太阳能系统原理资料
太阳能光伏电源系统的原理及组成

太阳能光伏电源系统的原理及组成1.太阳能电池板:太阳能电池板是光伏电源系统的核心部分。
它由多个光伏电池组成,每个电池由两片不同材质的半导体(通常是硅)层组成。
当阳光照射到电池板上时,电池板会产生电流,这种效应称为光伏效应。
2.逆变器:太阳能电池板产生的电流是直流电,而我们家庭和工业用电是交流电。
逆变器的作用是将直流电转换为交流电,并将电压和频率调整为符合使用要求。
3.蓄电池:太阳能光伏电源系统通常还包括一个蓄电池组。
蓄电池用于存储太阳能电池板产生的电能,以备不太充足的太阳能供应或夜间使用。
4.控制器:控制器用于监测和控制光伏系统的工作状态。
它可以监测电池和光伏板的电压和电流,并防止电池过充或过放。
5.电源管理器:电源管理器用于管理光伏系统的运行,并将太阳能电池板和电网连接起来。
它可以自动选择太阳能电池板或电网的电源,以确保系统持续供电。
6.电网连接:太阳能光伏电源系统可以与电网连接,以便在太阳能供应不足时从电网获取电能,或将多余的电能发送回电网。
7.直流负载和交流负载:光伏电源系统可以为直流负载和交流负载供电。
直流负载可以直接使用太阳能电池产生的直流电,而交流负载需要通过逆变器将直流电转换为交流电。
光伏电源系统的工作原理是,当太阳光照射到太阳能电池板上时,光子会激活电池板上的电子,使其从一个半导体层跃迁到另一个半导体层,从而产生电流。
这个过程称为光电效应或光伏效应。
然后,电流经过逆变器被转换为交流电,以满足各种电器设备的使用需求。
同时,多余的电能可以存储在蓄电池中,以备不时之需。
总结起来,太阳能光伏电源系统利用光伏效应将太阳的辐射能转化为电能,通过逆变器将直流电转换为交流电,并通过蓄电池存储和供应电能。
它是一种环保、可再生的能源转换系统,被广泛应用于家庭、企业和公共场所。
太阳能光伏发电基本原理

太阳能光伏发电基本原理随着科技的不断发展,现代生活中越来越多地利用到太阳能光伏发电技术。
太阳能光伏发电系统可以将太阳能转换成电能,这种技术对于节能减排、保护环境和能源利用等方面具有重要意义。
本文将介绍太阳能光伏发电的基本原理和相关应用。
太阳能光伏发电的原理太阳能光伏发电是将光能转换为电能,利用半导体材料的光电效应实现。
太阳光是由光子组成的,当光子与半导体材料中的电子碰撞时,电子就被激发出来。
这种激发过程中,电子获得了能量,变得更容易跃迁到半导体材料的导带中,从而形成了电流。
这就是太阳能光伏发电的基本原理。
太阳能光伏发电系统的组成太阳能光伏发电系统由太阳能电池板、控制器和逆变器组成。
太阳能电池板是将太阳能转化为电能的核心部件。
控制器主要起到对光伏电池板和电池组的保护、调节和监控作用。
逆变器则将直流电转换为交流电。
这些组成部分相互协调,形成了完整的太阳能光伏发电系统。
太阳能光伏发电系统的应用太阳能光伏发电系统具有广泛的应用范围。
目前,太阳能光伏发电技术已经应用于建筑物、汽车、船舶、通讯设备、水泵、路灯等方面。
在道路方面,太阳能光伏系统被广泛应用于路灯、交通信号灯、高速公路实时信息显示等领域。
在航海方面,太阳能光伏系统被应用于船舶电源和通信设备。
在汽车方面,太阳能光伏系统可以用于低功率电源、空调和驻车冷却系统等。
总结太阳能光伏发电技术是利用太阳能转化为电能的一种重要技术。
通过光伏电池板、控制器和逆变器组成的太阳能光伏发电系统可以应用于建筑、汽车、电信、船舶等领域。
太阳能光伏发电技术在未来将扮演越来越重要的角色。
太阳能发电原理

太阳能发电原理1、原理概述太阳能光伏发电系统是利用太阳能电池板将太阳能转换成电能的一种可再生清洁发电机制。
当光线照射到太阳能电池表面时,一部分光子被太阳电池板反射掉,另一部分光子被硅材料吸收,光子的能量传递给硅原子,使电子发生越迁,成为自由电子在P-N结两侧集聚形成电位差。
当外部接通电路时,在该电压的作用下,则会有直流电流流过外部电路产生一定的输出功率。
通常每块太阳能电池组件输出的直流电压较低,一般为35V。
为了提高电压,达到逆变器最佳工作状态的额定输入直流电压,将一定数量的太阳能电池串联到一起形成回路,然后接入逆变器中,逆变器将输入的直流电转换成交流电。
逆变后得到的交流电通过站内的升压变压器升至指定电压后并入电网。
图1 太阳能发电系统原理2、系统部件2.1 太阳电池在太阳能光伏发电系统中,太阳能电池板占据着举足轻重的地位,它是将太阳能转换成电能核心部件。
太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的,这种光电转换过程通常叫做“光生伏打效应”,因此太阳能电池又称为“光伏电池”。
用于制造太阳能电池的半导体材料是一种介于导体和绝缘体之间的特殊物质,和任何物质的原子一样,半导体的原子也是由带正电的原子核和带负电的电子组成,半导体硅原子的外层有4个电子,按固定轨道围绕原子核转动。
当受到外来能量的作用时,这些电子就会脱离轨道而成为自由电子,并在原来的位置上留下一个“空穴”,在纯净的硅晶体中,自由电子和空穴的数目是相等的。
如果在硅晶体中掺入硼、镓等元素,由于这些元素能够俘获电子,它就成了空穴型半导体,通常用符号P表示;如果掺入能够释放电子的磷、砷等元素,它就成了电子型半导体,以符号N代表。
若把这两种半导体结合,交界面便形成一个P-N结。
太阳能电池的核心技术就在这个“结”上,P -N结就像一堵墙,阻碍着电子和空穴的移动。
当太阳能电池受到阳光照射时,电子接受光子的能量,向N型区移动,使N型区带负电,同时空穴向P型区移动,使P型区带正电。
太阳能光伏发电控制系统工作原理

太阳能光伏发电控制系统工作原理太阳能光伏发电控制系统是利用太阳能将光能转化为电能的一种装置,广泛应用于家庭和工业领域。
本文将详细介绍太阳能光伏发电控制系统的工作原理。
1. 太阳能光伏发电系统的基本组成太阳能光伏发电控制系统主要由太阳能电池板、光伏逆变器、电池组和负载组成。
太阳能电池板负责将太阳光转化为直流电能,光伏逆变器将直流电能转换为交流电能,电池组储存电能以供负载使用,负载则是指发电系统所驱动的设备或电器。
2. 太阳能光伏发电系统的工作原理太阳能光伏发电系统的工作原理可以分为太阳能转化为直流电的过程和直流电转化为交流电的过程。
2.1 太阳能转化为直流电当太阳光照射到太阳能电池板上时,太阳能电池板中的光电池会将光能转化为电能。
光电池内部的P-N结会形成内建电场,当光子撞击光电池上的P-N结时,会激发出电子-空穴对。
这些电子-空穴对会分离开来,电子通过导线外流回到P区,空穴则通过导线流回到N区,形成电流从而产生直流电。
转化出的直流电经过电池组的串并联以提高电压和电流的值,然后进入光伏逆变器进行下一步的转换。
2.2 直流电转化为交流电直流电转化为交流电的过程需要通过光伏逆变器完成。
光伏逆变器首先会经过一个整流单元,将直流电转化为中间直流电,然后通过中频谐振变压器将中间直流电转换为交流电。
最后,交流电通过输出滤波电路形成纯净的交流电供电给相应的负载。
光伏逆变器具有功率适应性,可以根据负载的功率需求自动调节输出电流和电压。
3. 太阳能光伏发电系统的控制器太阳能光伏发电控制系统中的控制器是为了实现对整个系统的监测、控制和保护而设计的。
控制器主要包括电池的充放电控制、光伏逆变器的运行控制和负载的调节控制。
电池的充放电控制保证电池组的工作在最佳状态,避免过充和过放的情况发生。
光伏逆变器的运行控制保证其安全稳定地运行,实现直流电向交流电的转换。
负载的调节控制则根据负载的需求合理分配系统所产生的电能,保证稳定供电。
设计太阳能发电系统的关键要素及原理介绍

设计太阳能发电系统的关键要素及原理介绍太阳能发电系统是一种利用太阳能直接转化为电能的装置。
它是一种清洁、可再生的能源解决方案,在可持续发展的背景下具有重要意义。
本文将介绍设计太阳能发电系统的关键要素及原理,帮助读者更好地了解太阳能发电系统的工作原理和设计要点。
一、太阳能发电系统的基本原理太阳能发电系统的基本原理可以概括为光伏效应,即太阳光进入光伏电池片后,通过与光伏电池片中的半导体材料相互作用,产生电荷分离和电流流动的现象。
这种现象使得光能被转化成了可用的电能。
二、太阳能发电系统的关键要素设计太阳能发电系统时需要考虑以下几个关键要素:1. 光伏电池板:光伏电池板是太阳能发电系统中最核心的部件。
它由多个光伏电池片组成,能够将太阳光转化为电能。
光伏电池板种类繁多,常见的有单晶硅、多晶硅和非晶硅等。
设计者需要根据实际需求选择合适的光伏电池板类型,并确定安装位置和角度,以最大程度地接收太阳光。
2. 逆变器:逆变器是太阳能发电系统中的关键装置,它将直流电能转化为交流电能,以供家庭或工厂的正常用电。
逆变器还能监测系统性能并对电网故障进行保护。
设计者需要根据系统的负载需求和电网标准选择合适的逆变器型号。
3. 储能设备:太阳能发电系统中的储能设备用于储存多余的电能,以供太阳光不足或夜间使用。
目前常用的储能设备有蓄电池和超级电容器等。
设计者需要根据系统的负载需求和可再生能源供应情况选择合适的储能设备,并合理设计储能容量和充放电控制策略。
4. 控制与监测系统:控制与监测系统用于监测和控制太阳能发电系统的工作状态。
它能收集系统的发电数据、储能数据以及负载需求,并根据需求进行智能管理和调度。
设计者需要根据实际情况选择合适的监测与控制设备,确保系统的高效稳定运行。
三、太阳能发电系统的设计原则在设计太阳能发电系统时,需要考虑以下原则:1. 最大化太阳能的利用效率:通过合理的光伏电池板选择、安装角度调整和清洁等手段,最大限度地捕捉和利用太阳能,提高系统的发电效率。
太阳能光伏发电的工作原理

太阳能光伏发电的工作原理一、引言太阳能光伏发电是一种利用光电效应将太阳能转化为电能的技术。
它是一种清洁、可再生的能源,具有非常广阔的应用前景。
本文将详细介绍太阳能光伏发电的工作原理。
二、光电效应光电效应是指当金属或半导体表面照射光线时,会产生电子从材料表面逸出并形成电流的现象。
这个现象被广泛应用于太阳能光伏发电中。
三、太阳辐射太阳辐射主要包括可见光、紫外线和红外线等多种波长的辐射。
其中,可见光和紫外线对太阳能光伏发电具有重要影响。
四、半导体材料半导体材料是太阳能光伏发电中最重要的组成部分。
常用的半导体材料有硅、镓砷化物等。
这些材料具有良好的导电性和透明性,可以有效地转化太阳辐射为电流。
五、PN结PN结是由P型半导体和N型半导体组成的结构。
P型半导体中的杂质原子为三价,N型半导体中的杂质原子为五价。
当P型半导体和N 型半导体接触时,会形成一个电势垒,这个电势垒是太阳能光伏发电的关键。
六、太阳能电池太阳能电池是由PN结组成的。
当太阳辐射照射到太阳能电池上时,会产生光生载流子。
光生载流子会在电势垒的作用下被分离并形成电流。
七、多晶硅太阳能电池多晶硅太阳能电池是目前应用最广泛的一种太阳能电池。
它由多个晶粒组成,具有良好的透明性和导电性。
多晶硅太阳能电池的效率比单晶硅低,但制造成本更低。
八、薄膜太阳能电池薄膜太阳能电池是一种新型的太阳能发电技术,它采用非晶态硅、铜铟镓硒等材料制造而成。
薄膜太阳能电池具有非常高的柔韧性和可塑性,可以应用于各种形状的设备中。
九、太阳能光伏发电系统太阳能光伏发电系统由太阳能电池组、逆变器、电池组和控制器等部分组成。
太阳能电池组将太阳辐射转化为直流电,逆变器将直流电转化为交流电,电池组储存多余的电能,控制器对系统进行监控和管理。
十、结论太阳能光伏发电是一种清洁、可再生的能源,具有非常广阔的应用前景。
通过对光电效应、太阳辐射、半导体材料、PN结等方面的介绍,我们可以更加深入地了解太阳能光伏发电的工作原理。
太阳能热水系统控制与原理

太阳能热水系统控制与原理太阳能热水系统是一种利用太阳能将水加热的系统,它可以为家庭和商业建筑提供热水。
该系统由太阳能集热器、热水储存罐、管道和控制系统组成。
在本文中,我们将详细介绍太阳能热水系统的控制原理和工作流程。
一、太阳能热水系统的控制原理太阳能热水系统的控制原理是基于太阳能集热器的工作原理和热水储存罐的温度控制。
系统通过控制太阳能集热器的工作状态和热水储存罐的温度,实现对热水的供应和控制。
1. 太阳能集热器的工作原理太阳能集热器是太阳能热水系统的核心部件,它通过吸收太阳辐射热量将水加热。
太阳能集热器通常由一系列黑色吸热板组成,这些吸热板内部有管道,通过管道循环的水被加热后返回热水储存罐。
2. 热水储存罐的温度控制热水储存罐是太阳能热水系统中储存热水的设备,它的温度控制起着重要作用。
当热水储存罐的温度低于设定值时,控制系统会启动太阳能集热器,将太阳能转化为热能加热水。
当热水储存罐的温度达到设定值时,控制系统会停止太阳能集热器的工作,避免过热。
二、太阳能热水系统的工作流程太阳能热水系统的工作流程可以分为太阳能集热器工作阶段和热水储存罐工作阶段。
1. 太阳能集热器工作阶段在太阳能集热器工作阶段,太阳能集热器会根据光照强度和温度传感器的反馈信号来判断是否启动。
当光照强度足够且温度低于设定值时,控制系统会启动太阳能集热器,将太阳能转化为热能加热水。
太阳能集热器将加热后的水通过管道送入热水储存罐。
2. 热水储存罐工作阶段在热水储存罐工作阶段,热水储存罐的温度控制起着重要作用。
当热水储存罐的温度低于设定值时,控制系统会启动太阳能集热器,将太阳能转化为热能加热水。
当热水储存罐的温度达到设定值时,控制系统会停止太阳能集热器的工作,避免过热。
用户可以通过控制系统设定热水储存罐的温度,以满足不同的热水需求。
三、太阳能热水系统的优势太阳能热水系统具有以下优势:1. 环保节能:太阳能是一种可再生能源,使用太阳能热水系统可以减少对传统能源的依赖,降低环境污染。
太阳能热水器的工作原理

太阳能热水器的工作原理引言概述太阳能热水器是一种利用太阳能将水加热的设备,通过太阳能的热量来取代传统的燃气或者电力加热方式,具有环保、节能的特点。
本文将详细介绍太阳能热水器的工作原理。
一、太阳能热水器的基本组成1.1 集热器:用于吸收太阳能并将其转化为热能。
1.2 储水箱:用于储存加热后的热水。
1.3 控制系统:用于控制水温和水流,保证系统正常运行。
二、太阳能热水器的工作原理2.1 光伏效应:集热器中的太阳能电池板吸收太阳光,并将其转化为电能。
2.2 热传导:通过导热管将热能传导至储水箱中的水。
2.3 循环系统:控制系统会启动循环泵将热水循环至集热器,实现加热循环。
三、太阳能热水器的加热过程3.1 吸收太阳能:集热器吸收太阳能,并将其转化为热能。
3.2 传导热能:热能通过导热管传导至储水箱中的水。
3.3 储存热水:加热后的热水储存在储水箱中,供日常使用。
四、太阳能热水器的优势4.1 环保节能:利用太阳能作为能源,减少对传统能源的依赖,降低能源消耗。
4.2 维护成本低:太阳能热水器结构简单,维护成本低,使用寿命长。
4.3 适合范围广:适合于各类建造,特殊是在阳光充足的地区效果更佳。
五、太阳能热水器的发展前景5.1 技术不断创新:太阳能热水器技术不断创新,效率不断提升。
5.2 政策支持:政府对太阳能热水器的支持力度增加,促进其在市场上的普及。
5.3 市场需求增长:随着环保意识的提高,太阳能热水器市场需求逐渐增长。
结语太阳能热水器作为一种环保节能的热水加热设备,具有广阔的应用前景。
通过不断的技术创新和政策支持,太阳能热水器将在未来得到更广泛的应用,为人们的生活带来更多便利和环保效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点是系统结构简单,运运行安全可靠,不需要 辅助能源,管理方便。
缺点是为了维持必要的热虹吸压头,并防止系统 在夜间产生倒流现象,贮水箱必须置于集热器的 上方。
大型太阳热水系统,不适宜采用这种自然循环方 式。因为大型系统的贮水箱很大,要将贮水箱置 于集热器上方,在建筑布置和荷重设计上都会带 来很多问题。
间接系统集热总面积按下式计算:
Uhx-换热器传热系数,根据设备选型,查产 品 样本可以得出。
Ahx-换热器换热面积,一般是根据系统的换热量计 算得出。
间接系统热交换器换热面积计算公式:
计算热交换器热面积,首先要知道热交换器的换热量, 根据太阳能供热系统的供热量确定热交换器的换热量, 按下式计算:
直流式太阳热水系统具有很多优点:
由于系统的补冷水由自来水直接供给,自来水具有一定的 压头,保证了系统的水循环动力,因此系统中不需设置水 泵。
储水箱可以因地制宜地放在室内,既减轻了屋顶载荷,也 有利于储水箱保温,减少热损失。
完全避免了热水与集热器入口冷水的掺混。 可以取消补给水箱。 系统管理得到大大简化。
谢谢!
阴天,只要有一段见晴的时刻,就可以得到一定量的适用 热水。
强制循环式太阳热水系统是利用机械设备等外部动
力迫使传热工质通过集热器或换热器进行循环的热 水系统。
常闭
膨胀罐 100L
补液定压装置
200L -25°C防冻液
变频泵,一备一用 Q=6m3/h,H=19m, 1.0KW
换热系统1
直流式太阳热水系统是传热工质一次流过集热器 加热后便进入储水箱或用水点的非循环热水系统, 储水箱的作用仅为储存集热器所产生的热量,直 流式系统有两种:
1)、热虹吸型
2)、定温放水型
热虹吸型:补给水箱的水位由箱中的浮球阀控制,使之与 集热器出口热水器(上升管)的最高位置一致。根据连通 管的原原理,在集热器无阳光照射时,集热器、上升管和 下降管均充满水,但不流动。当集热器受到阳光照射后, 其内部的水温升高,在系统中形成热虹吸压力,从而使热 水由上升管流入储水箱,同时补给水箱的冷水则自动经下 降管进入集热器。这种虹吸型直流式太阳热水系统的流量 具有自动调节功能,但供水温度不能按用户要求自行调节。 这种系统目前应用的较少。
集热效率的取值
这个取值应该对应采用的是集热器总面积的概念, 如果在计算时使用采光面积取值0.25~0.5,显然不 合适。
热管集热器效率的计算
基于采光面积的瞬时效率 曲线
Y =-2.8097X +0.7655
归一化温差的计算
效率计算举例
平均日照时数=5.55h 平均环境温度=15.675℃ 年日均辐照量=13.46MJ/m2 年日均辐照度=13.46×1000/3.6/5.55=673W/m2
太阳热水系统按运行方式可分为三种:自然 循环系统、直流式系统和强制循环系统。
太阳热水系统按有无换热器可分为:直接系 统和间接系统。直接系统在集热器中直接加 热供水;间接系统是利用换热器间接加热供 水。间接系统同时也是强制循环系统。
自然循环系统是利用传热工质内部的温度梯度产 生的密度差所形成的自然对流进行循环的热水系 统。
定温放水型:为了得到温度符合于用户要求的热 水,通常采用定温放水型直流式太阳热水系统, 如图所示。该系统在集热器出口处安装测温元件, 通过温度控制器,控制安装在集热器入口管道上 的开度,达到根据温度调节水流量,使出口水温 始终保持恒定。这种系统不用补给水箱,补给水 管直接与自来水管连接。系统运行的可靠性,同 样决定于电动阀和控制器的工作质量。
P1 P2 P3 M1 M2 M3 E B
检测点
代号
集热器温度
T1
集热管道温度
T2
缓冲水箱温度
T3
恒温水箱温度
T4
供水管道温度
T5
环境温度
T6
恒温水箱水位
H1
缓冲水箱水位
H2
动作点
集热循环泵
P1
供水泵
P2
换热循环泵
P3
换热循环泵
P4
上水电磁阀
M1
上水电磁阀
M2
系统特征:集热循环和换热循环分离,缓冲水箱 供水电池阀
M3
内含有电加热装置
辅助加热
E
伴热带
B
集热器
膨胀罐
太
阳 泵1
能
站
泵2
排气阀 散热器
储水箱
电加热器 换热器
直接系统集热器总面积可根据用户的每日用水量 和用水温度确定,按下式计算:
太阳能保证率:简单说就是系统中由太阳能部分提供的 热量除以系统总负荷
一、真空管间距 管间距72mm 二、四种面积计算 1)吸热体面积 2)采光面积(检测报告常用) 3)集热面积(名牌常用) 4)总面积
系统特征:集热循环同时还是换热循环,系统 增加了缓冲水箱和换热器
检测点 集热器温度 集热管道温度 恒温水箱温度 供水管道温度 环境温度 恒温水箱水位 缓冲水箱水位 动作点 集热循环泵 供水泵 换热循环泵 上水电磁阀 上水电磁阀 供水电池阀 辅助加热 伴热带
代号 T1 T2 T3 T4 T5 H1 H2
LNRG-12/1.8 集热面积=((12-1) ×0.072+0.058) ×1.737
=1.47㎡ 采光面积=1.737×0.058×12 =1.2㎡ LNRG-24/1.8 集热面积=((24-1) ×0.072+0.058) ×1.737
=2.97㎡ 采光面积=1.737×0.058×24 =2.4㎡
集热器进口温度ti 计算全年平均集热效率时ti=t L1 /3+ t e2 /3 t e储水箱内终止温度设为55℃ t l水的初始温度设为10℃ 则计算出ti=40℃ 归一化温差T*=(ti-ta)/G=(40-15.675)/673
=0.036 查找检测报告效率曲线集热效率曲线(基于采光面积)为0.67 根据实际需要换算成对应集热面积的集热效率进行计算