辽宁省盘锦市高级中学2017-2018学年高二下学期期末考试数学(理)试卷 Word版含解析

合集下载

辽宁省盘锦市数学高二下学期理数期末学业质量监测试卷

辽宁省盘锦市数学高二下学期理数期末学业质量监测试卷

辽宁省盘锦市数学高二下学期理数期末学业质量监测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高三上·凌源期末) 已知实数满足,则()A .B .C .D .2. (2分)若函数的图象上任意点处切线的倾斜角为,则的最小值是()A .B .C .D .3. (2分) (2018高二下·抚顺期末) 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,则()A . 0.7B . 0.6C . 0.4D . 0.34. (2分)已知f(x)在R上是减函数,则满足>f(1)的实数x的取值范围是().A . (-∞,1)B . (2,+∞)C . (-∞,1)∪(2,+∞)D . (1,2)5. (2分)(2016·太原模拟) 由直线y=x,y=﹣x+1,及x轴围成平面图形的面积为()A . [(1﹣y)﹣y]dyB . [(﹣x+1)﹣x]dxC . [(1﹣y)﹣y]dyD . x﹣[(﹣x+1)]dx6. (2分)某中学男生1250名中有420名近视,女生1210名中有370名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A . 期望与方差B . 排列与组合C . 独立性检验D . 概率7. (2分)平面几何中,若△ABC的内切圆半径为r,其三边长分别为a,b,c,则△A BC的面积S=.类比上述命题,若三棱锥的内切球半径为R,其四个面的面积分别为S1 , S2 , S3 , S4 ,猜想三棱锥体积V的一个公式.若三棱锥P﹣ABC的体积V=,其四个面的面积均为,根据所猜想的公式计算该三棱锥P﹣ABC的内切球半径R为()A .B .C .D .8. (2分)(2014·四川理) 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A . 192种B . 216种C . 240种D . 288种9. (2分) (2017高一下·伊春期末) 把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)=()A .B .C .D .10. (2分)下列随机试验的数学模型属于古典概型的是()A . 在适宜条件下,种一粒种子,它可能发芽,也可能不发芽B . 在平面直角坐标系内,从横坐标和纵坐标都为整数的所有点中任取一个点C . 某射击运动员射击一次,试验结果为命中0环,1环,2环, (10)D . 四位同学用抽签的方法选一人去参加一个座谈会11. (2分)设三位数n=100a+10b+c,若以a,b,c∈{1,2,3,4}为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有()A . 12种B . 24种C . 28种D . 36种12. (2分) C +C +…+C +…+C 的值为()A . 22n﹣1﹣1B . 22n﹣1C . 2n﹣1D . 2n二、填空题 (共8题;共8分)13. (1分)(2017·宝山模拟) =________.14. (1分) (2017高二下·曲周期末) 设,,复数和在复平面内对应点分别为、,为原点,则的面积为________.15. (1分) (2016高二下·韶关期末) 二项式(x﹣)8的展开式x6的系数为________.16. (1分)(2017·枣庄模拟) 已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则 =________.17. (1分)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a﹣3)=P(ξ>a+2),则a=________ .18. (1分)已知复数z满足z(3﹣4i)=5+mi,且,则实数m的值是________.19. (1分)设数列{ }前n项和为Sn ,则S1=________,S2=________,S3=________,S4=________,并由此猜想出Sn=________.20. (1分) (2017高二下·穆棱期末) 函数的单调增区间为 ________.三、解答题 (共5题;共55分)21. (10分)(2018·丰台模拟) 已知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若函数在定义域内不单调,求的取值范围.22. (10分)已知在的展开式中,第5项的系数与第3项的系数之比是14∶1.(1)求展开式中的系数;(2)求展开式中系数绝对值最大的项;(3)求的值.23. (10分)(2017·大理模拟) 2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了一个有奖闯关游戏,游戏分为两个环节.第一环节“解锁”:给定6个密码,只有一个正确,参赛选手从6个密码中任选一个输入,每人最多可输三次,若密码正确,则解锁成功,该选手进入第二个环节,否则直接淘汰.第二环节“闯关”:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得10个、20个、30个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏,也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功与否互不影响.(1)求某参赛选手能进入第二环节的概率;(2)设选手甲在第二环节中所得学豆总数为X,求X的分布列和期望.24. (15分)(2017·山东) 在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.25. (10分) (2015高二下·上饶期中) 综合题。

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题时间:120分钟 分值:150分一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}A |43x x x Z =-<<∈,{}|1B x x =≥则A B ⋂= ( ) A .{}1 B.{}1,2 C. {}01,2, D. {}1,23,2.设集合{}2A |60x x x =+-< {}2|1B x x =≤ ,则 A B ⋂= ( )A. []1,1-B. (]3,1-C.()1,2-D. [)1,2-3.下列命题中真命题的个数是 ( ) ① 42,x R x x ∀∈>② 若p q ∧ 是假命题,则,p q 都是假命题③ 命题“32,240x R x x ∀∈++≤”的否定为“32000,240x R x x ∃∈++>” A .0 B .1 C .2 D .34.5x >的一个必要不充分条件是 ( ) A.6x >B.3x >C.6x <D.10x >5.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )= ( ) A.14 B.13 C.12 D.236.方程12x x +=根的个数为 ( ) A.0 B.1 C.2 D.37.在82x ⎛ ⎝的展开式中,常数项是 ( )A.7B.-7C.28D.-288.设 12log 3a = , 0.213b ⎛⎫= ⎪⎝⎭, 12c =,则 ( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<9. 函数与在同一直角坐标系下的图象大致是( )图所示的长方形区域内任取一个点(),M x y ,则点M 取自阴影部分的概率为 ( ) A.12 B.14 C.13 D.2311.若函数()y f x =图像与()log 322a y x =-+图像关于直线y x =对称,则函数()y f x =必过定点 ( )A.(1,2)B.(2,2)C.(2,3)D.(2,1) 12.定义在R 上的偶函数满足,且当时,()12xf x ⎛⎫= ⎪⎝⎭, 则等于 ( )A.3B.18C.-2D.2 二、填空题:本大题共4小题,每小题5分,共20分13.将3个不同的小球放入4个盒子中,有 ______种不同的放法14.已知随机变量X 服从正态分布N(3,1),且(2X 4)0.6826P ≤≤=,则(X 4)P >= ______ 15.已知()()()220210{xx x x x f x ≤-+>=在[]()1,2a a ->上最大值与最小值之差为4,则a =______16.为方便游客出行,某旅游点有50辆自行车供租赁使用。

辽宁省盘锦市高二下学期数学期末考试试卷(理科)

辽宁省盘锦市高二下学期数学期末考试试卷(理科)

辽宁省盘锦市高二下学期数学期末考试试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二下·郑州期末) 函数f(x)=2x+1在(1,2)内的平均变化率()A . 3B . 2C . 1D . 02. (2分) (2017高二下·肇庆期末) 若z=4+3i,则 =()A . 1B . ﹣1C . + iD . ﹣ i3. (2分)一个书包内装有5本不同的小说,另一书包内有6本不同学科的教材,从两个书包中各取一本书的取法共有()A . 5种B . 6种C . 11种D . 30种4. (2分) (2016高二下·晋江期中) 将5名志愿者分配到3个不同的奥运场馆参加接等工作,每个场馆至少分配一名志愿者的方案种数为()A . 240B . 300C . 150D . 1805. (2分)随机变量ξ的分布列如表,其中a,b,c成等差数列.若E(ξ)= ,则D(ξ)=()ξ123P a b cA .B .C .D .6. (2分)设随机变量ξ~N(μ,σ2),且P(ξ<﹣1)=P(ξ>2)=0.3,则P(ξ<2μ+1)=()A . 0.4B . 0.5C . 0.6D . 0.77. (2分)如图所示,阴影部分的面积是()A .B .C .D .8. (2分)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A . 72B . 96C . 108D . 1449. (2分) (2016高二下·宜春期中) 吉安市高二数学竞赛中有一道难题,在30分钟内,学生甲内解决它的概率为,学生乙能解决它的概率为,两人在30分钟内独立解决该题,该题得到解决的概率为()A .B .C .D .10. (2分)(2018高二下·泸县期末) 已知函数,若,使得成立,则实数的取值范围是()A .B .C .D .11. (2分) (2018高二下·河南期中) 已知为等差数列,, .若为等比数列,,则类似的结论是()A .B .C .D .12. (2分)已知定义在实数集R的函数f(x)满足f(1)=4,且f(x)导函数f′(x)<3,则不等式f (lnx)>3lnx+1的解集为()A . (1,+∞)B . (e,+∞)C . (0,1)D . (0,e)二、填空题 (共4题;共4分)13. (1分)(2012·江苏理) 设a,b∈R,a+bi= (i为虚数单位),则a+b的值为________.14. (1分) (2019高一上·葫芦岛月考) 若a2+(k﹣3)a+9是一个完全平方式,则k的值是________.15. (1分)将一枚硬币连续抛掷3次,则有且只有2次出现正面向上的概率为________16. (1分)某班共有50名学生,已知以下信息:①男生共有33人;②女团员共有7人;③住校的女生共有9人;④不住校的团员共有15人;⑤住校的男团员共有6人;⑥男生中非团员且不住校的共有8人;⑦女生中非团员且不住校的共有3人.根据以上信息,该班住校生共有________人.三、解答题 (共6题;共45分)17. (5分)已知函数f(x)=ax2+2x+c,且f(x)>0的解集为{x|x≠﹣}.(1)求f(2)的取值范围;(2)在f(2)取得最小值时,若对于任意的x∈[2,+∞),f(x)+2≥mf′(x)恒成立,求实数m的取值范围.18. (15分) (2017高二下·宜春期中) 有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有1个空盒,有几种放法?(3)恰有2个盒子不放球,有几种放法?19. (10分) (2015高二下·上饶期中) 已知数列{an}中a1=3,an= .(1)求出a2,a3,a4的值;(2)利用(1)的结论归纳出它的通项公式,并用数学归纳法证明.20. (5分)(2020·化州模拟) 现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数510151055赞成人数4812521 (Ⅰ)由以上统计数据填下面2×2列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;月收入低于55百元的人数月收入不低于55百元的人数合计赞成不赞成合计(Ⅱ)若采用分层抽样在月收入在[15,25),[25,35)的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[15,25)的概率.参考公式:K2 ,其中n=a+b+c+d.参考数据:P(K2≥k)0.0500.0100.001k 3.841 6.63510.82821. (5分)已知函数,,,若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程.22. (5分) (2018高二下·辽宁期末) 一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、22-1、第11 页共11 页。

盘锦市数学高二下期末测试卷(含答案)

盘锦市数学高二下期末测试卷(含答案)

一、选择题1.已知,a b 是单位向量,且,a b 的夹角为3π,若向量c 满足22c a b -+=,则||c 的最大值为( )A.2B .2C 2D 22.已知3sin 34x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫+ ⎪⎝⎭的值为( ) A .18-B .12-C .18D .123.已知函数()()x cos x 0f x ωωω=+>最小正周期为π,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点,012π⎛⎫⎪⎝⎭对称 D .关于点5,012π⎛⎫⎪⎝⎭对称4.在锐角ABC 中,4sin 3cos 5,4cos 3sin A B A B +=+=C 等于( )A .150B .120C .60D .305.已知2sin2α=1+cos2α,则tan2α=( ) A .43-B .43C .43-或0 D .43或0 6.已知a R ∈,则“cos 02πα⎛⎫+> ⎪⎝⎭”是“α是第三象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.在ABC ∆中,已知sin 2sin()cos C B C B =+,那么ABC ∆一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形8.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .69.已知角α的终边经过点()2,1P -,则sin cos sin cos αααα-=+( )A .4-B .3-C .12D .3410.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+⎪⎝⎭B .sin 22y x π⎛⎫=+⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+11.已知向量(3,4),(sin ,cos )a b αα==,且//a b ,则tan α=( ) A .34B .34-C .43D .43-12.在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .AB B .CDC .EFD .GH13.已知4sin 5α,并且α是第二象限的角,那么tan()απ+的值等于 A .43-B .34-C .34D .4314.如图,在ABC ∆中,23AD AC =,13BP BD =,若AP AB AC λμ=+,则=λμ( )A .3-B .3C .2D .2-15.已知非零向量a ⃑ =(t,0),b ⃑ =(−1,√3),若a ⃑ ⋅b ⃑ =−4,则a ⃑ +2b⃑ 与b ⃑ 的夹角( ) A .π3B .π2C .π6D .2π3二、填空题16.已知24sin 225θ=,02πθ⎛⎫<< ⎪⎝⎭24πθ⎛⎫- ⎪⎝⎭的值为_______________. 17.已知(,)2πθπ∈,且3cos()45πθ-=,则tan()4πθ+=_________________. 18.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP CB λ=,当PA PC ⋅取到最小值时,λ的值为_________ .19.空间四点,,,A B C D 满足3AB =,=7BC ,||=11CD ,||=9DA ,则·AC BD =_______.20.如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.21.设向量(2,1)a =,(1,1)b =-,若a b -与ma b +垂直,则m 的值为_____ 22.仔细阅读下面三个函数性质:(1)对任意实数x ∈R ,存在常数(0)p p ≠,使得1()2f x p f x p ⎛⎫-=+ ⎪⎝⎭. (2)对任意实数x ∈R ,存在常数(0)M M >,使得|()|f x M ≤. (3)对任意实数x ∈R ,存在常数,使得()()0f a x f a x -++=.请写出能同时满足以上三个性质的函数(不能为常函数)的解析式__________.(写出一个即可) 23.已知1cos()63πα+=,则5sin(2)6πα+=________.24.已知1tan 43πα⎛⎫-= ⎪⎝⎭,则()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭的值为__________.25.已知向量()()121a b m =-=,,,,若向量a b +与a 垂直,则m =______. 三、解答题26.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知4A π=,5cos B =,2a =. (Ⅰ)求sin C 的值; (Ⅱ)求ABC ∆的面积.27.已知23cos(),(,)41024x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值. 28.已知函数f(x)=sin(ωx +φ)(其中ω>0,0<φ<2π3)的最小正周期为π(1)求当f(x)为偶函数时φ的值; (2)若f(x)的图像过点(π6,√32),求f(x)的单调递增区间 29.已知函数()223sin cos 2cos f x x x x =+. (1)求函数()f x 图象的相邻两条对称轴的距离; (2)求函数()f x 在区间63ππ⎡⎤-⎢⎥⎣⎦,上的最大值与最小值,以及此时x 的取值. 30.已知函数()sin()f x A x b ωϕ=++(,0,0,A b ωϕπ><<为常数)一段图像如图所示.(1)求函数()f x 的解析式; (2)在ABC ∆中,7()2f B =,求22sin sin A C +的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.C3.D4.D5.D6.B7.C8.C9.B10.A11.A12.C13.A14.B15.A二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的17.【解析】试题分析:因为所以所以所以即解得所以=考点:1同角三角形函数间的基本关系;2两角和与差的正切公式【方法点睛】根据已知单角或复角的三角函数值求和角(或差角或单角)的三角函数通常将结论角利用条件18.【解析】【分析】将用表示出来注意的数量关系再根据的二次函数求最值【详解】设因为所以;所以故当时有最小值【点睛】图形中向量的数量积问题主要是将未知的向量用已知的向量表示这样可以方便计算19.0【解析】【分析】由代入再由代入进一步化简整理即可【详解】因为故答案为0【点睛】本题主要考查向量的数量积运算灵活运用数量积的运算公式即可属于常考题型20.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余21.【解析】与垂直22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:23.【解析】分析:由题意利用目标角和已知角之间的关系现利用诱导公式在结合二倍角公式即可求解详解:由题意又由所以点睛:本题主要考查了三角函数的化简求值问题其中解答中正确构造已知角与求解角之间的关系合理选择24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】不妨设(1,0)a =,13(,22b =,(,)c x y =,则2(,c a b x y -+=+,所以22(2c a b x -+=+=,即22(4x y +=,点(,)x y 在以(0,为圆心,2为半径的圆上,所以2c x =+2+.故选B .2.C解析:C 【解析】 【分析】 分析题目,2222333x x x ππππ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,得到角的关系,利用诱导公式和二倍角公式计算即可 【详解】3sin 34x π⎛⎫-=- ⎪⎝⎭,2cos 2cos 2cos 2333x x x ππππ⎛⎫⎛⎫⎛⎫+=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22231cos 2cos 212sin 1233348x x x πππ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴--=--=---=--⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎢⎥⎣⎦选C 【点睛】本题考查利用二倍角公式和诱导公式求三角函数值,发现角的关系是解题关键3.D解析:D 【解析】分析:先化简函数f(x)=2sin()6wx π+,再根据周期求出w ,再讨论每一个选项的真假.详解:由题得f(x)=2sin()6wx π+,因为2,2,()2sin(2).6w f x x w πππ=∴=∴=+对于选项A,把12x π=代入函数得(=2sin()21266f πππ+=≠±),所以选项A 是错误的;对于选项B, 把512x π=代入函数得55(=2sin()021266f πππ+=≠±),所以选项B 是错误的;对于选项C,令2,,.6212k x k k z x ππππ+=∈∴=-无论k 取何整数,x 都取不到12π,所以选项C 是错误的. 对于选项D, 令2,,.6212k x k k z x ππππ+=∈∴=-当k=1时,512x π=,所以函数的图像关于点5,012π⎛⎫⎪⎝⎭对称. 故答案为:D.点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于三角函数图像和性质的判断,要灵活,不要死记硬背.4.D解析:D 【解析】 【分析】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,两式相加即可求出sin()A B +,进而求出A B +,角C 得解.【详解】由题:()()224sin 3cos 25,4cos 3sin 12A B A B +=+=,2216sin 24sin cos 9cos 25A A B B ++=,2216cos 24cos sin 9sin 12A A B B ++=,两式相加得:()1624sin cos cos sin 937A B A B +++=,1sin()2A B +=,所以1sin sin(())2C A B π=-+=,且C 为锐角, 所以30C =. 故选:D 【点睛】此题考查同角三角函数基本关系与三角恒等变换综合应用,考查对基本公式的掌握和常见问题的处理方法.5.D解析:D 【解析】 【分析】 【详解】试题分析:把2sin 21cos2αα=+的两边平方得224sin 2(1cos 2)αα=+,整理可得2244cos 412cos 2cos 2ααα-=++,即25cos 22cos 230αα+-=,所以(5cos 23)(cos 21)0αα-+=,解得3cos 25α=或cos21α=-,当2312sin 5α-=时,1cos 244sin 2,tan 2253ααα+===;当cos21α=-时,1cos 2sin 20,tan 202ααα+===,所以4tan 23α=或0,故选D. 考点:三角函数的基本关系式及三角函数的化简求值.6.B解析:B 【解析】 【分析】 先化简“cos 02πα⎛⎫+> ⎪⎝⎭”,再利用充要条件的定义判断. 【详解】 因为cos 02πα⎛⎫+> ⎪⎝⎭,所以-sin 0,sin 0,ααα>∴<∴是第三、四象限和y 轴负半轴上的角.α是第三、四象限和y 轴负半轴上的角不能推出α是第三象限角,α是第三象限角一定能推出α是第三、四象限和y 轴负半轴上的角,所以“cos 02πα⎛⎫+>⎪⎝⎭”是“α是第三象限角”的必要非充分条件. 故答案为:B. 【点睛】(1)本题主要考查充要条件的判断和诱导公式,考查三角函数的值的符号,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 判定充要条件常用的方法有定义法、集合法、转化法.7.C解析:C 【解析】 【分析】根据三角形内角和及两角和的正弦公式化简,利用三角函数性质求解. 【详解】在ABC ∆中,由()sin 2sin cos C B C B =+可得sin()2sin cos A B A B +=,化简sin cos cos sin 2sin cos A B A B A B +=,即in 0()s A B -=,由0,0A B ππ<<<<知A B ππ-<-<,所以0A B -=,故选C.【点睛】本题考查了三角形中内角和定理及两角和差的正弦公式的应用,属于中档题.解题的关键是对三角恒等式的变形.8.C解析:C 【解析】 【分析】 根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+, NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+,22233342AM AN AB AD AD AB ⋅=++⋅,6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示.考点:向量运算.9.B解析:B 【解析】 【分析】根据角的终边上一点的坐标,求得tan α的值,对所求表达式分子分母同时除以cos α,转化为只含tan α的形式,由此求得表达式的值.【详解】依题意可知1tan 2α=-,11sin cos tan 1231sin sin tan 112αααααα----===-++-+.故选B. 【点睛】本小题主要考查三角函数的定义,考查齐次方程的计算,属于基础题. 10.A解析:A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 解:y =cos (2x 2π+)=﹣sin2x ,是奇函数,函数的周期为:π,满足题意,所以A 正确 y =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确; y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .考点:三角函数的性质.11.A解析:A 【解析】 【分析】直接利用向量平行的充要条件列方程求解即可. 【详解】由//a b 可得到sin 34sin 3cos 0tan cos 4ααααα-=⇒==. 故选A 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.12.C解析:C 【解析】分析:逐个分析A 、B 、C 、D 四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段OM 为余弦线,有向线段MP 为正弦线,有向线段AT 为正切线.A 选项:当点P 在AB 上时,cos ,sin x y αα==,cos sin αα∴>,故A 选项错误;B 选项:当点P 在CD 上时,cos ,sin x y αα==,tan y x α=, tan sin cos ααα∴>>,故B 选项错误;C 选项:当点P 在EF 上时,cos ,sin x y αα==,tan y xα=, sin cos tan ααα∴>>,故C 选项正确;D 选项:点P 在GH 上且GH 在第三象限,tan 0,sin 0,cos 0ααα><<,故D 选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到sin ,cos ,tan ααα所对应的三角函数线进行比较.13.A解析:A 【解析】 【分析】由诱导公式可得()tan tan παα+=,由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值.即可得到答案 【详解】 ∵4sin 5α=,并且α是第二象限的角,,35cos α∴-= , ∴tanα=43-,则么()4tan tan 3παα+==-. 故选A . 【点睛】本题考查给值求值问题.掌握同角三角函数的基本关系式和诱导公式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明.14.B解析:B 【解析】 ∵21,33AD AC BP BD =∴=121()393AD AB AC AB -=- ∴2239AP AB BP AB AC =+=+ 又AP AB AC λμ=+,∴22,,339λλμμ=== 故选B.15.A解析:A 【解析】 【分析】根据条件容易求出t=4,从而得出a ⃑ =(4,0),从而得出a ⃑ +2b ⃑ =(2,2√3)可设a ⃑ +2b ⃑ 与b⃑ 的夹角为θ,这样根据cosθ=(a ⃑ +2b ⃑ )·b ⃑ |a⃑ +2b ⃑ ||b ⃑ | 即可求出cosθ,进而得出θ的值.【详解】因a ⃑ ⋅b⃑ =−4=−t ∴t=4;∴a ⃑ =(4,0),b ⃑ =(−1,√3),a ⃑ +2b⃑ =(2,2√3) 设a ⃑ +2b ⃑ 与b ⃑ 的夹角为θ,则:cosθ=(a ⃑ +2b⃑ )·b ⃑ |a ⃑ +2b ⃑ ||b ⃑ |=-2+64×2=12, ∴θ=π3 故答案为A . 【点睛】本题主要考查向量的模及平面向量数量积公式、余弦定理的应用,属于中档题.平面向量数量积公式有两种形式,一是a ⃑ ⋅b ⃑ =|a ⃑ ||b ⃑ |cosθ,二是a ⃑ ⋅b ⃑ =x 1x 2+y 1y 2,主要应用以下几个方面:(1)求向量的夹角, cosθ=a⃑ ·b ⃑ |a ⃑ |·|b ⃑ | (此时a⃑ ·b ⃑ 往往用坐标形式求解);(2)求投影,a ⃑ 在b ⃑ 上的投影是a⃑ ⋅b ⃑ |b ⃑ |;(3)a ⃑ ,b ⃑ 向量垂直则a ⃑ ⋅b ⃑ =0;(4)求向量ma ⃑ +nb ⃑ 的模(平方后需求a ⃑ ⋅b⃑ ).二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的解析:75【解析】 【分析】由三角函数的基本关系式和正弦的倍角公式,求得249(cos sin )25θθ+=,再由两角差的余弦函数的公式,即可求解. 【详解】 由24sin 225θ=,即242sin cos 25θθ=, 则2222449(cos sin )cos 2sin cos sin 12525θθθθθθ+=++=+=, 又由02πθ<<,所以cos 0,sin 0θθ>>,7cos()cos sin 45πθθθ-=+=.【点睛】本题主要考查了三角函数的基本关系式,以及正弦的倍角公式和两角差的余弦公式的化简、求值,着重考查了推理与运算能力,属于基础题.17.【解析】试题分析:因为所以所以所以即解得所以=考点:1同角三角形函数间的基本关系;2两角和与差的正切公式【方法点睛】根据已知单角或复角的三角函数值求和角(或差角或单角)的三角函数通常将结论角利用条件解析:34-【解析】试题分析:因为(,)2πθπ∈,所以3(,)424πππθ-∈,所以4sin()45πθ-=,所以4tan()43πθ-=,即tan tan4431tan tan 4πθπθ-=+,解得tan 7θ=-,所以tan()4πθ+=tan tan71341741tan tan 4πθπθ+-+==-+-. 考点:1、同角三角形函数间的基本关系;2、两角和与差的正切公式.【方法点睛】根据已知单角或复角的三角函数值求和角(或差角或单角)的三角函数,通常将结论角利用条件角来表示,利用同角三角函数基本关系化为相关角的三角函数后,再利用两角和与差的三角函数公式可求解.18.【解析】【分析】将用表示出来注意的数量关系再根据的二次函数求最值【详解】设因为所以;所以故当时有最小值【点睛】图形中向量的数量积问题主要是将未知的向量用已知的向量表示这样可以方便计算解析:18【解析】 【分析】将PA PC ⋅用AB ,AC 表示出来,注意AB ,AC 的数量关系,再根据λ的二次函数求最值. 【详解】设AC a =,因为90BAC ∠=︒,30B ∠=︒,所以3AB a =,2BC a =;22()()PA PC PC CA PC BC CA BC BC BC CA λλλλ⋅=+⋅=+⋅=+⋅,所以22222142cos1204()816a PA PC a a a a λλλ⋅=+⋅⋅⋅︒=--,故当18λ=时,PA PC⋅有最小值. 【点睛】图形中向量的数量积问题,主要是将未知的向量用已知的向量表示,这样可以方便计算.19.0【解析】【分析】由代入再由代入进一步化简整理即可【详解】因为故答案为0【点睛】本题主要考查向量的数量积运算灵活运用数量积的运算公式即可属于常考题型解析:0 【解析】 【分析】由BD AD AB =-代入·AC BD ,再由AC AD DC AC AB BC ,=+=+代入进一步化简整理即可. 【详解】因为()()()······AC BD AC AD AB AC AD AC AB AD DC AD AB BC =-=-=+-+()()222222211··22AB AD DC AD AB BC AB AD DC AD DC AD AB =+--=++-+--()()()2222222221111122222BC AB BC AB AD AC DC AD AB AC +++=+-+--+ ()()()222222111811219490222BC AB AD DC AB BC ++=--+=--+=. 故答案为0 【点睛】本题主要考查向量的数量积运算,灵活运用数量积的运算公式即可,属于常考题型.20.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:5+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则AB =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m ,则AB =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.21.【解析】与垂直 解析:14【解析】a b -与ma b +垂直1()()0(1,2)(21,1)0212204a b ma b m m m m m ⇒-⋅+=⇒⋅+-=⇒++-=⇒=22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:解析:4()sin π3f x ⎛⎫= ⎪⎝⎭【解析】分析:由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数. 详解:由题目约束条件可得到()f x 的不同解析式.由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数()4sin π3f x ⎛⎫=⎪⎝⎭. 点睛:正余弦函数是周期有界函数,既有对称轴也有对称中心,是一类有特色得函数.23.【解析】分析:由题意利用目标角和已知角之间的关系现利用诱导公式在结合二倍角公式即可求解详解:由题意又由所以点睛:本题主要考查了三角函数的化简求值问题其中解答中正确构造已知角与求解角之间的关系合理选择解析:79-【解析】分析:由题意,利用目标角和已知角之间的关系,现利用诱导公式,在结合二倍角公式,即可求解. 详解:由题意25sin(2)sin(2)cos(2)cos[2()]2cos ()1623366ππππππααααα+=++=+=+=+-, 又由1cos()63πα+=, 所以22517sin(2)2cos ()12()16639ππαα+=+-=⨯-=-. 点睛:本题主要考查了三角函数的化简求值问题,其中解答中正确构造已知角与求解角之间的关系,合理选择三角恒等变换的公式是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题 解析:65【解析】分析:由1tan 43πα⎛⎫-= ⎪⎝⎭可得tan 2α=,化简()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭,即可求得其值.详解:tan tantan 114tan ,tan 2,4tan 13tan tan 4παπαααπαα--⎛⎫-===∴= ⎪+⎝⎭+ 由()()22cos sin cos sin sin cos 2παπαπαααα⎛⎫+--+=+⎪⎝⎭22222sin sin cos tan tan 6.sin cos tan 15αααααααα++===++即答案为65. 点睛:本题考查三角函数的化简求值,考查了诱导公式及同角三角函数基本关系式的应用,是基础题.25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得: 解析:7【解析】利用平面向量的加法公式可得:()1,3a b m +=-+,由平面向量垂直的充要条件可得:()()()()1,31,2160a b a m m +⋅=-+⋅-=--++=, 解方程可得:7m =.三、解答题 26. (ⅠⅡ)125. 【解析】 【分析】(Ⅰ)求出sin B 的值,利用三角形的内角和以及两角和的正弦公式可计算出sin C 的值; (Ⅱ)利用正弦定理求出c ,然后利用三角形的面积公式即可计算出ABC ∆的面积. 【详解】(Ⅰ)由题意得sin 5B ===. 因为A B C π++=,所以()()sin sin sin sin cos cos sin C A B A B A B A B π=-+=+=+⎡⎤⎣⎦252510=⨯+⨯=; (Ⅱ)由正弦定理sin sin a cA C=,可得2sin sin 5a C c A ===.所以1112sin 2225ABC S ac B ∆==⨯=. 【点睛】本题考查利用正弦定理解三角形,同时也考查了三角形面积的计算以及三角形内角和与两角和的正弦公式的应用,考查计算能力,属于基础题.27.(1)45;(2)2450+-. 【解析】【分析】 【详解】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可. 试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()4x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-45=+=(2)因为3(,)24x ππ∈,故3cos 5x ===- 2247sin 22sin cos ,cos 22cos 12525x x x x x ==-=-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.28.(1)φ=π2;(2)单调递增区间为[kπ−5π12,kπ+π12],k ∈Z . 【解析】试题分析:(1)由最小正周期为π,可求出ω=2,由于函数为偶函数,结合三角函数的知识,得φ=π2.(2)将点(π6,√32)代入f(x)=sin(2x +φ),得sin(π3+φ)=√32,故φ=π3,f(x)=sin(2x +π3),将2x +π3代入区间[2kπ−π2,2kπ+π2](k ∈Z),可求得函数的增区间为[kπ−5π12,kπ+π12](k ∈Z).试题解析:∵f(x)的最小正周期为π,∴T =2πω=π,∴ω=2.∴f(x)=sin(2x +φ).(1)当f(x)为偶函数时,f(−x)=f(x),∴sin(2x +φ)=sin(−2x +φ),将上式展开整理得sin2xcosφ=0,由已知上式对∀x ∈R 都成立,∴cosφ=0,∵0<φ<2π3,∴φ=π2.(2)由f(x)的图像过点(π6,√32),得sin(2×π6+φ)=√32,即sin(π3+φ)=√32. 又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3,∴f(x)=sin(2x +π3).令2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z ,得kπ−5π12≤x ≤kπ+π12,k ∈Z , ∴f(x)的单调递增区间为[kπ−5π12,kπ+π12],k ∈Z .29.(1)2π;(2)6x π=时,()f x 取得最大值为3;当6x π=-时,()f x 取得最小值为0.【解析】 【分析】利用倍角公式降幂,再由辅助角公式可把函数化简为()2sin 216f x x π⎛⎫=++ ⎪⎝⎭. (1)求出函数的半周期得答案; (2)由x 的范围求出26x π+的范围,利用正弦函数的性质可求原函数的最值及使原函数取得最值时的x 值. 【详解】()2cos 2cos 2cos 212sin 216f x x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭.(1)函数()f x 图象的相邻两条对称轴的距离为22T π=; (2)5,,2,63666x x πππππ⎡⎤⎡⎤∈-∴+∈-⎢⎥⎢⎥⎣⎦⎣⎦,∴当262x ππ+=,即6x π=时,()f x 取得最大值为3;当ππ266x,即6x π=-时,()f x 取得最小值为0.【点睛】本题考查sin()y A x ωϕ=+型函数的图象与性质、倍角公式与两角和的正弦的应用,是基础题.30.(1)()3sin(2)26f x x π=++(2)33(,]42【解析】【分析】(1)由图中数据列方程即可求出周期及振幅A ,由6x π=时,函数取得最大值求得ϕ,问题得解.(2)由()sin sin C A B =+化简22sin sin A C +为11sin 226A π⎛⎫+⋅-⎪⎝⎭ 20,3A π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,再利用三角函数的性质求解.【详解】(1)523A =-=,()5122b +-== 54126T πππ⎛⎫=-⋅= ⎪⎝⎭ 2ω∴=由262ππϕ⋅+=得6πϕ=()3sin 226f x x π⎛⎫∴=++ ⎪⎝⎭ (2)()72f B =可知()73sin 2262f B B π⎛⎫=++= ⎪⎝⎭ 266B ππ∴+=或5266B ππ+= 0B ∴=(舍去)或3B π=22sin sin A C ∴+=()2222sin sin sin sin A C A A B +=++=2253sin cos cos 424A A A A ++=231sin cos 422A A A ++=311cos24224A A -+⨯+ 11sin 226A π⎛⎫=+⋅- ⎪⎝⎭ 3B π=20,3A π⎛⎫∴∈ ⎪⎝⎭即72,666A πππ⎛⎫-∈- ⎪⎝⎭1sin 2,162A π⎛⎫⎛⎤∴-∈- ⎪ ⎥⎝⎭⎝⎦ 1331sin 2,2642A π⎛⎫⎛⎤∴+⋅-∈ ⎪ ⎥⎝⎭⎝⎦ 22sin sin A C ∴+的取值范围为33,42⎛⎤ ⎥⎝⎦ 【点睛】本题主要考查了三角函数的图像及性质,还考查了二倍角公式,考查计算能力及转化能力,属于基础题.。

2017_2018学年高二数学下学期期末考试试题理(13)

2017_2018学年高二数学下学期期末考试试题理(13)

辽宁省辽河油田第二高级中学2017-2018学年高二数学下学期期末考试试题 理时间:120分钟 分值:150分一、选择题(每题一个选项,每题5分共60分)1.已知数列}{n a 为等差数列,且55=a ,则的值为( ) A . B . C .D . 2.若1cos()43απ+=,(0,)2απ∈,则sin α的值为( ) A .624- B .624+ C .187D .32 3.函数()sin(2)f x x ϕ=+的图象向右平移6π个单位后所得的图象关于原点对称,则可以是( ) A .6π B .3π C .4πD .32π 4.已知向量()()2110=-=,,,a b ,则向量在向量上的投影是( ) A .2 B .1 C .−1 D .−25.若函数()()f x x ω=π-5sin 2x ωπ⎛⎫++ ⎪⎝⎭,且()2f α=,()0f β=,αβ-的最小值是2π,则()f x 的单调递增区间是( ) A .22,233k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z B .52,266k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z C .5,1212k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z D .,36k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z6.若不等式(a-a 2)(x 2+1)+x ≤0对一切x ∈(0,2 恒成立,则a 的取值范围是 ( ) A.B.C.∪D.7.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A. 100-B. 100C. 110-D. 1108.设M =a +1a -2(2<a <3),N =log 0.5(x 2+116)(x ∈R )那么M 、N 的大小关系是( )A .M >NB .M =NC .M <ND .不能确定9. 已知sin φ=,且φ∈(,π),函数f (x )=sin (ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f ()的值为( )A .﹣B .﹣C .D .10.在ABC △中,内角,,所对的边分别为,,,已知()()3a b c a b c ab +-++=,且4=c,则ABC △面积的最大值为( )A .B .34C .32D .11.下列命题中正确的是 ( ) A.函数y=x+的最小值为2B.函数y=的最小值为2C.函数y=2-3x-(x>0)的最小值为2-4D.函数y=2-3x-(x>0)的最大值为2-412.若集合A={x|ax 2-ax+1<0}=∅,则实数a 的取值范围是 ( )A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a ≤4}D.{a|0≤a ≤4}二、填空题(每小题5分,每题5分共20分)13. 已知等比数列{}n a 为递增数列.若10a >,且4652()5a a a +=,则数列{}n a 的公比___. 14. 已知向量()1,x a=,()1,x -b =,若2-a b 与b 垂直,则a的值为_______.15.已知函数()()cos 0f x x x ωωω=+>的最小正周期为,则当π0,2x ⎡⎤∈⎢⎥⎣⎦时函数()f x 的一个零点是________16.在平面上,12OB OB ⊥,12MB MB ==,12OP OB OB =+.若1MP <,则OM的取值范围是_______.三、解答题:(17 -21题均为12分,选做题10分) 17.(本小题满分12分)在ABC △中,内角,,所对的边分别为,,,且()sin 2sin 0b A a A C -+=. (1)求角;(2)若3a =,ABC △11b c +的值.18.(本小题满分12分)已知数列}{n a 的前项和为,且满足()*41,3n n S a n =-∈N . (1)求数列}{n a 的通项公式;(2)令n n a b 2log =,记数列1(1)(1)n n b b ⎧⎫⎨⎬-+⎩⎭的前项和为. 证明:1132n T <≤.。

辽宁省盘锦市数学高二下学期理数期末联考试卷

辽宁省盘锦市数学高二下学期理数期末联考试卷

辽宁省盘锦市数学高二下学期理数期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·九台期中) 己知全集,集合,,则()A .B .C .D .2. (2分) (2018高二上·哈尔滨月考) 已知命题, . 则为()A . ,B . ,C . ,D . ,3. (2分)(2017·鞍山模拟) 设样本数据x1 , x2 ,…,x10的均值和方差分别为1和4,若yi=xi+a(a 为非零常数,i=1,2,…,10),则y1 , y2 ,…,y10的均值和方差分别为()A . 1+a,4B . 1+a,4+aC . 1,4D . 1,4+a4. (2分) (2017高二上·绍兴期末) 已知直线l1:y=﹣ x﹣1,l2:y=k2x﹣2,则“k=2”是“l1⊥l2”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2019高一下·延边月考) 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A . ①简单随机抽样,②系统抽样,③分层抽样B . ①简单随机抽样,②分层抽样,③系统抽样C . ①系统抽样,②简单随机抽样,③分层抽样D . ①分层抽样,②系统抽样,③简单随机抽样6. (2分) (2016高三上·福州期中) 已知数列{an}是等比数列,数列{bn}是等差数列,若a1•a5•a9=﹣8,b2+b5+b8=6π,则的值是()A .B .C .D .7. (2分) (2018高二下·赤峰期末) 设命题:,;命题:若,则,则下列命题为真命题的是()A .B .C .D .8. (2分) (2018高二上·黑龙江月考) 在区间上随机取两个数x,y,记P为事件“ ”的概率,则()A .B .C .D .9. (2分)执行右面的程序框图,如果输入的t=0.01,则输出的n=()A . 5B . 6C . 10D . 1210. (2分) (2016高二下·六安开学考) 如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E 分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A .B .C .D .11. (2分)(2016·天津文) 已知双曲线 =1(a>0,b>0)的焦距为2 ,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A . ﹣y2=1B . x2﹣ =1C . =1D . =112. (2分)已知函数的周期为2,当时,如果,则函数的所有零点之和为()A . 2B . 4C . 6D . 8二、填空题 (共4题;共4分)13. (1分) (2017高一上·丰台期末) 已知向量 =(1,2), =(﹣2,1),则|2 + |=________.14. (1分)(2019·黄浦模拟) 椭圆的焦距长为________.15. (1分) (2018高二下·辽源月考) 五个数1,2,3,4,a的平均数是3,则a=________,这五个数的标准差是________.16. (1分) (2016高二上·岳阳期中) 正方体ABCD﹣A1B1C1D1 ,异面直线DA1与AC所成的角为________.三、解答题 (共6题;共60分)17. (10分) (2018高一下·临川期末) 已知△ABC中,内角A、B、C依次成等差数列,其对边分别为a、b、c ,且b = 2 asinB.(Ⅰ)求内角C;(Ⅱ)若b =2,求△ABC的面积.18. (10分) (2017高一下·淮安期末) 某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].(1)求频率分布直方图中a的值;(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.19. (10分)(2018·南阳模拟) 随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图得,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年5月份(即时)的市场占有率;(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不形同,考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表见上表.经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?(参考公式:回归直线方程为,其中)20. (10分)(2017·辽宁模拟) 如图,在棱台ABC﹣FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,.(1)λ为何值时,MN∥平面ABC?(2)在(1)的条件下,求直线AN与平面BMN所成角的正弦值.21. (10分) (2020高二上·林芝期末)(1)点A(-2,4)在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程;(2)已知双曲线经过点,它渐近线方程为,求双曲线的标准方程.22. (10分)(2017·沈阳模拟) 如图,椭圆C1: =1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1 , C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1 , S2 .问:是否存在直线l,使得 = ?请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、。

辽宁省盘锦市高级中学2017_2018学年高二数学下学期期末考试试题理201807230281

辽宁省盘锦市高级中学2017_2018学年高二数学下学期期末考试试题理201807230281

2017-2018学年度高二期末考试试题(理科数学)考试时间:120分钟 试卷满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合,,则( ) A. (1,1]- B. C.D.2.抛物线的准线方程为( )A. 116y =-B.116y = C. 1y = D. 1y =- 3.设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( ) A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题 4.已知(3),1()log ,1a a x a x f x x x --<⎧=⎨≥⎩,((1))3f f =,则a =( )A.2B.-2C.3-D.3 5.函数()2cos()3f x x π=-的单调递增区间是( )A 、42233k k ππππ⎡⎤++⎢⎥⎣⎦,()k Z ∈ B 、22233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈C 、22233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈ D 、242233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈6.函数12018()()cos 212018xxf x x -=+的图象大致为( ) A. B.C. D.7.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有( ) A. 240 B. 480 C. 720 D. 9608.高三某班有60名学生(其中女生有20名),三好学生占61,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( ) (A )61 (B )81 (C )101 (D )121 9.已知命题:①函数2(11)xy x =-≤≤的值域是1[,2]2; ②为了得到函数sin(2)3y x π=-的图象,只需把函数sin 2y x =图象上的所有点向右平移3π个单位长度;③当0n =或1n =时,幂函数ny x =的图象都是一条直线;④已知函数2|log |,02()12,22x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(2,4).其中正确的命题个数为( )A .4B .3C .2D .1 10.函数sin sin()3y x x π=+的图象沿轴向右平移个单位后,得到为偶函数,则的最小值为( ) A. 12π B. 6πC. 3πD. 2π11.已知锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()2b a ac =+,则()2s in s in A B A -的取值范围是( )A. 0,2⎛ ⎝⎭B. 1,22⎛⎫ ⎪ ⎪⎝⎭C. 1,22⎛⎫ ⎪ ⎪⎝⎭D. 0,2⎛ ⎝⎭ 12.设定义在(0,)+∞上的函数()f x 满足11'()()ln ,()xf x f x x x f e e-==,则()f x ( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,也有极小值D.既无极大值,也无极小值第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分.13.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则n 等于_________.14.已知双曲线2222:1(0,0)x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,AB,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为__________.15.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,8b =,且223cosB 5ac a b bc =-+,O 为ABC ∆内一点,且满足00,30OA OB OC BAO ++=∠=,则OA =__________.16.已知函数()1,()l n xf x e a xg x x a x a =--=-+,若存在0(1,2)x ∈,使得00()()0f x g x <,则实数a 的取值范围__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分) 已知函数11)(-++=mx x x f .(1)若1=m ,求()f x 的最小值,并指出此时x 的取值范围; (2)若()2f x x ≥,求m 的取值范围. 18.(本题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2cos ,[0,]2πρθθ=∈,曲线2C 的参数方程为x ty a t=⎧⎨=-⎩(t 为参数). (1) 求曲线1C 的直角坐标方程;曲线2C 的极坐标方程。

(解析版)辽宁省盘锦市高级中学2017-2018学年高二下学

(解析版)辽宁省盘锦市高级中学2017-2018学年高二下学

辽宁省盘锦市高级中学2017—2018学年度高二下学期期末考试物理试题一、选择题(1-7题为单选,8-11题为多选,每题4分,合计44分。

)1. 下列关于运动和力的叙述,正确的是( )A. 图甲中,蹲在体重计上的人突然站起的瞬间指针示数会大于人的重力B. 图乙中,在玻璃漏斗中做匀速圆周运动的小球受到的合外力是恒力C. 图丙中,在水平直跑道上减速的飞机,伞对飞机的拉力大于飞机对伞的拉力D. 图丁中,滑冰运动员通过圆弧弯道处,若此时地面摩擦力突然消失,则运动员将在冰面上沿着轨迹半径方向“离心”而去【答案】A【解析】A项:图甲中,蹲在体重计上的人突然站起的瞬间处于超重状态,所以体重计的示数大于人的重力,故A正确;B项:图乙中,在玻璃漏斗中做匀速圆周运动的小球受到的合外力提供向心力,所以合外力的大小恒定,方向时刻变化,故B错误;C项:图丙中,在水平直跑道上减速的飞机,伞对飞机的拉力与飞机对伞的拉力为作用力与反作用力,所以两力大小相等,方向相反,故C错误;D项:图丁中,滑冰运动员通过圆弧弯道处,若此时地面摩擦力突然消失,则运动员将沿圆弧切线作直线运动,故D错误。

2. A B两物体同时同地从静止开始运动,其运动的速度随时间的v—t图如图所示,关于它们运动的描述正确的是()A. 物体B在直线上做往返运动B. 物体A做加速度增大的曲线运动C. AB两物体在0-1s运动过程中距离越来越近D. B物体在第1s内、第2s内、第3s内的平均速度大小为1:3:2【答案】D【解析】v-t图,其数值代表速度大小和方向,斜率表示加速度,面积表示位移;由图可知,B先匀加速直线,再做匀减速直线,速度为正值,为单向直线运动。

物体A做加速度增大的直线运动;在0-1s内,B物体在前,A物体在后,距离越来越远;由于面积表示位移,可求1s 内、第2s内、第3s内的位移比为1:3:2,由,可知平均速度大小为1:3:2。

综上分析,D 正确。

3. 在一斜面顶端,将甲、乙两个小球分别以v和v/2的速度沿同一方向水平抛出,两球都落在该斜面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度高二期末考试试题(理科数学)考试时间:120分钟试卷满分:150分第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.1. 已知集合,则()A. B. C. D.【答案】C【解析】【分析】先分别求出集合A,B,由此利用并集的定义求得.【详解】因为,,所以,故选C.【点睛】该题考查的是有关集合的运算问题,涉及到的知识点有一元二次不等式的解法,函数的定义域的求解,集合的并集运算,属于简单题目.2. 抛物线的准线方程为()A. B. C. D.【答案】A【解析】【分析】:首先将抛物线方程化为标准方程,由抛物线的准线方程的定义可求得结果.【详解】因为抛物线可化为,则抛物线的准线方程为,故选A.【点睛】该题考查的是有关抛物线的准线方程的问题,涉及到的知识点有抛物线的准线方程,在解题的过程中,注意首先将抛物线方程化成标准方程.3. 设p、q是两个命题,若是真命题,那么()A. p是真命题且q是假命题B. p是真命题且q是真命题C. p是假命题且q是真命题D. p是假命题且q是假命题【答案】D【解析】【分析】先判断出是假命题,从而判断出p,q的真假即可.【详解】若是真命题,则是假命题,则p,q均为假命题,故选D.【点睛】该题考查的是有关复合命题的真值表的问题,在解题的过程中,首先需要利用是真命题,得到是假命题,根据“或”形式的复合命题真值表求得结果.4. 已知,,则=()A. 2B. -2C.D. 3【答案】C【解析】【分析】首先根据题中所给的函数解析式,求得,之后根据,从而求得,得到结果.【详解】根据题意,可知,所以,所以,故选C.【点睛】该题考查的是有关分段函数根据函数值求参数的问题,在解题的过程中,首先求得,利用内层函数的函数值等于外层函数的自变量,代入函数解析式求得结果.5. 函数的单调递增区间是()A. B.C. D.【答案】C【解析】【分析】首先利用诱导公式化简函数解析式,之后应用余弦函数单调区间的公式解关于x的不等式,即可得到所求单调递增区间.【详解】因为,根据余弦函数的性质,令,可得,所以函数的单调递增区间是,故选C.【点睛】该题考查的是有关余弦型函数的单调怎区间的求解问题,在解题的过程中,涉及到的知识点有诱导公式,余弦函数的单调增区间,余弦型函数的性质,注意整体角思维的运用.6. 函数的图象大致为()A. B. C. D.【答案】A【解析】【分析】利用函数的零点排除选项,然后通过特殊点的位置判断即可得结果.【详解】函数,,所以是函数的一个零点,所以排除B,D;当时,,所以,函数的图形应落在x轴的下方,所以排除C;故选A.【点睛】该题考查的是有关函数的图形的选择问题,在解题的过程中,注意排除法的应用,也可以从函数的奇偶性,得到函数图像的对称性,再根据相应区间上的函数值的符号求得结果.7. 将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有()A. 240B. 480C. 720D. 960【答案】B【解析】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有,所以不同坐法有,选B.8. 高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.【答案】B【解析】【分析】根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【点睛】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.9. 已知命题:①函数的值域是;②为了得到函数的图象,只需把函数图象上的所有点向右平移个单位长度;③当或时,幂函数的图象都是一条直线;④已知函数,若互不相等,且,则的取值范围是.其中正确的命题个数为()A. 4B. 3C. 2D. 1【答案】C【解析】【分析】:①根据指数函数的单调性进行判断;②根据三角函数的图形关系进行判断;③根据幂函数的定义和性质进行判断;④根据函数与方程的关系,利用数形结合进行判断.【详解】①因为是增函数,所以当时,函数的值域是,故①正确;②函数图象上的所有点向右平移个单位长度,得到函数的图像,故②错误;③当时,直线挖去一个点,当时,幂函数的图形是一条直线,故③错误;④作出的图像如图所示:所以在上递减,在上递增,在上递减,又因为在上有两个,在上有一个,不妨设,则,即,则的范围即为的范围,由,得,则有,即的范围是,所以④正确;所以正确的命题有2个,故选C.【点睛】该题考查的是有关真命题的个数问题,在结题的过程中,涉及到的知识点有指数函数的单调性,函数图像的平移变换,零指数幂的条件以及数形结合思想的应用,灵活掌握基础知识是解题的关键.10. 函数的图象沿轴向右平移个单位后,得到为偶函数,则的最小值为()A. B. C. D.【答案】B【解析】【分析】利用三角函数恒等变换,可得,,利用其为偶函数,得到,从而求得结果.【详解】因为,所以,因为为偶函数,所以,所以,所以的最小值为,故选B.【点睛】该题考查的是有关三角函数的图形平移的问题,在解题的过程中,需要明确平移后的函数解析式,根据其为偶函数,得到相关的信息,从而求得结果.11. 已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】由利用余弦定理,可得,利用正弦定理边化角,消去C,可得,利用三角形是锐角三角形,结合三角函数的有界性,可得【详解】因为,所以,由余弦定理得:,所以,所以,由正弦定理得,因为,所以,即,因为三角形是锐角三角形,所以,所以,所以或,所以或(不合题意),因为三角形是锐角三角形,所以,所以,则,故选C.【点睛】这是一道解三角形的有关问题,在解题的过程中,涉及到的知识点有余弦定理,正弦定理,诱导公式,正弦函数在某个区间上的值域问题,根据题中的条件,求角A的范围是解题的关键.12. 设定义在上的函数满足,则()A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,也有极小值D. 既无极大值,也无极小值【答案】D【解析】试题分析:由等式化为,即,则由积分可得(为常数),即,又,则,所以,易知函数在上单调递增.故选D.考点:函数的导数与积分、解析式及其单调性.【方法点晴】此题主要考查函数的导数与积分、解析式及其单调性的应用,属于中高楼题.根据题设可构造等式,由积分可得,再通过等式,从而求出函数的解析式,又在区间上恒成立,即函数在上单调递增,故函数在区间上即无极大值,也不极小值.第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题5分.13. 在的二项展开式中,所有项的二项式系数之和为256,则n等于_________.【答案】8【解析】【分析】由题意可知,,解得n,得到结果.【详解】因为的展开式中所有项的二项式系数之和为256,所以有,解得,故答案是8.【点睛】这是一道考查二项式定理的题目,解题的关键是明确二项展开式的性质,由二项式定理可得,二项式所有项的二项式系数和为,从而求得结果.14. 已知双曲线,若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且,则E的离心率为__________.【答案】2【解析】【分析】可令,代入双曲线的方程,求得,再根据题意,设出A,B,C,D的坐标,由,可得的方程,运用离心率公式计算即可得到所求值.【详解】令,代入双曲线的方程可得,由题意可设,由,可得,由,可得,解得(负值舍去),故答案是2.【点睛】该题考查的是有关双曲线的离心率的求解问题,在解题的过程中,涉及到的知识点有双曲线上的点的坐标的求法,根据双曲线对称性,得到四个点A,B,C,D四个点的坐标,应用双曲线中系数的关系,以及双曲线的离心率的公式求得结果.15. 已知分别为的三个内角的对边,,且,为内一点,且满足,则__________.【答案】【解析】【分析】运用余弦定理可求得,利用同角三角函数关系式中的平方关系求得,再由题意可得O为的重心,得到,由三角形的面积公式,解方程可得所求值.【详解】由余弦定理可得,因为,且,所以,整理得,所以,从而得,满足,且,可得O为的重心,且,即,则,故答案是.【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,同角三角函数关系,三角形重心的性质,三角形面积公式,熟练掌握基础知识是解题的关键.16. 已知函数,若存在,使得,则实数的取值范围__________.【答案】【解析】【分析】令,令,应用导数研究得出函数的单调性,从而分别求出的最小值和的最大值,从而求得的范围,得到结果.【详解】由令,则对恒成立,所以在上递减,所以,令,则对恒成立,所以在上递增,所以,所以,故的取值范围是.【点睛】该题考查的是有关参数的取值范围的问题,在解题的过程中,涉及到的知识点有构造新函数,应用导数研究函数的单调性,求得函数的最值,结合条件,求得结果,将题的条件转化是解题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数.(1)若,求的最小值,并指出此时的取值范围;(2)若,求的取值范围.【答案】(1)见解析;(2).【解析】【分析】(1)根据绝对值的意义求出的范围即可;(2)问题转化为当时,,结合函数的性质得到关于的不等式,解出即可. 【详解】(1),当且仅当时取等号,故的最小值为,此时的取值范围是.(2)时,显然成立,所以此时;时,由,得.由及的图象可得且,解得或.综上所述,的取值范围是【点睛】该题考查的是有关绝对值不等式的问题,涉及到的知识点有绝对值的意义,绝对值三角不等式,分类讨论思想,灵活掌握基础知识是解题的关键.18. 在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程;曲线的极坐标方程。

相关文档
最新文档