关于恒流源电路的研究与几种设计方案

合集下载

恒流方案大全

恒流方案大全

恒流方案大全恒流源是电路中普遍利用的一个组件,那个地址我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,确实是用一只恒流二极管。

事实上,恒流二极管的应用是比较少的,除因为恒流二极管的恒流特性并非是超级好之外,电流规格比较少,价钱比较贵也是重要缘故。

最经常使用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳固的be电压作为基准,电流数值为:I = Vbe/R1。

这种恒流源优势是简单易行,而且电流的数值能够自由操纵,也没有利用特殊的元件,有利于降低产品的本钱。

缺点是不同型号的管子,其be电压不是一个固定值,即便是相同型号,也有必然的个体不同。

同时不同的工作电流下,那个电压也会有必然的波动。

因此不适合周密的恒流需求。

为了能够精准输出电流,通常利用一个运放作为反馈,同时利用处效应管幸免三极管的be 电流致使的误差。

典型的运放恒流源如图(2)所示,若是电流不需要专门精准,其中的场效应管也能够用三极管代替。

电流计算公式为:I = Vin/R1那个电路能够以为是恒流源的标准电路,除足够的精度和可调性之外,利用的元件也都是很普遍的,易于搭建和调试。

只只是其中的Vin还需要用户额外提供。

从以上两个电路能够看出,恒流源有个定式(寒,“定式”仿佛是围棋术语XD),确实是利用一个电压基准,在电阻上形成固定电流。

有了那个定式,恒流源的搭建就能够够扩展到所有能够提供那个“电压基准”的器件上。

最简单的电压基准,确实是稳压二极管,利用稳压二极管和一只三极管,能够搭建一个更简易的恒流源。

如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个经常使用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管能够取得更好的精度。

TL431组成流出源的电路,临时我还没想到:)TL431的其他信息请参考《》和《》电流计算公式为:I = R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。

恒流源输出电路设计

恒流源输出电路设计

恒流源输出电路设计一、电源选择恒流源输出电路的电源应具有稳定的输出电压和足够的容量,以保证恒流源的稳定性和输出电流的准确性。

常用的电源有线性电源和开关电源,其中线性电源具有输出电压稳定、噪声小等优点,适用于对电源质量要求较高的场合;开关电源具有效率高、体积小等优点,适用于对电源效率要求较高的场合。

二、电流检测恒流源的电流检测可以采用电流互感器或取样电阻等元件实现。

电流互感器具有高精度、宽测量范围等优点,适用于大电流测量;取样电阻适用于小电流测量,其精度和稳定性要求较高。

三、误差放大器误差放大器是恒流源输出电路中的核心元件之一,其作用是将电流检测信号与设定值进行比较,产生误差信号,用于控制调整元件的输出电压或电流,以实现恒流控制。

误差放大器的性能直接影响恒流源的稳定性和精度,因此应选择低噪声、高精度、低失真的误差放大器。

四、调整元件调整元件的作用是根据误差放大器的输出信号调整恒流源的输出电流,常用的调整元件有晶体管、场效应管等。

选择调整元件时,应考虑其导通电阻、放大倍数、热稳定性等因素,以保证恒流源的输出精度和稳定性。

五、保护电路为了保护恒流源免受过流、过压等异常情况的影响,需要设计保护电路。

常用的保护电路有过流保护、过压保护等。

过流保护可以采用熔断器或自恢复保险丝等元件实现;过压保护可以采用稳压管或晶体管等元件实现。

六、指示电路指示电路的作用是显示恒流源的输出电流值,便于用户观察和调试。

指示电路可以采用数码管、液晶显示屏等显示元件实现。

设计指示电路时,应考虑其精度、分辨率、响应时间等因素。

七、温度补偿由于温度对恒流源的输出电流有一定的影响,因此需要进行温度补偿。

常用的温度补偿方法有硬件补偿和软件补偿两种。

硬件补偿可以采用热敏电阻、晶体管等元件实现;软件补偿可以采用数字信号处理技术实现。

通过温度补偿,可以提高恒流源的稳定性和精度。

八、滤波电路为了减小恒流源输出电流的波动和噪声,需要设计滤波电路。

常用的滤波电路有RC滤波器、LC滤波器等。

关于恒流源电路的研究与几种设计方案

关于恒流源电路的研究与几种设计方案

第一章引言随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。

许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。

微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。

恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。

例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。

为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。

恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。

本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。

对以往恒流源进行了改进创新。

第二章基本恒流源电路2.1恒流源基础知识基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。

2.1.1恒流源介绍恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探讨这些问题.2.1.2恒流源的原理和特点2.1.3恒流源的分类一般而言,按照恒流源电路主要组成器件的不同,可分为三类:晶体管恒流源、场效应管恒流源、集成运放恒流源 .下面分别予以说明.2.1.3.1晶体管恒流源这类恒流源以晶体三极管为主要组成器件,利用晶体三极管集电极电压变化对电流影响小,并在电路中采用电流负反馈来提高输出电流之恒定性.通常,还采用一定的温度补偿和稳压措施.其基本型电路如图2.1.3.1所示.图2.1.3.1基本型电路图2.1.3.2改进型电路R1、R2分压稳定B点电位,Re形成电流负反馈,输出电流I0=(Vb-VBE)/Re≈Vb/Re(VB>>VBE) .且其等效内阻[4]为:rint=rce[1+ βRe(Rb+rbe+Re)] (1)式中rce为晶体管T集射极间电阻,一般为几十千欧以上;rbe为晶体管T输入电阻,一般为几千欧左右;Rb=R1//R2.若设Re=5kΩ,Rb=10kΩ,晶体管参数rce=100kΩ, β=100,rbe=2. 6kΩ.可得到rint=100×1+ 100×5/(10+ 2. 6+ 5)=3MΩ可见,只需几伏的工作电压,采用一个晶体管,其等效内阻是非常巨大的.为了减小温度变化对晶体管参数的影响进而影响输出电流的恒定性,可采用图 2.1.3.2所示改进型电路.图2.1.3.2(a)中,二极管D作温度补偿,抵销温度变化对晶体管T参数Vbe的影响.为了更好地解决管子温度特性一致的问题,图2.1.3.2(b)中,三极管T1接成二极管的形式.有时,为了减小电源电压波动对输出电流之影响,图2.1.3.2(c)中采用了稳压管Dz进行稳压.图2.1.3.2(b)中,流过基准电阻R的电流IR与输出电流I0的关系[1]为:I0/IR=R2/R1,故又称为比例电流源.若令R1=R2或都为零,则I0=IR,称为镜像电流源.若令R1=0,则可得到微安量级的输出电流,称之为微电流源,主要应用于需要提供微小偏流的场合.有时,要实现输出电流可控,且极性可正可负的恒流源,可采用图 2.1.3.3所示电路图Vi为输入控制电压,三极管T1、T2参数一致. 当Vi=0时,I1=I2,I0=0;Vi>0时,I1<I2,I0<0;Vi<0时,I1>I2,I0>0;且由图2.1.3.3可得V+V i - V BE2V-V i-V be1图2.1.3.3 双极性恒流源I。

恒流源电路设计方法

恒流源电路设计方法

恒流源电路设计方法
恒流源电路是一种用于控制电路中电流的电路,它可以将电路中的电
流保持在一定的恒定值,常用于LED驱动、压纹机等场合。

其基本原理是
将一个电流源和负载装置连接在一起,通过精确控制电流源电流大小,进
而控制负载器件的工作状态,达到恒定电流的目的。

设计恒流源电路的方法如下:
1.选择合适的电源(电压等级和电流容量等)。

2.确定负载器件的参数(电阻、功率等),根据负载器件参数计算所
需的电流大小。

3.根据所需电流大小选择合适的电流源元器件(电流计、MOSFET、晶
体管等)。

4.设计电路中的稳压电路和保护电路,保证电路的稳定性和安全性。

5.在电路设计中考虑电流源电路的可靠性和效率,尽量减小功率损失
和温度升高。

6.在实际应用中,要对电路进行测试和优化,以达到最佳的电路效果。

总之,恒流源电路的设计需要充分考虑电源、负载、电流源元器件等
因素,以及电路的稳定性、保护、效率等方面的问题。

通过合理的设计和
优化,才能获得稳定可靠、效率高的恒流源电路。

恒流源电路设计方法

恒流源电路设计方法

恒流源电路设计方法1.基于电流镜的恒流源电路设计方法:基于电流镜的恒流源电路是一种常见的实现方式,它通过将负载电流转化为电压信号控制电流源输出的电流,来实现恒流输出的稳定性。

首先,写出恒流源电路基本的分析方程式:Vin = I*Rin,其中Vin 为输入电压,Rin为输入电阻,I为恒流源输出的电流。

其次,选择电流镜的工作模式。

常见的电流镜工作模式有共射和共基模式。

在选择工作模式时需要考虑输出电流的稳定性和电压的要求。

通常情况下,共射模式更常用。

然后,根据电流源电压和目标输出电流的关系,确定电流镜的尺寸。

根据电流镜的工作模式,计算电流源电压和目标输出电流的关系,并选择合适的电流镜尺寸。

最后,根据系统的要求调整电流源电路的参数。

根据具体的负载电流需求和电源电压,确定输入电压和输入电阻的数值。

通过调整输入电压和输入电阻,可以得到所需的恒流源输出电流。

2.基于反馈的恒流源电路设计方法:基于反馈的恒流源电路是另一种常见的实现方式,它通过负反馈将输出电流与参考电流进行比较,并根据比较结果调整输入电压或输入电流,从而实现稳定的恒流输出。

首先,确定参考电流的数值。

参考电流的数值应根据具体的需求来确定,通常需要通过试验或计算来得到合适的数值。

其次,选择比较器。

比较器的作用是将输出电流与参考电流进行比较,并将比较结果输出。

然后,设计反馈回路。

反馈回路的作用是根据比较结果调整输入电压或输入电流,以保持输出电流稳定。

最后,根据系统的要求调整电流源电路的参数。

根据具体的负载电流需求和电源电压,确定输入电压或输入电流的数值。

通过调整输入电压或输入电流,可以得到所需的恒流源输出电流。

总之,恒流源电路设计的关键是根据具体的需求选择合适的实现方式,并根据系统的要求调整电流源电路的参数。

通过合理的设计和参数调整,可以实现稳定的恒流输出。

恒流电源方案

恒流电源方案

恒流电源方案1. 引言恒流电源是一种稳定输出电流的电源方案,广泛应用于各类电子设备和实验中。

本文将介绍恒流电源的基本原理、常见应用场景以及设计要点。

2. 恒流电源的原理恒流电源的基本原理是通过反馈控制,使输出电流保持稳定。

其基本构成包括输入电源、反馈电路、控制电路和输出负载。

当输出电流与设定电流有偏差时,反馈电路将感知到这个差异,并通过控制电路调整电源输出,以使输出电流保持恒定。

3. 恒流电源的设计恒流电源的设计需要考虑多个方面,包括输入电源的稳定性、反馈电路的准确性和控制电路的稳定性。

具体设计流程如下:3.1 确定输出电流需求首先,根据实际需求确定所需的输出电流。

这将作为设计的基础参数。

3.2 选择适当的电源模块根据输出电流需求,选择一个稳定性好、能够满足输出要求的电源模块作为恒流电源的输入电源。

3.3 设计反馈电路设计一个准确度高的反馈电路,用于感知实际输出电流与设定电流之间的差异。

反馈电路通常由一个电流感知元件(例如电流传感器)和一个比较器组成。

3.4 设计控制电路控制电路根据反馈电路的输出调整输入电源的输出,以保持输出电流的稳定。

控制电路可以通过模拟电路或数字电路实现。

3.5 稳定性测试与优化完成电路设计后,进行稳定性测试,并对电路进行参数调整和优化,以确保输出电流的稳定性和准确性。

4. 恒流电源的应用恒流电源广泛应用于各种场景,以下是几个常见的应用场景:4.1 LED控制恒流电源可用于驱动LED灯,在不同工作电压下,通过调整输出电流以达到所需亮度。

4.2 充电设备恒流电源可用于充电设备,通过控制输出电流来确保充电过程中电流的稳定性和充电速度的控制。

4.3 电子负载在实验中,通常需要模拟一个特定的负载,恒流电源可以提供一定的输出电流并保持其稳定性,以满足实验的需求。

4.4 电机控制在某些应用中,需要精确控制电机的转速和扭矩,恒流电源可用于提供恒定的电流供电,从而实现对电机的精确控制。

5. 结论恒流电源是一种常用的电源方案,通过反馈控制可实现输出电流的稳定。

恒流源的工作原理和设计方法

恒流源的工作原理和设计方法

恒流源的工作原理和设计方法恒流源是一种电路,它可以提供一个恒定的电流输出。

它的工作原理基于负反馈控制,通过调节输出电压来保持输出电流恒定。

设计一个恒流源需要考虑以下几个因素:1. 选择合适的电路拓扑结构:常见的恒流源电路有电压跟随器、差分放大器、反向串联放大器等。

不同的拓扑结构具有不同的性能指标和适用范围。

2. 选择合适的元器件:在设计过程中需要选择合适的元器件,如晶体管、二极管、电阻等。

这些元器件应该具有高精度、低温漂移、高稳定性等特点。

3. 负反馈控制:通过负反馈控制可以调节输出电压来保持输出电流恒定。

在设计过程中需要确定合适的反馈网络,以及调节参数如增益、带宽等。

下面是一个基于差分放大器拓扑结构实现的恒流源设计方法:1. 确定基准电压:选择一个稳定可靠的基准电压源作为参考,例如使用稳压二极管或者参考电路芯片。

2. 设计差分放大器:选择合适的差分放大器电路,其中包括晶体管、电阻等元器件。

通过调整差分放大器的增益和带宽来满足设计要求。

3. 设计反馈网络:使用反馈电路将输出电流与基准电压进行比较,并通过调节输出电压来保持输出电流恒定。

在设计过程中需要确定合适的反馈网络,例如使用运算放大器或者其他反馈元件。

4. 选择合适的控制元件:在设计过程中需要选择合适的控制元件,如可变电阻、可变电容等。

这些元件可以用来调节差分放大器的增益和带宽,以及调节反馈网络的参数。

5. 优化性能指标:在完成基本设计后,可以通过对各种参数进行优化来提高性能指标,例如增加稳定性、减小温漂等。

总之,恒流源是一种非常实用的电路,在很多应用中都有广泛的应用。

通过选择合适的拓扑结构、元器件和反馈网络,以及进行精细化优化可以实现高精度、高稳定性的恒流源设计。

恒流源电路的研究

恒流源电路的研究

R0 和 R0’的测量
RW R1
470 1K 3K
UCE1
I0
ΔUCE1
ΔI0
R0
R0’
510
外界因素变化对恒流源输出电流IO的影响 (1)在连接的镜像恒流源电路中,电源电压 UCC 9V 时,调节使 IR=+3mA,测量对应的 IO 和 RW。 (2)改变电源电压,使 UCC 7.5V ,保持 不变,分别测量 IR和 IO; (3)奖以上结果天入下表中,观察电源电压 UCC的变化对输出电流 IO 的影响。
三、基本原理
在各类放大器中,为使放大器能正常工作, 必须设置正常的静态工作点,这就需要 偏置电路向放大电路提供合适的偏置电流, 而且要求工作电流比较稳定。在集成电路中 镜像恒流源电路是最基本、最典型的恒流源 电路。 双极型镜像恒流源电路如下:
基本恒流源电路
电源UCC使R2、RW和三极管产生一个基准 电流IR,两三极管T1和T2构造相同,是匹配 对称管,由于两晶体管B、E极连在一起UBE 相同,则IE、IC也相同。于是 IB1=IB2=IB IC1=I0=IC2 而 IC2=IR-(IB1+IB2)=IR-2IB=IR-2I0/β 所以 2 I R= (1 )IR I0 = 2 2
比例恒流源测量数据表ห้องสมุดไป่ตู้
RW RE RW/RE IR IO IO/IR
实验设备与器材
o直流稳压电源(---型)1台 o模拟电路实验箱(----型)1台
o万用表(---型)1块
实验报告要求
写出实验要求及任务。 画出实验电路图,并标出各元件数值。 整理实验数据,分析,IR、IO,IW、Rw及R1 间的关系。 比较镜像恒流源与比例恒流源电路所得实验 结果的误差,并分析其原因。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于恒流源电路的研究与几种设计方案关键词:晶体管恒流源;场效应管恒流源;集成运放恒流源;输出电流;开关恒流源;场效应管;稳压器;开关恒流源;数控直流恒流源;SPCE061A;单片机。

中文摘要本文首先从恒流源基本概念,基本电路开始分类,将恒流源电路概括为三大类。

然后针对具体的思路进行设计。

设计出运放构成的线性恒流源、采用开关电源的开关恒流源、集成稳压器构成的开关恒流源等三类恒流源电路,并针对单片机设计了一种数控恒流源电路,这中电路主要是运用SPCE061A单片机,并以SPCE061A为核心控制器,对整个恒流源电路进行控制。

主要运行过程是:SPCE061A单片机送出相应的数字信号,经过D/A转换、信号放大、电平转换、压控恒流源,再输出所需电流;实际输出的电流经过精密电阻变成取样电压信号,经高输入阻抗放大器、A/D转换器,将信号反馈到凌阳SPCE061A单片机中构成闭环控制;通过液晶显示器显示此信号的值A bout permanent current source electric ircuit certainquestionsresearchElectronic information project Grad2003 ZhangYinGeKey word: Transistor permanent current source; Field effect tubepermanent current source; The integration transports puts thepermanent current source; Output current; Switch permanent current source; Field effect tube;Manostat; Switch permanent current source; Numerical control directcurrent permanent current source; SPCE061A; Monolithic integratedcircuit.AbstractThis article tell about permanent current source basic concept at First,and say about The basic electric circuit starts. The permanent current source electric circuit summary is three bigkinds.and than. Carries on the design in view of the concrete mentality. Designs Three kind of permanent current sources electric circuits,is The operational amplifier constitutes linear permanent current source、Uses the switching power supply the switch permanent current source、Integrates switch permanent current source which the manostatconstitutes and so on. Has designed one kind of number control permanent current sourceelectric circuit in view of the monolithic integrated circuit. In this the electric circuit mainly utilizes the SPCE061A monolithicintegrated circuit,And take SPCE061A as the core controller.Carries on the control to the entire permanent current source electriccircuit. The main movement process is: The SPCE061A monolithic integrated circuit sends out the correspondingdigital signal, Transforms, the signal after D/A enlarges, the level transforms, thevoltage control permanent current source, again outputs needs theelectric current; The actual output electric current passes through the precisionresistor to turn the sampling voltage signal After the high input impedance amplifier, the A/D switch, feed backthe signal to insults in the positive SPCE061A monolithic integratedcircuit to constitute the closed-loop control; Demonstrates this signal through the liquid-crystal display the value.目录中文摘要.................................................................................................................................Abstract ............................................................................................................................ 1引言..................................................................................................................................... 2基本恒流源电路.................................................................................................................2.1恒流源基础知识2.1.1恒流源介绍2.12恒流源的原理和特点2.1.3流源的分类\2.1.3.1晶体管恒流源2.1.3.2场效应管恒流源2.1.3.3集成运放恒流源2.2总结各种恒流源特点2.3恒流源实际电路设计2.3.1采用集成运放构成的线性恒流源2.3.2采用开关电源的开关恒流源2.3.3采用集成稳压器构成的开关恒流源...............................................................2.4单片机控制的数控直流恒流源3结论...................................................................................................................................... 致谢.................................................................................................................................第一章引言随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此, 研究和开发恒流器件具有十分重要的意义。

许多场合, 尤其是高精度测控系统需要高精度的电压源与电流源。

微电子工艺的高度发展, 给我们提供了许多小型化、集成化的高精度电压源, 但电流源, 特别是工作电流大的高精度电流源仍需使用者自行设计实现。

恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。

例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。

为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。

恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。

本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。

对以往恒流源进行了改进创新。

第二章基本恒流源电路2.1恒流源基础知识基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。

2.1.1恒流源介绍恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用. 过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探讨这些问题.2.1.2恒流源的原理和特点2.1.3恒流源的分类一般而言,按照恒流源电路主要组成器件的不同,可分为三类:晶体管恒流源、场效应管恒流源、集成运放恒流源.下面分别予以说明.2.1.3.1晶体管恒流源这类恒流源以晶体三极管为主要组成器件,利用晶体三极管集电极电压变化对电流影响小,并在电路中采用电流负反馈来提高输出电流之恒定性.通常,还采用一定的温度补偿和稳压措施.其基本型电路如图2.1.3.1所示.图2.1.3.1基本型电路图2.1.3.2改进型电路R1、R2分压稳定B点电位,Re形成电流负反馈,输出电流I0=(Vb-VBE)/Re≈Vb/Re(VB>>VBE) .且其等效内阻[4]为:rint=rce[1+ βRe(Rb+rbe+Re)] (1)式中rce为晶体管T集射极间电阻,一般为几十千欧以上;rbe为晶体管T输入电阻,一般为几千欧左右;Rb=R1//R2.若设Re=5kΩ,Rb=10kΩ,晶体管参数rce=100kΩ, β=100,rbe=2. 6kΩ.可得到rint=100×1+ 100×5/(10+ 2. 6+ 5)=3MΩ可见,只需几伏的工作电压,采用一个晶体管,其等效内阻是非常巨大的.为了减小温度变化对晶体管参数的影响进而影响输出电流的恒定性,可采用图2.1.3.2所示改进型电路.图2.1.3.2(a)中,二极管D作温度补偿,抵销温度变化对晶体管T参数Vbe的影响.为了更好地解决管子温度特性一致的问题,图2.1.3.2(b)中,三极管T1接成二极管的形式.有时,为了减小电源电压波动对输出电流之影响,图2.1.3.2(c)中采用了稳压管Dz进行稳压.图2.1.3.2(b)中,流过基准电阻R的电流IR与输出电流I0的关系[1]为:I0/IR=R2/R1,故又称为比例电流源.若令R1=R2或都为零,则I0=IR,称为镜像电流源.若令R1=0,则可得到微安量级的输出电流,称之为微电流源,主要应用于需要提供微小偏流的场合.有时,要实现输出电流可控,且极性可正可负的恒流源,可采用图 2.1.3.3所示电路图Vi为输入控制电压,三极管T1、T2参数一致. 当Vi=0时,I1=I2,I0=0;Vi>0时,I1<I2,I0<0;Vi<0时,I1>I2,I0>0;且由图2.1.3.3可得V+V i - V BE2V-V i-V be1图2.1.3.3 双极性恒流源I。

相关文档
最新文档