矩形性质习题

合集下载

矩形的性质与判定习题及答案

矩形的性质与判定习题及答案

由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

矩形的性质与判定复习题含答案

矩形的性质与判定复习题含答案

矩形的性质1.矩形具备而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等2.在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等C.既是轴对称图形,又是中心对称图形 D.对角线互相垂直平分3、如左下图,在矩形ABCD中,两条对角线AC和BD相交于点O,AB=OA=4 cm,求BD与AD的长.4、如右上图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=2,则矩形的对角线AC的长是______.5、已知:△ABC的两条高为BE和CF,点M为BC的中点. 求证:ME=MF6、如左下图,矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.7、(2006·成都)把一张长方形的纸片按右上图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的读度为()A.85° B.90° C.95° D.100°8、如右图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC=_______,∠FCA=________.9、(2006·黑龙江)如右图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()A.3对 B.4对 C.5对 D.6对10、如图4,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD•的面积为()A.98 B.196 C.280 D.28411、如左下图所示,矩形ABCD 中,M 是BC 的中点,且MA⊥MD ,若矩形的周长为36 cm ,求此矩形的面积。

12、如右上图,折叠矩形,使AD 边与对角线BD 重合,折痕是DG ,点A 的对应点是E ,若AB=2,BC=1,求AG.13、如右下图,在矩形中,是上一点,是上一点,,且,矩形的周长为,求与的长.14、【提高题】(2009年佳木斯中考卷第25题)如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 交于点E .(1)试找出一个与△AED 全等的三角形,并加以证明. (2)若AB =8,DE =3,P 为线段AC 上的任意一点,PG ⊥AE 于G ,PH ⊥EC 于H ,试求PG +PH 的值,并说明理由.矩形的判定1、下列识别图形不正确的是( )ABCD E AD F AB EF CE =,2EF CE DE cm ⊥=ABCD 16cm AE CF GEDCBAA.有一个角是直角的平行四边形是矩形 B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形 D.对角线互相平分且相等的四边形是矩形2、四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°3、如左下图,矩形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?4、已知:如右上图,□ ABCD各角的角平分线分别相交于点E,F,G,H. 求证:•四边形EFGH是矩形.5、如右图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN. 求证:四边形NDMB是矩形.6、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()A. 一般平行四边形B. 菱形C. 矩形D. 正方形7、在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?8、如左下图,在四边形ABCD中,AD∥BC,点E、F为AB上的两点,且△DAF≌△CBE.DACF PE B求证:四边形ABCD 是矩形.9、如右上图,在△ABC 中,点O 是AC 边上的中点,过点O 的直线MN ∥BC ,且MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,点P 是BC 延长线上一点. 求证:四边形AECF 是矩形.10、如图所示,△ABC 中,AB=AC ,AD 是BC 边上的高,AE•是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE∥BA ,四边形ADCE 是矩形吗?为什么?11、【提高题】如图,在△AB C 中,AB =AC ,CD⊥AB 于D ,P•为BC 上的任意一点,过P 点分别作PE⊥AB ,PF⊥CA ,垂足分别为E ,F ,则有PE +PF =CD ,你能说明为什么吗?矩形的性质 答案 1、【答案】 D 2、【答案】 D3、【答案】BD =8 cm ,AD =34 (cm)4、【答案】 45、【提示】 直角三角形斜边上的中线等于斜边的一半。

矩形的性质相关练习题

矩形的性质相关练习题

矩形的性质相关练习题矩形的性质相关练习题矩形是一种常见的几何形状,具有一些独特的性质和特点。

在数学学习中,我们经常会遇到与矩形相关的练习题,通过解答这些问题,我们可以更好地理解和应用矩形的性质。

在本文中,我将为大家分享一些与矩形相关的练习题,并解答这些问题,帮助大家更好地掌握矩形的性质。

第一题:已知一个矩形的长为12 cm,宽为8 cm,求其周长和面积。

解答:矩形的周长等于两倍的长加两倍的宽,所以周长为(12 + 8)× 2 = 40 cm。

矩形的面积等于长乘以宽,所以面积为12 × 8 = 96cm²。

第二题:一个矩形的周长为30 cm,面积为84 cm²,求其长和宽。

解答:设矩形的长为x cm,宽为y cm。

根据题意,2x + 2y = 30,xy = 84。

解这个方程组可以得到x = 12 cm,y = 7 cm。

所以该矩形的长为12 cm,宽为7 cm。

第三题:一个矩形的长是宽的2倍,且周长为30 cm,求其长和宽。

解答:设矩形的宽为x cm,则长为2x cm。

根据题意,2(2x) + 2x = 30,解这个方程可以得到x = 5 cm。

所以该矩形的长为10 cm,宽为5 cm。

第四题:一个矩形的长和宽的比为5:3,且面积为120 cm²,求其长和宽。

解答:设矩形的长为5x cm,宽为3x cm。

根据题意,5x × 3x = 120,解这个方程可以得到x = 4 cm。

所以该矩形的长为20 cm,宽为12 cm。

通过解答以上练习题,我们可以看出,矩形的性质与其周长、面积之间存在一定的关系。

矩形的周长等于两倍的长加两倍的宽,面积等于长乘以宽。

通过利用这些性质,我们可以解决与矩形相关的各种问题。

除了上述练习题,我们还可以进一步探索矩形的其他性质,如对角线的长度、内角和等。

通过不断练习和思考,我们可以更加深入地理解矩形的性质,并能够灵活地运用到实际问题中。

矩形的性质练习题及答案

矩形的性质练习题及答案

矩形的性质练习题及答案
练题
1. 矩形是一种特殊的四边形,具有哪些特点?
2. 矩形的四边分别叫什么?
3. 矩形的对角线有什么特点?
4. 如何判断一个四边形是否为矩形?
5. 下列哪个形状不是矩形?
- (A) 正方形
- (B) 长方形
- (C) 梯形
- (D) 菱形
6. 一个矩形的长和宽分别为8cm和6cm,求他的面积和周长。

答案
1. 矩形具有以下特点:
- 四个角都是直角(90°)
- 两对相邻边相等
- 对角线相等
2. 矩形的四边分别叫:
- 上边(或上底)
- 下边(或下底)
- 左边(或左底)
- 右边(或右底)
3. 矩形的对角线有以下特点:
- 对角线长度相等
- 对角线互相垂直(成直角)
4. 判断一个四边形是否为矩形,需满足以下条件:- 四个角都是直角
- 两对相邻边相等
5. 下列哪个形状不是矩形?
- (C) 梯形
6. 长为8cm,宽为6cm的矩形的面积和周长计算如下:
- 面积:8cm × 6cm = 48cm²
- 周长:2 × (8cm + 6cm) = 28cm
注意:矩形的面积单位为平方单位,周长单位为长度单位。

---
以上为矩形的性质练习题及答案。

了解矩形的特点和计算方法能够帮助我们更好地理解和应用矩形的性质。

如果还有其他问题,欢迎继续咨询。

矩形的性质与判定练习题

矩形的性质与判定练习题

矩形的性质与判定练习题矩形是几何学中常见的形状之一,具有许多独特的性质和特点。

在本文中,我们将通过一些练习题来探讨和判定矩形的性质。

请阅读以下练习题并回答。

练习题一:判断矩形1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个矩形。

练习题二:矩形的性质1. 一条直线分割一个矩形,使其成为两个等面积的小矩形。

证明这条直线必定是通过矩形的中心点。

2. 如果一条直线沿着矩形的一条边切割,那么它将会切成两个全等的小矩形。

3. 证明:一个矩形的对角线相等。

练习题三:矩形的判定1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个正方形。

2. 如果一条矩形的两条对边相等且平行,则它必定是一个正方形。

练习题四:矩形的角度1. 一个矩形的四个内角的和是多少度?2. 证明:一个矩形的内角都是直角(90度)。

练习题五:矩形的边长关系1. 一个矩形的两条对边的长度分别是a和b,它的对角线的长度是多少?2. 如果一个矩形的一边的长度是a,另一条边的长度是b,那么它的面积是多少?练习题六:矩形的面积1. 已知一个矩形的长为5cm,宽为3cm,求它的面积。

2. 如果一个矩形的面积是24平方单位,且长比宽多2个单位,求矩形的长和宽。

根据上述练习题,我们可以通过判断和计算来了解矩形的性质和特点。

矩形具有对角线相等、相对边平行、内角为直角等特点,这些性质可以帮助我们对矩形进行判定和计算。

答案:练习题一:可以构成一个矩形;练习题二:1. 通过矩形的对角线可以证明;2. 正确;3. 通过矩形的对角线可以证明;练习题三:1. 不能构成一个正方形;2. 正确;练习题四:1. 360度;2. 通过矩形的对角线可以证明;练习题五:1. 对角线的长度可以通过勾股定理计算:√(a^2 + b^2);2. 面积可以通过长乘宽计算:a * b;练习题六:1. 面积等于长乘宽:5cm * 3cm = 15平方厘米;2. 设矩形的宽为x,则长为x+2,根据面积的计算公式得到:(x+2) * x = 24,解得x=4,所以矩形的长为6,宽为4。

矩形的性质与判定习题课

矩形的性质与判定习题课

1一、基础练习1.矩形的对边 是 ,对角线 且 ,四个角都是 。

2.矩形是面积的60,一边长为5,则它的一条对角线长等于 。

3、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。

4.平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等 5、下列叙述错误的是( )A.平行四边形的对角线互相平分。

B.平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角时90º的平行四边形是矩形 6若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .7.矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( ) A 、5cmB 、7.5cmC 、10cmD 、12.5cm8、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形 二、解答题例1.如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。

2、矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?例3.如图,□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点,求证:四边形EFGH 的矩形。

4. 如图,已知在四边形ABC D 中,AC D B ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形E F G H 是矩形.5.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。

6. 如图,矩形ABCD 中,DE=AB ,DE CF ⊥,求证:EF=EB 。

D CMABHG OFEDCBA2能力提高2.如图,矩形ABCD 中,点E 、F 分别在AB 、CD 上,BF//DE ,若AD=12cm ,AB=7cm ,且AE:EB=5:2,求阴影部分。

矩形的性质练习题

矩形的性质练习题

矩形的性质练习题矩形的性质练习题矩形是我们学习几何学时经常遇到的一种形状。

它有很多有趣的性质,通过解决一些练习题,我们可以更好地理解和掌握这些性质。

1. 假设矩形的长为a,宽为b,周长为20,求矩形的面积。

解析:根据矩形的性质,周长等于长和宽的两倍之和。

即2a + 2b = 20。

由此可得a + b = 10。

我们可以将这个方程表示为b = 10 - a。

矩形的面积等于长乘以宽,即ab。

将b的值代入,得到a(10 - a)。

展开后得到10a - a^2。

为了求得最大的面积,我们需要找到这个二次函数的顶点。

顶点的横坐标是a = -b/2a,即a = -10/(-2) = 5。

将a = 5代入原方程,得到b = 10 - 5 = 5。

所以矩形的长和宽都是5,面积为25。

2. 若一个矩形的面积是36,它的长和宽之间的差是3,求矩形的周长。

解析:设矩形的长为a,宽为b。

根据题意,ab = 36,a - b = 3。

我们可以将第二个方程表示为a = b + 3。

将这个值代入第一个方程,得到(b + 3)b = 36。

展开后得到b^2 + 3b - 36 = 0。

这是一个二次方程,可以因式分解为(b + 9)(b- 4) = 0。

所以b = -9或b = 4。

由于矩形的长和宽不能为负数,所以b = 4。

将b = 4代入a = b + 3,得到a = 7。

矩形的周长等于长和宽的两倍之和,即2a + 2b = 2(7) + 2(4) = 14 + 8 = 22。

3. 一个矩形的周长是32,它的长是宽的3倍,求矩形的面积。

解析:设矩形的宽为b,则长为3b。

根据矩形的性质,周长等于长和宽的两倍之和,即2(3b) + 2b = 32。

展开后得到8b = 32,解得b = 4。

将b = 4代入长的表达式,得到长为3(4) = 12。

矩形的面积等于长乘以宽,即12(4) = 48。

4. 一个矩形的周长是24,它的面积是16,求矩形的长和宽。

《矩形的性质与判定》习题1

《矩形的性质与判定》习题1

《矩形的性质与判定》习题
1、如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC , CF ⊥BD ,垂足分别为E ,
F .
求证:BE CF =.
2、如图矩形ABCD 对角线相交于点O ,CE ∥BD 交AB 的延长线于点E ,求证:AC =CE
3、如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.
4.如图,已知矩形ABCD .(1)在图中作出CDB △沿对角线BD 所在的直线对折后的
C DB '△,C 点的对应点为C '(用尺规作图,保留清晰的作图痕迹,简要写明作法);(2)
设C B '与AD 的交点为E ,若EBD △的面积是整个矩形面积的1
3
,求DBC ∠的度数.
5.已知:四边形ABCD 中,AB =CD ,∠A +∠D =180°,AC 、BD 相交于点O ,△AOB 是等边三角形.求证:四边形ABCD 是矩形.
A
D C
A
B
B
C
A
E
D
F
6.如图,在平行四边形ABCD中,以AC为斜边作直角三角形ACE,∠BED=90°、说明四边形ABCD是矩形
A
D
B C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质: 1.具有的一切性质;2. 内角都是直角;3. 对角线互相平分且相等;
4. 直角三角形斜边中线定理。

基础练习
1. 矩形具有而一般平行四边形不具有的性质是( )
A. 对边相互平行
B. 对角线相等
C. 对角线相互平分
D. 对角相等
2. 在下列图形性质中,矩形不一定具有的是( )
A .对角线互相平分且相等
B .四个角相等
C .是轴对称图形
D .对角线互相垂直
3. 在矩形ABCD 中, 对角线交于O 点,AB=6, BC=8, 那么△AOB 的面积为_______________; 周长为_______________.
4. 一个矩形周长是16cm, 对角线长是7cm, 那么它的面积为__________________.
5. 如图, 矩形ABCD 的对角线交于O 点, 若OA=1, BC=3, 那么∠BDC 的大小为________________.
6. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN ∠∠OMD ONC S
S =其中正确的是______________.
7. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.
8. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.
9. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_______.
10.如图, 在矩形ABCD中,DE⊥AC于点E, BC=, CD=2, 那么CE=________;
BE=_________
11.如图, 在矩形ABCD中, AP=DC, PH=PC,
(1)求证:△ABH≌△PAD;
(2)求证: PB平分∠CBH.
12. 如图,在矩形ABCD中, △CEF为等腰直角三角形,
(1)求证:AE=AB;
(2)若矩形ABCD的周长为16cm, DE=2cm,求△CEF的面积.
13.如图, 在矩形ABCD中, AD=12, AB=7, DF平分∠ADC, AF⊥EF,
(1)求证:AF=EF; (2)求EF长;
14.如图,在矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD重叠,
(1)求证:△ABE≌△C1DE
(2)求图中阴影部分的面积.
★15. 如图矩形ABCD中,延长CB到E,使CE AC
=,F是AE中点.求证:BF DF
⊥.。

相关文档
最新文档