,第n 次碰到矩形的边时的点为是.16.如图,在平面直角坐标系中,点90ACB ∠=︒,则点C 的坐标为三、解答题17.一个n 边形的每个外角都相等,如果它的内角与相邻外角的度数之比为3:1,求n 的值.18.如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .求证:AD BD =.19.已知:如图,ABC DCB ∠=∠,12∠=∠.求证:ABC DCB △≌△.20.如图,在ABC 中,BD 是ABC ∠的平分线,且ABD A ∠=∠,3C A ∠=∠.(1)求ABC 各内角的度数;(2)求ADB ∠的度数.21.如图,在ABE 中,AD BE ⊥于点D ,C 是BE 上一点,BD DC =,且点C 在AE 的垂直平分在线,若ABC 的周长为18cm ,求DE 的长.22.如图,,C E AC AE ∠=∠=,点D 在BC 边上,12∠=∠,AC 和DE 相交于点O .求证:ABC ADE △≌△.23.在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.24.请将以下推导过程补充完整.如图,已知:在ABC 中,A ABC CB =∠∠,点D 在边AC 上,连接BD ,过C 作CE AB ∥,且CE AD =,连接AE .求证:BD AE =.26.问题发现:如图①,连结BE .填空:(1)AEB ∠的度数为___________;(2)线段AD BE ,之间的数量关系是___________.拓展探究:(3)如图②,ACB △和DCE △均为等腰直角三角形,ACB ∠=∠在同一直线上,CM 为DCE △中DE 边上的高,连结BE ,请判断CM AE BE 、、之间的数量关系,并说明理由.(1)补全图形;(2)请你在BD BF =①2BH AD =②完成证明.28.在平面直角坐标系xOy 中,对于任意图形。

八年级数学期中模拟卷(考试版)第1~4章:三角形的初步认识+特殊三角形+一元一次不等式+图形与坐标

八年级数学期中模拟卷(考试版)第1~4章:三角形的初步认识+特殊三角形+一元一次不等式+图形与坐标

2024-2025学年八年级数学上学期期中模拟卷(浙教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:浙教版八上第1~4章(三角形的初步认识+特殊三角形+一元一次不等式+图形与坐标)。

5.难度系数:0.64。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A.B.C.D.2.已知等腰三角形的两边长为x、y,且满足|x﹣4|+(x﹣y+4)2=0,则三角形的周长为( )A.12B.16C.20D.16或203.已知x>y,下列不等式一定成立的是( )A.x﹣6<y﹣6B.2x<2y C.﹣2x>﹣2y D.2x+1>2y+14.“等腰三角形的两个底角相等”的逆命题是( )A.在同一个三角形中,等边对等角B.两个角互余的三角形是等腰三角形C.如果一个三角形有两个角相等,那么这个三角形是等腰三角形D.如果一个三角形有两个底角相等,那么这个三角形是等腰三角形5.在直角坐标系中,点A (1,a )和点B (b ,﹣5)关于原点成中心对称,则a ﹣b 的值为( )A .﹣4B .4C .﹣6D .66.如图,点B 、D 在AM 上,点C 、E 在AN 上,且AB =BC =CD =DE ,若∠A =20°,则∠MDE 的度数为( )A .70°B .75°C .80°D .85°7.如图,在等边△ABC 中,已知AE =1,CD =2,将△BDE 沿DE 折叠,点B 与点F 对应,且DF ⊥AC ,则等边△ABC 的边长为( )A .4B .3C .4+D .4+8.若关于x ,y 的方程组2x +y 4x +2y =―3m +2的解满足x ﹣y >―32,则m 的最小整数解为( )A .﹣3B .﹣2C .﹣1D .09.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个直角三角形,当EF =7,DE =12时,则正方形ABCD 的边长是( )A .13B .28C .48D .5210.如图,在△ABC中,AB=AC=5,BC=6,D,E分别为线段AB,AC上一点,且AD=AE,连接BE、CD交于点G,延长AG交BC于点F.以下四个结论正确的是( )①BF=CF;②若BE⊥AC,则CF=DF;③若BE平分∠ABC,则FG=3;2④连结EF,若BE⊥AC,则∠DFE=2∠ABE.A.①②③B.③④C.①②④D.①②③④第二部分(非选择题共90分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC面积等于8cm2,则△BEF的面积等于cm2.13.定义运算[x]表示求不超过x的最大整数.如[0.6]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣3.5]=﹣4.若[﹣2.5]•[2x﹣1]=﹣6,则x的取值范围是.14.生活中很多图案都与斐波那契数列1,1,2,3,5,8,…相关,如图,在平面直角坐标系中,依次以这组数为半径作四分之一圆弧,得到一组螺旋线,若各点的坐标分别为P1(﹣1,0),P2(0,1),P3(1,0),⋯则点P7的坐标为.15.如图,在△ABC中,∠ACB=90°,∠B﹣∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF中有两个角相等,则∠ACD=.16.在同一平面内,有相互平行的三条直线a,b,c,且a,b之间的距离为1,b,c之间的距离是2,若等腰Rt△ABC的三个顶点恰好各在这三条平行直线上,如图所示,∠BAC=90°,在△ABC的面积是.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(本题8分)如图,已知△ABC,∠C=90°,AC<BC.(1)用直尺和圆规作出∠BAC的角平分线交BC于点D,作出点D的位置(不写作法,保留作图痕迹);(2)在(1)的基础上,若∠B=36°,求∠CAD的度数.18.(本题8分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F.(1)求证:△CEF是等腰三角形;(2)若CD=3,求DF的长.19.(本题8分)如图,在长方形ABCD中,AD=BC=6(cm),点P从点B出发,以1(cm/s)的速度沿BC向点C运动,设点P的运动时间为t(s):(1)经过t秒后,CP=厘米;(2)当△ABP≌△DCP时,此时t=秒;(3)在(2)的条件下,当∠APD=90°时,求AB的长.20.(本题8分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q 是点P的“a阶智慧点”(a为常数,且a≠0).例如:点P(1,4)的“2阶智慧点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)点A(﹣1,﹣2)的“3阶智慧点”的坐标为.(2)若点B(2,﹣3)的“a阶智慧点”在第三象限,求a的整数解.(3)若点C(m+2,1﹣3m)的“﹣5阶智慧点”到x轴的距离为1,求m的值.21.(本题8分)随着“低碳生活,绿色出行”理念的普及,新能源汽车成为大部分人首选的交通工具.灯塔市公交公司购买一批A,B两种型号的新能源汽车,已知购买3辆A型汽车和1辆B型汽车共需要55万元,购买2辆A型汽车和4辆B型汽车共需要120万元.(1)求购买每辆A型和B型汽车各需要多少万元?(2)若该公司计划购买A型汽车和B型汽车共15辆,且总费用不超过220万元,则最少能购买A型汽车多少辆?22.(本题10分)在Rt△ABC中,∠ACB=Rt∠,M是边AB的中点,CH⊥AB于点H,CD平分∠ACB.(1)求证:CD平分∠MCH;(2)过点M作AB的垂线交CD的延长线于点E,求证:CM=EM;(3)△AEM是什么三角形?证明你的猜想.23.(本题10分)如图一,△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥DF,交AB于点E,连接EG、EF.(1)求证:BG=CF;(2)如图二,当∠A=90°时,猜想BE,CF,EF的数量关系,并说明理由;(3)如图三,在(2)的条件下,当AB=AC时,求证ED=FD.24.(本题12分)教材呈现:如图为八年级上册数学某教材部分内容.做一做:如图,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所画的三角形都全等吗?此时,符合条件的角形有多少种?(1)[操作发现]如图1,通过作图我们可以发现,此时(即“边边角”对应相等)的两个三角形全等(填“一定”或“不一定”).(2)[探究证明]阅读补全证明已知:如图2,在△ABC和△DEF中,∠B=∠E,AC=DF,∠C+∠F=180°(∠C<∠F).求证:AB=DE.证明:在BC上取一点G,使AG=AC.∵AG=AC,∴∠C=.又∵∠C+∠F=180°,而∠AGC+∠AGB=180°,∴∠AGB=.∵AC=DF,∴AG=又∵∴△ABG≌△DEF(AAS).∴AB=DE.(3)[拓展应用]在△ABC中,AB=AC,点D在射线BA上,点E在AC的延长线上,且BD=CE,连接DE,DE与BC 边所在的直线交于点F.①当点D在线段BA上时,如图3所示,求证:DF=EF.②过点D作DH⊥BC交直线BC于点H,若BC=4,CF=1,则BH= (直接写出答案).。

专题 期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册

专题  期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册

专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛市西海岸新区
滨海中学八年级数学期中(一)
(B卷)
考试总分:60分考试时间:45 分钟
注意事项:
1.答题前在试卷左上角填写好自己的姓名、班级信息;
2.请将答案正确填写在正确位置上,否则答案无效;
卷I(选择题)
一、选择题(共5小题,每小题3分,共15分)
1. 27的立方根是()
A.±3
B.±3√3
C.3
D.3√3
2. 下列运算,正确的是()
A.√20=2√10
B.√4−√2=√2
C. √(−3)2=−3
D.√3⋅√2=√6
3. 下列各说法,正确的是()
A. 1的平方根是1
B. (−1)2的平方根是±1
C. −8是−2的立方根
D. 3是√9的平方根
4.在平面直角坐标系中,将点A(−2, −3)先向右平移4个单位,再向上平移5个单位得到点B,则点B所在的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.已知一个三角形的三边长分别为√2,√6,2,则这个三角形的面积为( ) A.2√2 B.2√3
C.√2
D.√3
请将选择题答案写在表格中:
卷II (非选择题)
二、填空题(共5小题,每小题3分,共15分)
5. 计算:√3a ×√12a(a ≥0)=________.
6. 已知a ,b 为两个连续整数,且a <√13<b ,则a +b =________.
7. 已知一次函数y =−1
2x +2的图象经过点P 1(x 1, 1),P 2(x 2, −1),那么x 1与x 2的大
小关系为:x 1________x 2(用“>、<或=”填空).
8. 已知一个一次函数的图象与直线y =−2x +1平行且经过点(−2, 1),则这个一次函数的解析式为__________________.
9. 已知一次函数y =kx +b(k ≠0)与y =kx(k ≠0)的图象交于A(−1, 2),且与y 轴分别交于B 、C 两点,若点C 的纵坐标为3,则△AOB 的面积为________.
(第9题图) (第10题图)
10. 如图,长方体的长、宽、高分别为6cm ,5cm ,4cm ,现有一只蜘蛛由A 出发去捕食G 处的昆虫,则这只蜘蛛的最短爬行路线的长为________cm .
三、解答题(共2小题,共8分)
题号 1 2 3 4 5 答案
11.(1)√8−√18
√2
(2)2√75−√48+√27
四、应用题(本题共3小题,共22分)
12.(6分)已知y+2与2x−3成正比例,且当x=−2时,y=5.
(1)求y与x的函数关系式;
(2)当x=2时,求函数y的值.
13.(8分)已知A、B两地相距80km,甲、乙两人沿同一条道路从A地到B地,l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.
请根据图象填空:
(1)大约在乙先出发________h后,两人相遇,这时他们
离开A地________km;
(2)甲的速度是________km/h,乙的速度是
________km/h;
(3)l1对应的表达式为:________________,l2对应的表达式为:________________.
14. (8分)阅读下列解题过程:
√2+1=√2−1)
(√2+1)×(√2−1)
=√2−1
(√2)2−12
=√2−1;
1
√3+√2=
1×(√3−√2)
(√3+√2)(√3−√2)
=
√3−√2
(√3)2−(√2)2
=√3−√2
请回答下列问题:
(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.

√7+√6=________;(1分)②
√n+√n−1
=________;(1分)
(2)应用:求
√2+1+
√3+√2
+
√4+√3
+
√5+√4
+...+
√10+√9
的值;(4分)
(3)拓广:
√3−1−
√5−√3
+
√7−√5

√9−√7
=________.(2分)。

相关文档
最新文档