3.5 矩形的性质

合集下载

矩形的性质和判定

矩形的性质和判定

矩形的性质和判定矩形的性质和判定定义:一个有一个直角的平行四边形被称为矩形。

性质:1.矩形的四个角都是直角。

2.矩形的对角线相互平分且相等。

3.矩形是中心对称图形和轴对称图形,有两条对称轴。

4.矩形的面积为长乘宽。

判定:1.有一个角是直角的平行四边形是矩形。

2.有三个角是直角的四边形是矩形。

3.对角线相等的平行四边形是矩形。

4.对角线相等且互相平分的四边形是矩形。

矩形与平行四边形的区别与联系:相同点:1.两组对边分别平行。

2.两组对边分别相等。

3.两组对角分别相等。

4.对角线相互平分。

区别:1.有一个角是直角的平行四边形是矩形。

2.对角线相互平分且相等。

例题精讲:考点1:矩形的性质例1:在矩形ABCD中,BE=CF,求证:AF=DE。

例2:在矩形ABCD中,BE=DF,求证:△ABE≌△CDF。

例3:在矩形ABCD中,AB=2,且AOB=60°,求对角线AC的长。

考点2:矩形的判定例4:在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,求证:四边形ADCE是矩形。

例5:在平行四边形ABCD中,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形。

例6:在平行四边形ABCD中,AQ、BN、CN、DQ分别是DAB、ABC、BCD、CDA的平分线,AQ与BN交于P,CN与DQ交于M,证明:四边形PQMN是矩形。

变式5】在三角形ABC中,AB=AC,AD是BC边上的高,AF是∠BAC的外角平分线,DE∥AB交AF于点E。

可以证明四边形ADCE是矩形。

变式6】在图11中,已知E是四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F。

(1) 可以证明△ABE≌△FCE。

(2) 连接AC、BF,如果∠AEC=2∠ABC,可以证明四边形ABFC是矩形。

课堂训练】1、矩形具有对边相等和对角线互相平分的性质。

2、正确的个数是6个。

3、不一定正确的是B、AC=BDC。

《矩形的性质》教案

《矩形的性质》教案

《矩形的性质》教案【知识与技能】学生掌握矩形的定义和性质,理解矩形与平行四边形的区别与联系,会初步运用矩形的定义和性质来解决有关问题。

【过程与方法】经历探索矩形的定义和性质的过程,通过演示、观察、动手操作、归纳总结等活动,增强动手操作能力,增强主动探究意识。

【情感态度价值观】在探究矩形的性质的活动中,培养严谨的推理能力以及合作探究的精神,体会逻辑推理的思维价值,感受数学活动的乐趣。

二、教学重难点【教学重点】矩形的性质。

【教学难点】矩形的性质的探究和灵活应用。

三、教学过程(一)引入新课演示改变平行四边形活动框架的形状,当有一个角是直角时引导学生观察图形特征,引出矩形的定义;通过提问并引导学生观察矩形还有哪些特殊的性质,从而导入新课《矩形的性质》(二)探索新知通过三个活动引导学生从角、对角线、对称性等几个方面去探究矩形的性质。

活动1:让学生观察、猜测、(一小组为单位)动手测量验证,然后老师多媒体演示动画,让学生总结矩形的性质;引导学生用几何语言证明矩形的性质。

活动2:学生拿出矩形纸跟着老师动手折叠探究矩形的对称性、然后多媒体动画演示,得到矩形既是轴对称图形又是中心对称图形。

活动3:老师引导学生观察矩形ABCD,用多媒体课件演示从矩形中抽象出直角三角形,学生归纳,教师补充得出矩形性质的推论,并引导学生证明。

(1)推论直角三角形斜边上的中线等于斜边的一半。

(2)总结直角三角形的性质(三)课堂练习已知矩形ABCD的两条对角线相交于点O,AOB=60 ,AB=4cm,求矩形对角线的长? (四)小结作业提问:今天有什么收获?引导学生回顾:矩形的性质。

课后作业:设计一个图表清楚的展示四边形、平行四边形、矩形之间的关系。

四、板书设计以上是《矩形的性质》教案,希望对各位考生有所帮助。

更多学科教案设计,请查看中公教师网-教案模板频道。

相关推荐:《卫星运动时间》答辩题目及解析中公讲师解析扫描二维码关注微信公众号中公教师考试回复教育理论即可查看教师考编两学各章节练习题回复我要过面试获取试讲教案(含音频)+答辩+结构化解题思路注:本文章用于访问者个人学习、研究或欣赏,版权为中公教师网所有,未经本网授权不得转载或摘编。

矩形的认识与性质

矩形的认识与性质

矩形的认识与性质矩形是我们在日常生活中经常遇到的一种形状。

矩形具有一些独特的性质和特点,通过深入了解矩形的认识和性质,我们能够更好地应用它们在实际问题中。

一、矩形的定义和特征矩形是一种具有四条边的平面图形,其内部的四个角是直角。

矩形的特征包括:1. 四个角度都是直角;2. 相对的边是相等的,即对边互相平行且长度相等;3. 对角线相等且互相平分。

二、矩形的性质1. 对角线相等矩形的对角线相等,并且互相平分。

这意味着从一个角到另一个相对角的距离相等,可以通过这个性质来进行测量和计算。

2. 边长关系在矩形中,相对的边是相等的。

这意味着一个矩形的宽度和长度相等,或者说它的边长相等。

3. 周长和面积矩形的周长可以通过两倍的长度加上两倍的宽度来计算,即2 × (长度 + 宽度)。

而面积可以通过长度乘以宽度来计算,即长度 ×宽度。

4. 矩形的对称性矩形具有一个或多个对称轴。

比如,如果将矩形沿着它的中心水平或垂直折叠,两边会完全重合。

这是矩形对称性的体现。

5. 矩形的角度关系矩形的四个角都是直角,这是它的基本特征之一。

直角具有独特的性质,可以通过直角关系来解决实际问题。

三、矩形的应用矩形在现实生活中有广泛的应用,下面列举几个例子:1. 建筑设计矩形是建筑设计中常见的形状,例如房屋的墙壁、窗户和门等。

通过矩形的性质,我们可以计算房间的面积和周长,从而进行设计和施工。

2. 地图和测量在地图上,我们经常使用矩形来表示建筑物、土地和街道等。

通过对矩形形状的测量,我们可以计算出相应地区的面积或距离,为规划和导航提供便利。

3. 制作家具很多家具都是矩形形状的,比如桌子、书柜、床等。

通过了解矩形的特征和性质,我们可以更好地设计和制作家具,使其更稳定、美观。

4. 数学问题矩形在数学问题中也经常出现。

例如,在计算面积、周长和对角线的长度时,矩形的性质可以用来简化计算步骤,提高解题效率。

总结:矩形是我们生活中常见的形状之一,具有直角、边长相等以及对角线相等等特征。

矩形的性质和判定

矩形的性质和判定

矩形的性质和判定基础知识点1、矩形的性质和判定:定 义矩 形有一个内角是直角的平行四边形。

性质边对边平行,对边相等。

角 四个角相等,都是直角。

对角线互相平分,相等。

判定有一个角是直角的平行四边形是矩形。

有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

2、在直角三角形中,斜边的中线等于斜边的一半。

3、矩形是轴对称图形,对称轴是对边中点的连线所在的直线。

例题剖析例1、 已知矩形ABCD 中,AB=2BC ,点E 在边DC 上,且AE=AB ,求∠EBC 的度数.【变式练习】矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,•求证:BE=CF .【变式练习】在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长线相交于点E ,求证:△ACE 是等腰三角形.例2、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A ′位置上,折痕为DG ,AB=2,BC=1。

求AG 的长。

GA`DCBA【变式练习】如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。

EDC BAF例3、在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,•使DE=BD,连结AE,CE,求证:四边形ABCE是矩形.【变式练习】在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形。

求证:四边形ADCE是矩形。

例4、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.【变式练习】(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,当CA=CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论【变式练习】E 为□ABCD 外一点,AE ⊥CE,BE ⊥DE ,求证:□ABCD 为矩形例5、□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点, 求证:四边形EFGH 的矩形。

矩形的特征与性质

矩形的特征与性质

矩形的特征与性质矩形是几何形状中最常见的一种,它具有许多独特的特征和性质。

在本文中,我们将探讨矩形的定义、性质和一些相关的定理。

通过对矩形进行全面的了解,我们可以更好地理解它在几何学中的重要性。

矩形的定义矩形是一种四边形,其四个内角都是直角(90度)。

也就是说,它的四条边互相垂直,并且长度相等。

矩形的两条对边是平行的,所以矩形也是一个平行四边形。

矩形的特征除了上述的定义特征外,矩形还具有以下的特征:1. 对角线相等:矩形的两条对角线相等长,并且彼此垂直交叉于中心点。

这个特征使得矩形具有一些独特性质和定理,如下文将要讨论的。

2. 中心对称性:矩形是关于其中心点对称的,也就是说,如果从矩形的中心点沿着任意方向画一条直线,那么这条直线将把矩形分为两个完全相同的部分。

3. 尺寸关系:矩形的宽度和长度差异明显,其中宽度较小,长度较大。

这种特点使得矩形可以用来表示各种比例和尺寸关系。

矩形的性质除了上述的特征外,矩形还具有以下的性质和定理:1. 面积:矩形的面积可以通过将宽度乘以长度来计算。

即面积 = 宽度 ×长度。

2. 周长:矩形的周长可以通过将宽度和长度乘以2然后相加来计算。

即周长 = 2 × (宽度 + 长度)。

3. 对角线:矩形的两条对角线相等长,可以通过勾股定理得知其长度。

即对角线长度= √(宽度² + 长度²)。

4. 正方形:当矩形的宽度和长度相等时,矩形就变成了正方形。

正方形是一种特殊的矩形,它具有所有矩形的性质和特征,同时还具有对边相等的特点。

矩形的定理1. 矩形的内角和定理:矩形的内角和为360度。

由于矩形的每个内角都是直角(90度),所以四个内角之和为360度。

2. 矩形的对角线定理:矩形的两条对角线相等。

这是因为矩形的对角线可以看作是通过矩形的中心点的垂直交叉线,由对角线的定义可知,对角线相等。

3. 矩形的对角线互相垂直定理:矩形的两条对角线互相垂直。

什么是矩形_矩形的性质

什么是矩形_矩形的性质

什么是矩形_矩形的性质矩形是一种平面图形,包括长方形与正方形,那么你对矩形了解多少呢?以下是由店铺整理关于什么是矩形的内容,希望大家喜欢!什么是矩形矩形(rectangle)是一种平面图形,包括长方形与正方形。

是特殊的平行四边形,因为平行四边形具有不稳定性,所以当改变一个内角大小,而不改变各边长并仍保证为平行四边形矩形至直角时,便有了矩形。

所以矩形的四个角都是直角,同时矩形的两组对边分别相等,对角相等,邻角互补,对角线相等且互相平分,故两条对角线可以将一个矩形分为四个面积相等的等腰三角形,而且在平面内任一点到其两对角线端点的距离的平方和相等。

还有我们知道,在任意四边形中,顺次连接各边中点,所得图形即为平行四边形{可用中位线定理证明}。

而在一个对角线互相垂直的四边形中,顺次连接各边中点,所得图形即为矩形。

判定矩形一般有3种基本方法:1.有一个角是直角的平行四边形是矩形{定义判定法}2.有三个角是直角的四边形是矩形3.对角线相等的平行四边形{即对角线相等且互相平分的四边形}是矩形矩形的判定1.一个角是直角的平行四边形是矩形。

2.对角线相等的平行四边形是矩形。

3.三个内角都是直角的四边形是矩形。

说明:矩形和正方形都是平行四边形。

平行四边形的定义在矩形上仍然适用。

矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.矩形判定应用例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB=4.求这个平行四边形的面积。

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为例2:已知:如图4-38在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形ABCD是矩形.分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。

矩形的性质和用途

矩形的性质和用途

矩形的性质和用途矩形是几何学中最基本的形状之一,具有许多独特的性质和广泛的应用。

本文将就矩形的性质和常见用途展开讨论。

一、性质1. 边长关系:矩形的两对相邻边长相等,对角线长度相等。

这个性质使得矩形有较好的对称性,可以方便地进行计算和推导。

2. 角度特性:矩形的四个角均为直角,即90度。

这使得矩形在建筑、绘图、设计等领域中应用广泛。

3. 面积计算:矩形的面积可以通过长度乘以宽度来计算,公式为A=长×宽。

这个简单的计算公式方便了矩形面积的求解,在测量、工程设计等方面具有重要作用。

4. 对角线性质:矩形的对角线相互垂直且相互平分。

这个性质使得矩形可以用于工程测量、图形构建以及装饰设计等方面。

二、用途1. 建筑和土木工程:矩形在建筑和土木工程中扮演重要角色。

例如,在房屋建设中,房间的墙壁往往是矩形的,矩形的角度特性使得房间更稳定和对称。

此外,建筑平面图中的墙壁、窗户、门等也常常利用矩形的性质来进行设计。

2. 绘图和设计:矩形在绘图和设计中常被使用。

绘制平面图、制作建筑物的模型、设计网页布局等都需要利用矩形的性质和对称性。

矩形还可以用于绘制地图、棋盘等。

3. 数学和几何学:矩形是几何学中最经典的形状之一,形成了许多数学定律和公式。

矩形的性质被广泛应用于数学问题的解决过程中,如计算面积、周长等。

4. 家居和室内设计:矩形的简单性质使得它在家居和室内设计领域中得到广泛运用。

例如,家具的设计往往以矩形为基础,包括桌子、座椅、柜子等。

墙壁、地板、天花板等室内元素也可以利用矩形的性质进行设计和布局。

5. 电子设备:矩形在电子设备中也有重要的应用。

例如,电视屏幕、电脑显示器、手机屏幕等都采用了矩形的形状。

此外,电子电路板的设计和制造也需要矩形的性质来进行布局和连接。

6. 艺术和装饰:矩形在艺术和装饰方面具有重要的地位。

矩形的简洁性和对称性使得它适合于许多装饰设计和艺术创作。

例如,画框、相框、墙画等的形状常常是矩形的。

八上3.5 矩形的性质

八上3.5 矩形的性质

3.5矩形的性质(1)-- ( 教案)班级姓名学号学习目标知识与技能:探索并掌握矩形的有关性质,领会矩形的内涵.过程与方法:经历探索矩形有关性质的过程,在直观操作活动中学会简单说理,发展初步的合情推理能力和主动探究习惯,逐步掌握说理的基本方法.情感态度与价值观:形成良好的几何感知,体会几何学的逻辑内涵,发展思维.学习难点理解和掌握矩形的性质,发展合情推理能力和主动探究习惯.教学过程一、回顾1.平行四边形有哪些特征?2.有几种方法可以识别四边形是平行四边形?3.平行四边形是中心对称图形吗?它的对称中心是什么样的点?•平行四边形是轴对称图形吗?如果是,它的对称轴是怎样的直线?如果不是,请说明理由.二、创设问题情境,引入新课1.教师出示教具:“一个活动的平行四边形木框”,•用两根橡皮筋分别套在相对的两个顶点上.拉动一对不相邻的顶点A、C,立即改变平行四边形的形状,如图所示.学生思考如下问题:(1)无论∠α如何变化,四边形ABCD还是平行四边形吗?(2)随着∠α的变化,两条对角线长度有没有变化?学生凭直觉可以很快地回答上述问题.随着∠α由锐角变成钝角时,过∠α顶角的对角线由长变短,而另一条对角线由短变长.当∠α是锐角时,学生可以用刻度尺量出两条对角线的长度,•你可判别它们数量之间的关系吗?当∠α是钝角时,学生也可以用同样办法,得到两对角线的数量关系.(3)当∠α为直角时,这个时候平行四边形就变成一个特殊的平行四边形──矩形.这就是你们以前学过的长方形.教师根据学生的回答.板书:矩形.这就是我们今天着手研究的一个课题.(4)那怎样的平行四边形是矩形呢?2.同学回答,老师板书:有一个内角为直角的平行四边形是矩形?如果人家问怎样的四边形是矩形呢?那就要说四个内角都是直角(或三个内角是直角)的四边形是矩形.大家想一想矩形是平行四边形吗?9是)那么矩形就具有平行四边形的一切特征.即矩形是中心对称图形;对边分别平行;两组对边分别相等;两组对角分别相等;对角线互相平分.3.矩形除了以上特征外,还有它的特有的性质吗?学生思考以下问题:(1)上面的活动架当∠α为直角时,它们的对角线有何关系?(2)矩形是轴对称图形吗?如果是,它的对称轴是怎样的直线?•如果不是请说明理由.(3)说出日常生活中的矩形图象.4.让我们一起来归纳矩形的性质,并板书:(1)矩形具有平行四边形的一切性质.(2)矩形是轴对称图形.(3)矩形的对角线相等.(4)矩形的四个角都是直角.三、讲解例题例1 矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和为86cm,对角线长为13cm,那么矩形的周长是多少?学生思考交流后.师生共同分析:要求矩形ABCD的周长,就必要求出AB、BC、CD、AD的长度,•由于AB=DC,AD=BC,那么只要求出AB、BC或CD、AD即可.而矩形的对角线相等且互相平分,又对角线AC=13cm,所以OA=OB=OC=OD=132cm=•6.5cm .这样通过四个小三角形的周长和得到答案.点拨:上面从求AB 、BC 、CD 、AD 的长度来考虑是一种常见的方法,•这里是很难实现的与上次讲述的从整体考虑也是一种好方法,即求AB+BC+CD+AD 的值,•本题应该从这方面入手.解:因为△AOB 、△BOC 、△COD 、△AOD 的周长的和为86cm ,四边形ABCD 是矩形,所以AC=BD=13cm ,AO=OB=OC=OD则AO+OB+AB+BO+OC+BC+CO+CD+OD+AO+OD+AD=86(cm )即AB+BC+CD+AD=86-2AC-2BD=86-2×13-2×13=34(cm )所以矩形ABCD 的周长为34cm .练一练1.矩形的定义中有两个条件:一是____________,二是_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D
O
B
C
例1 如图,在矩形ABCD中,AE⊥BD, (1)∠DAE:∠BAE=3:1,求∠BAE、∠EAO的度 数; (2)若AE平分∠BAO,求∠AOB的度数 (3)若DE :BE=3:1,AB=4,求AC的长
A D
O E C
B
练习
1、如图,在矩形ABCD中,点E在AD上,EC平分∠BED, 若AB=1,∠ABE=45°,求BC的长。 2、如图,已知矩形ABCD中,E是AD上一点,F是 AB上一点,EF⊥EC,且EF=EC,DE=4,矩形ABCD 的在矩形ABCD中,EF经过对角线交点O,且 EF⊥BD,BF=EF,求证:OE=FC
A
E
D
O C B F
拓展 提升 如图,在矩形ABCD中,AB=3,BC=4,E是AD上任 意一点,EM⊥AC,EN⊥BD,垂足分别为M、N,求 EM+EN的长
A M N O B C E D
练一练 1、矩形具有而平行四边形不具有的性质是( A 两组对边分别平行 B 对角相等 C 对角线互相平分 D 对角线相等 )
2、如图,矩形ABCD的对角线AC、BD相交于点O, AB=4,∠AOB=60°,则对角线AC的长为_______; 3、矩形的面积为48,一条边长为6,则矩形的对角线长 为________;
A
E
A D
E
D
B
C
B
C
练习
3、如图,O为矩形ABCD的对角线交点,DF平分 ∠ADC交AC于点E,交BC于点F,∠BDF=15°,则 ∠COF= °
例2
(2011湖北荆州)如图,P是矩形ABCD下方一点,将 △PCD绕P点顺时针旋转60°后恰好D点与A点重合,得 到△PEA,连接EB,问△ABE是什么特殊三角形?请说 明理由.
相关文档
最新文档