扬州中学2013-2014学年高二下学期期中考试 数学(文)
扬州中学2014届高三上学期期中考试模拟数学试题

扬州中学2013—2014期中考试模拟试题数 学 2013.11一、填空题(本大题共14小题,每小题5分,共70分,)1.已知全集{}4,3,2,1=U ,集合{}{}1,2,2,3P Q ==,则()U P Q = ð . 2. 复数ii215+的实部是 3.“6πα=”是“1sin 2α=”的 条件. (填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) 4.若以连续掷两次骰子分别得到的点数n m ,作为点P 的横、 纵坐标,则点P 在直线5=+y x 上的概率为 . 5.如图是某学校学生体重的频率分布直方图,已知图中 从左到右的前3个小组的频率之比为1:2:3,第2小组 的频数为10,则抽取的学生人数是 .6.若样本321,,a a a 的方差是2,则样本32,32,32321+++a a a 的方差是 7.执行右边的程序框图,若15p =,则输出的n = .8.已知函数2log (0)(),3(0)xx x f x x >⎧=⎨≤⎩则1[()]4f f 的值是 . 9.等差数列{}n a 中,若124a a +=, 91036a a +=, 则10S = .10.已知实数x 、y 满足20350x y x y x y -≤⎧⎪-+≥⎪⎨>⎪⎪>⎩,则y x z )21()41(⋅=的最小值为 .11.设向量(c os ,s i n a αα= ,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-= .12. 若函数()42x f x k =-⋅在(],2-∞上有意义,则实数k 的取值范围是_ ___.13.若函数22()243f x x a x a =++-的零点有且只有一个,则实数a =.14.对于在区间[a ,b ]上有意义的两个函数)()(x n x m 与,如果对于区间[a ,b ]中的任意x均有1|)()(|≤-x n x m ,则称)()(x n x m 与在[a ,b ]上是“密切函数”, [a ,b ]称为“密切区间”,若函数43)(2+-=x x x m 与32)(-=x x n 在区间[a ,b ]上是“密切函数”,则b a -的最大值为 .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)已知函数2()2sin 23sin cos 1f x x x x =-++ ⑴求()f x 的最小正周期及对称中心; ⑵若[,]63x ππ∈-,求()f x 的最大值和最小值.16.(本题满分14分)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3B P P A = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅的值。
江苏省扬州中学2013-2014学年高二4月阶段测试数学(文)试题 Word版含答案

3
.
f ( x), f ( x) K , 5 13.数 f K ( x) (K 为给定常数) , 已知函数 f ( x) x2 3x2 ln x , 若对于任意的 x (0, ) , f ( x) ≤ K 2 K , 恒有 f K ( x) K ,则实数 K 的取值范围为 .
11.
1 1 c b
3 13. [ e 3 , ) 2
15.解: (1)p 是 q 的充分条件,
[ 1, 5 ] [m 1 , m 1 )
(4, ) 则实数 m 的取值范围为
(2) [4, 1) (5,6)
16.解: (1 )定义域为 R 关于原点对称.
f ( x) f ( x)
α
,则 f(4)=
.
6. 已知 y=f(x)是定义在 R 上的偶函数,且当 x<0 时,f(x)=1+2x,则当 x>0 时,f(x)=
.
|x-1|-2,|x|≤1 1 7. 设 f (x)= 1 ,则 f [ f (2)]= 2,|x|>1 1+x
8. 已知集合 A {x | x a}, B {x |1 x 2}, 且A (CR B) R ,则实数 a 的取值范围是
2 2
14. 不等式 a +8b ≥λb(a+b)对于任意的 a,b∈R 恒成立,则实数 λ 的取值范围为
.
二、解答题(总分 90 分) 15.(14 分) 已知命题 p : ( x 1)( x 5) 0 ,命题 q :1 m x 1 m(m 0) 。 (1)若 p 是 q 的充分条件,求实数 m 的取值范围; (2)若 m=5, “ p q ”为真命题, “ p q ”为假命题,求实数 x 的取值范围。
新编江苏省邗江中学民族部2013-2014学年高二下学期期中考试数学试题 Word版无答案( 2014高考)

说明:全卷满分160分,考试时间120分钟一、填空题:本题包括14小题,每小题5分,共70分。
1、设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则5______S =2、 在正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为______3、已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为4、椭圆x 2m +y 24=1(m>4)的焦距为2,则m 的值等于5、在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为______.6、正项等比数列{a n }中,311a a =16,则22212log log a a +=______.7、圆心在y 轴上,半径为1,且过点 (1,2)的圆的方程为 .8、过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0截得的弦长为 .9、若直线3x +4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是___________10、已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为11、设,l m 为两条不同的直线,,αβ为两个不同的平面,下列命题中正确的是 .(填序号) ①若,//,,l m αβαβ⊥⊥则l m ⊥;②若//,,,l m m l αβ⊥⊥则//αβ;③若//,//,//,l m αβαβ则//l m ;④若,,,,m l l m αβαββ⊥=⊂⊥ 则l α⊥12、观察下列等式: 31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122+ ……+n +2n n +1 ×12n=______.14、四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,PA ABCD ⊥面,2=PA ,则该球的体积为____二、解答题:本大题共6小题,其中15,16,17题满分14分,18,19,20题满分16分,共计90分.请在答题纸指定区域内作答15、如图,在直三棱柱111ABC A B C -中,1AC BC CC ==,AC BC ⊥,点D 是AB 的中点.(1)求证:11CD A ABB ⊥平面; (2)求证:11//AC CDB 平面;16、已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4.(1)求过M 点的圆的切线方程; (2)若直线ax -y +4=0与圆相切,求a 的值;AB CDA 1B 1C 117、已知数列{}n a 的前n 项和为n S ,121,2a a ==,且点1(,)n n S S +在直线1y kx =+上(1)求k 的值;(2)求证{}n a 是等比数列;18、如图a ,在直角梯形ABCD 中,,AB AD AD BC ⊥ ,F 为AD 的中点,E 在BC 上,且EF AB 。
扬州中学2014-2015学年高二下学期期中考试数学试题及答案 (文)

江苏省扬州中学2014-2015学年高二下学期期中考试 (文)(注:本试卷满分160分,考试时间120分钟,请将答案写在答题纸上) 一、填空题(本大题共14小题,每小题5分,计70分)1.若全集,U R =集合{}20M x x x =-≥,则U C M = .2.已知幂函数()f x 过点,则(4)f 的值为 .3. 若函数2(1)21f x x x +=-+,则函数()f x 的解析式为 .4.已知函数221,1(),1x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩,若((0))4f f a =,则实数a = .5.函数221xx y =+的值域为 .6.观察下列等式:11111131111,11,1...,1...2,. (22323722315)>++>++++>++++>由此猜测第n 个等式为 .. 7. 设z =10i3+i,则z 的共轭复数是 .8.函数22log 6y x x =+-的零点所在的区间是1(,)22k k +,则正整数k 的值为 .9.定义在R 上的函数()f x 满足(6)()f x f x +=.当3-1x -≤≤时,2()(2)f x x =-+;当 13x -≤<时,()f x x =,则(1)(2)(3)...(2014)f f f f ++++= .10.已知537log 10,log 6,log 14a b c ===,则,,a b c 按照由小到大的顺序排列为 . 11.已知()f x 是定义在R 上的奇函数,且2()4(0)f x x x x =->,则不等式()f x x >的解集是 .12.下列命题正确的序号是 ①命题“若a b >,则22a b >”的否命题是真命题; ②若命题1:01p x >-“”,则;1:01p x ⌝≤-“”; ③若p 是q 的充分不必要条件,则p ⌝是q ⌝的必要不充分条件;④方程20ax x a ++=有唯一解的充要条件是12a =±.13.已知函数43201234012340()(,,,,,0)f x a x a x a x a x a a a a a a R a =++++∈≠且的四个零点构成公差为d 的等差数列,则()f x '的所有零点中最大值与最小值之差为 .14.已知32()(0)x ax x ax a λ=+-≠,若存在实数1,2a ⎛⎤∈-∞- ⎥⎝⎦,使得函数()()()x x x μλλ'=+,[1,]x b ∈-在1x =-处取得最小值,则实数b 的最大值为 .二、解答题(本大题共6小题,计90分)15.(本小题14分)记函数()f x 的定义域为A ,函数[]()lg (1)(2)g x x a a x =---(1)a <的定义域为B(1)求A 、B ; (2)若B A ⊆,求实数a 的取值范围.16.(本小题14分)设命题p :函数21()lg()16f x ax x a =-+的定义域为R ,命题q :不等式 39x x a -<对一切实数均成立.(1)如果p 是真命题,求实数a 的取值范围;(2)如果命题“p 或q ”为真命题,且“p 且q ”为假命题,求实数a 的取值范围.17.(本小题14分)如图,在ABC ∆的区域内割出一块四边形绿化区域BCED ,其中090=∠=∠D C ,3==BD BC ,1CE DE ==,现准备经过DB 上一点P 和EC 上一点Q 铺设水管PQ ,且PQ 将四边形BCED 分成面积相等的两部分. 设x DP =,y EQ =.(1)求,x y 的等量关系式;(2)求水管PQ 长的最小值.18.(本小题16分)已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T ,使得对任意的实数x ,有()()f x T Tf x +=成立. (1)证明:2()f x x =不属于集合M ;(2)设()f x M ∈,且2T =.已知当12x <<时,()f x x lnx =+,求当32x -<<-时,()f x 的 解析式.19.(本小题16分)已知函数2()log (41)()x f x kx k R =++∈是偶函数. (1)求k 的值;(2)设函数24()log (2),3x g x a a =⋅-其中0a >.若函数()f x 与()g x 的图象有且只有一个交点,求a 的取值范围.20.(本小题16分)已知函数()ln f x x =,2()()(,)g x f x ax bx a b R =++∈.其中函数()y g x =的图象在点(1,g(1))处的切线平行于x 轴.(1)确定,a b 的等量关系式;(2)若0a ≥,试讨论函数()y g x =的单调性;(3)设斜率为k 的直线与函数()y f x =的图象交于点1122(,),(,)A x y B x y (12x x <), 求证:2111k x x <<.答案1. {}01x x << 2.123. 2()(2)f x x =- 4.2 5. (0,1) 6. 1111 (23212)n n ++++>- 7. 13i - 8. 4 9. 33710. ,,c a b 11. (5,0)(5,)-+∞ 12.①③ 131415. 解:(1)由题意得:(1)(1)0x x +-≥,即(][),11,A =-∞-+∞………3分由(1)(2)0x a a x --⋅->, 得(1)(2)0x a x a --⋅-<.∵1a <,∴12a a +>, ∴(2,1)B a a =+. …………… 7分 (2)∵B A ⊆, ∴21a ≥或11a +≤-, …………… 10分 即a ≥21或2a ≤- .而1a <,∴211a ≤<或2a ≤-, 故当B A ⊆时, 实数a 的取值范围是1(,2],12⎡⎫-∞-⎪⎢⎣⎭……………14分 16. 解:(1)若命题p 为真命题,则20,16aax x x R -+>∈恒成立. 若0a =,则0x ->,0x ∴<,不符合题意…………..3分 若0a ≠,20021104a a a a >⎧>⎧⎪⇒⇒>⎨⎨<-<⎩⎪⎩则△0;………….7分(2)若命题q 为真命题,则1394x x a a -<⇒>……9分 “p 或q ”为真命题且“p 且q ”为假命题,∴ p ,q 一真一假…………10分 p 真q 假”,a 无解;②“p 假q 真”,1(,2]4a ∈. 综上1(,2]4a ∈………….14分17.解:(1)如图,AD=3,AE=2.则S △ADE = S △BDE = S △BCE∴S △APQ =3,即1(2)4x y +=∴(2)4x y +=3…………………………………7分(2)APQ ∆中,2222cos30PQ AP AQ AP AQ =+-⋅⋅︒ =223342)334()3(22≥⨯⨯-+++x x ·12381234-=- ………………………………10分当且仅当22)334()3(+=+x x ,即时3324-=x ,33221238min -=-=PQ …………………………………………14分18.(1) 证明:假设()M f x ∈,则()()f x T Tf x +=,即22()x T Tx +=对任意的x 恒成立,即22(1)20T x Tx T -++=对任意的x 恒成立. 210200T T T ⎧-=⎪∴=⎨⎪=⎩ ,T ∴无解. ………8分假设错误,所以2()f x x =不属于集合M . (2) 由题意,(2)2()f x f x += .32,142x x -<<-∴<+<.(4)4ln(4)f x x x ∴+=+++.114(4)()(2)(4)2444x ln x f x f x f x ++∴=+=+=+.…….16分19.解:(1)由题意()()f x f x -=对任意x R ∈恒成立,即22log (41)log (41)x x kx kx -+-=++恒成立,即22log (41)2log (41)x x x kx kx +--=++恒成立,即2(1)0k x +=对任意x R ∈恒成立,1k ∴=-………..7分(2)4203x a a ⋅->由,得定义域为24(log,)3+∞.因为函数()f x 与()g x 的图象有且只有一个交点,∴方程224log (41)log (2)3x x x a a +-=⋅-在24(log,)3+∞上只有一解. 即方程414223x x x a a +=⋅-在24(log,)3+∞上只有一解. 令42(,)3x t =∈+∞,则方程24(1)103a t at ---=(*)在4(,)3+∞上只有一解……………..9分 记24()(1)13h t a t at =---,对称轴23(1)at a =-①当1a =时,34(,)43t =-∉+∞,不合题意;②当01a <<时,对称轴203(1)at a =<-,()h t 在(0,)+∞上递减,且(0)10h =-<,∴(*)在4(,)3+∞上无解;③当1a >时,对称轴t =203(1)a a >-,只需4161625()(1)103999h a a =---=-<,此恒成立,1a ∴>.综上1a >………………16分 (其它解法酌情给分) 20.解: 2()ln g x x ax bx =++,1()2g x ax b x'=++. (1)由题意,(1)210g a b '=++=,即210a b ++= ……….4分 (2)1(21)(1)()221(0)ax x g x ax a x x x--'=+--=>. …………6分 (i)当0a =时,(1)()(0)x g x x x --'=>.增区间为(0,1) ,减区间为(1,)+∞; (ii)当0a >时,12()(1)2()(0)a x x a g x x x--'=>.112122aa a--=,∴ ①当102a <<时,112a>.增区间是1(0,1)(,)2a +∞和,减区间是1(1,)2a ;②当12a >时,112a<.增区间是1(0,)(1,)2a +∞和,减区间是1(,1)2a . ③当12a =时,112a=.2(1)()0x g x x -'=≥,增区间是(0,)+∞,无减区间. 综上,当0a =时,增区间为(0,1) ,减区间为(1,)+∞;当102a <<时,增区间是1(0,1)(,)2a +∞和,减区间是1(1,)2a ;当12a =时,增区间是(0,)+∞,无减区间;当12a >时,增区间是1(0,)(1,)2a +∞和,减区间是1(,1)2a………………10分 (3)120x x <<,2111k x x ∴<<21212121221121ln ln 11ln ln x x x x x x x x x x x x x x ---⇔<<⇔<-<- 22211111ln 1x x x x x x ⇔-<<-…………………….12分 令()ln 1(1)h x x x x =-+>,11()1x h x x x-'=-=-,所以()h x 在(1,)+∞上是减函数.()(1)0h x h ∴<=.又211x x >,21()0x h x ∴<,即2211ln 1x xx x <-. 令1H()ln 1(1)x x x x =+->,22111H ()x x x x x-'=-=,所以H()x 在(1,)+∞上是增函数,H()H(1)0x ∴>=,又211x x >,21H()0x x ∴>,即22111ln 1x x x x >-.综上,22211111ln 1x x x x x x -<<-…………………………16分。
扬州中学2014届高三12月月考数学(文)试题 Word版含解析

江苏省扬州中学2013—2014学年第一学期月考高三数学试卷 2013.12一、填空题(每题5分,满分70分,将答案填在答题纸上).1.已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A .2.已知命题:p “若=,则||||=”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是 .3.设x 是纯虚数,y 是实数,且y x i y y i x +--=+-则,)3(12等于 .4.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为 .5.在等差数列{}n a 中,若7893a a a ++=,则该数列的前15项的和为 .6.已知直线 ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒ ⊥m ;②α⊥β⇒ ∥m ;③ ∥m ⇒α⊥β;④ ⊥m ⇒α∥β 其中正确命题序号是 .7.已知||1a = ,||2b =,a 与b 的夹角为120︒,0a c b ++= ,则a 与c 的夹角为 .8.设y x ,均为正实数,且33122x y+=++,则xy 的最小值为 .9.已知方程2x +θtan x -θsin 1=0有两个不等实根a 和b ,那么过点),(),,(22b b B a a A 的直线与圆122=+y x 的位置关系是10.若动直线)(R a a x ∈=与函数())()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 .11.设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = .【答案】20151()2-【解析】试题分析:这类问题,实际上就是寻找规律,寻找数列{}n a 有什么特征?是等差数列或等比数列还是周期数列?可以先求前面几个试试看,1(0)2f =,2122(0)1(0)3f f ==+,36(0)5f =,410(0)11f =,……,111(0)11(0)24f a f -==+,218a =-,3116a =,4132a =-,……,可猜测201520141()2a =-,作为填空题,我们就大胆地填上这个答案吧,当然考虑到数学的严密性(或解答题),我们应该可加以证明.111(0)1(0)2n n n f a f +++-=+211(0)221(0)n n f f -+=++1(0)12(2(0))2n n n f a f -==-+,即数列{}n a 是公比为12-的等比数列.考点:等比数列的定义.12.函数32()f x x bx cx d =+++在区间[]1,2-上是减函数,则c b +的最大值为 .13.已知椭圆与x 轴相切,左、右两个焦点分别为12(1,1(5)F F ),,2,则原点O 到其左准线的距离为 .【解析】试题分析:这一题已经超过江苏高考数学要求,同学们权当闲聊观赏.由于本题椭圆不是标准方程,我们只能根据椭圆的定义来解题.12211514F F k -==-,所以椭圆短轴所在直线方程为34(3)2y x -=--,即27402x y +-=,原点O27=由椭圆(实际上是所有圆锥曲线)的光学性质:从一焦点发出的光线经过椭圆反射后(或反射延长线)通过另一个焦点,本题中切线是x 轴,设切点为(,0)P x ,则12PF PF k k =-,于是010215x x --=---,解得73x =,因此1225a PF PF =+=,52a =,又122c F F ==2c =,所以234a c =,因此原点到左准线的距离应该是3434-17=. 考点:椭圆的光学性质,椭圆的定义.14.设13521A ,,,,2482n nn -⎧⎫=⎨⎬⎩⎭(),2n N n *∈≥,A n 的所有非空子集中的最小元素的和为S ,则S = .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)设向量),cos ,(sin x x =),sin 3,(sin x x =x ∈R ,函数)2()(x f +⋅=. (1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.16.(本小题满分14分)如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点.(1)求证:DM PB ⊥; (2)求点B 到平面PAC 的距离.17.(本小题满分14分)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到.x 元.公司拟投入21(600)6x 万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入...与总投入...之和?并求出此时商品的每件定价. 【答案】(1)40元;(2)a 至少应达到10.2万件,每件定价为30元. 【解析】18.(本小题满分16分)已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数.(1)用n x 表示1n x +; (2)12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (3)若数列{}n b 的前n 项和()12n n n S +=,记数列}{n n b a ⋅的前n 项和n T ,求n T .(2)因为2112n n n x x x ++=,所以2211221111221lg lg lg 112112n n n n n n nn n n nx x x x x a x x x x x ++++++++===+--+- ()()2211lg 2lg211n n n n n x x a x x ++===--即12n n a a +=, 所以数列{}n a 为等比数列故11111112lg22lg 31n n n n x a a x ---+==⋅=- ………10′19.(本小题满分16分)如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 是线段AM 的垂直平分线与直线CM 的交点.(1)求点P 的轨迹曲线E 的方程;(2)设点00(,)P x y 是曲线E 上任意一点,写出曲线E 在点00(,)P x y 处的切线l 的方程;(不要求证明)(3)直线m 过切点00(,)P x y 与直线l 垂直,点C 关于直线m 的对称点为D ,证明:直线PD 恒过一定点,并求定点的坐标.【答案】(1).1222=+y x ;(2)0012x x y y +=;(3)证明见解析,定点为(1,0). 【解析】试题分析:(1)本题动点P 依赖于圆上中M ,本来这种问题可以用动点转移法求轨迹方程,但本题用动点试题解析:( 1) 点P 是线段AM 的垂直平分线,∴PA PM =PA PC PM PC AC 2+=+==,∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴b c a∴曲线E 的方程为.1222=+y x ………5′(2)曲线E 在点00(,)P x y 处的切线l 的方程是0012x x y y +=.………8′ (3)直线m 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= .设点C 关于直线m 的对称点的坐标为()D ,m n ,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴直线PD 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PD 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--, 从而直线PD 恒过定点(1,0)A .………16′ 考点:(1)椭圆的定义;(2)椭圆的切线方程;(3)垂直,对称,直线过定点问题.20.(本小题满分16分)设0a >,两个函数()ax f x e =,g()ln x b x =的图像关于直线y x =对称.(1)求实数b a ,满足的关系式;(2)当a 取何值时,函数()()()h x f x g x =-有且只有一个零点;(3)当1=a 时,在),21(+∞上解不等式2)()1(x x g x f <+-.【答案】(1)1ab =;(2)1a e=;(3)()1,+∞. 【解析】(2)当0a >时,函数()()()h x f x g x =-有且只有一个零点,两个函数的图像有且只有一个交点, 两个函数关于直线y x =对称,∴两个函数图像的交点就是函数()ax f x e =,的图像与直线y x =的切点.设切点为00A()ax x e ,,00=ax x e ()ax f x ae =,,0=1ax ae ∴,0=1ax ∴,00==ax x e e ∴,∴当011a x e==时,函数()()()h x f x g x =-有且只有一个零点x e =; (3)当1a =时,设 ()2()(1)+g r x f x x x =--1x e -=2ln x x +-,则()r x ,112x e x x -=--+,当1,12x ⎛⎫∈ ⎪⎝⎭时,112211,1x x e x --<-=<--,()0r x ,<, 当[)1,+x ∈∞时,112121,0x x e x--≤-=<--,()0r x ,<. ()r x ∴在1,2⎛⎫+∞ ⎪⎝⎭上是减函数.又(1)r =0,∴不等式()2(1)+g f x x x -<解集是()1,+∞.考点:(1)两个函数图象的对称问题;(2)函数的零点与切线问题;(3)解函数不等式.。
2014-2015学年江苏省扬州中学高二数学期中考试试题及答案

2014-2015学年江苏省扬州中学高二数学期中考试试题及答案2014年11月(注:本试卷满分160分,考试时间120分钟,请将答案写在答题纸上) 一、填空题(本大题共14小题,每小题5分,计70分) 1.抛物线x y 82=的焦点坐标为 ▲ .2.经过点(-2,3),且与直线250x y +-=垂直的直线方程为____▲_______. 3.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为_____▲_____.4.已知无论k 取任何实数,直线0)142()32()41(=-+--+k y k x k 必经过一定点,则该定点坐标为 ▲ .5.设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为,则a =_____▲______.6. 圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是 ▲ cm.7. 如果规定:z y y x ==,,则 z x = 叫做 z y x ,, 关于相等关系具有传递性,那么空间三直线 c b a ,,关于相交、垂直、平行、异面、共面这五种关系中具有传递性的是_____ ▲______.8.双曲线)0(1222>=+-m m y m x 的一条渐近线方程为x y 2=,则=m ▲ . 9.已知椭圆13422=+y x 上一点P 到左焦点的距离为25,则它到右准线的距离为 ▲ . 10. 设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的等价条件是l 与α内的两条直线垂直.上面命题中,真命题...的序号 ▲ (写出所有真命题的序号). 11.椭圆)0(12222>>=+b a by a x ,21,F F 为椭圆的两个焦点且21,F F 到直线1=+b ya x 的距离之和为b 3,则离心率e = ▲ .12.若点B A ,在曲线)0(222>=-x y x 上,则→→∙OB OA 的最小值为 ▲ . 13.已知过点)2,(m P 作直线l 与圆O :122=+y x 交于B A ,两点,且A 为线段PB 的中点,则m 的取值范围为 ▲ .14.已知椭圆22221(0)x y a b a b +=>>的离心率21=e ,A,B 是椭圆的左、右顶点,P 是椭圆上不同于A,B 的一点,直线PA,PB 倾斜角分别为,αβ,则cos()=cos +αβαβ-()▲ .16.(本小题满分14分)如图,在四棱锥P ‐ABCD 中,四边形ABCD 为正方形,PA ⊥平面ABCD ,E 为PD 的中点.求证:(1)PB ∥平面AEC ;(2)平面PCD ⊥平面PAD .17.(本小题满分15分)如图,在四棱柱1111ABCD A B C D -中,已知平面11AAC C ABCD ⊥平面,且1AB BC CA AD CD =====. (1)求证:1BD AA ⊥;(2)在棱BC 上取一点E ,使得AE ∥平面11D DCC ,求BE EC的值.P A BC D E(第16题图)18. (本小题满分15分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图:航天器运行(按顺时针方向)的轨迹方程为 12510022=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴、)764,0(M 为顶点的抛物线的实线部分,降落点为)0,8(D .观测点)0,4(A ,)0,6(B 同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x 轴上方时,观测点A 、B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?19. (本小题满分16分)(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程.(2)已知椭圆)0(1:2222>>=+b a by a x C ,设斜率为k 的直线l 交椭圆C 于B A ,两点,AB的中点为M ,证明:当直线l 平行移动时,动点M 在一条过原点的定直线上.(3)利用(2)中所揭示的椭圆几何性质,用作图方法找出图中的定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.20. (本小题满分16分)在直角坐标平面中,ABC ∆的两个顶点为)1,0(),1,0(B A -,平面内两点M G ,同时满足:)1(G 为ABC ∆的重心;M )2(到ABC ∆三点C B A ,,的距离相等;)3(直线GM 的倾斜角为2π.(1)求证:顶点C 在定椭圆E 上,并求椭圆E 的方程;(2)设N R Q P ,,,都在曲线E 上,点)0,2(F ,直线RN PQ 与都过点F 并且相互垂直,求四边形PRQN 的面积S 的最大值和最小值.高二数学期中试卷答题纸 2014.11一、填空题:(本大题共14小题,每小题5分,计70分) 成绩1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14.三、解答题(本大题共6小题,计90分) 15.解:学号________ 姓名_____________…线……………内……………不……………要……………答……………题………………16.解:17.解:18.解:19.解:P A BCDE (第16题图)请将20题做在反面高二数学期中试卷参考答案 2014.111. )0,2(;2. 280x y -+=;3. 22x -2x+y =0 ;4. (2,2); 5. 0 ;6. 4;7. 平行; 8.32; 9. 3 ; 10. (1)(2);12. 2;13. ]5,5[-;14. 7115.解:由(2)(21)618m m m +-=+,得4m =或52m =-; 当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去。
扬州市2013-2014高二数学期中考试答案

2013—2014学年度第一学期高二数学期中测试卷答案一、填空题1、b a b a ≤-≤-则若,212、1sin ,>∈∃x R x3、 必要不充分4、36π5、y x 82=6、23y x =±7、 33 8、②③ 9、2 10、(2)、(4) 11、 )1,41(- 12、(]1,∞- 13 14、552 二、解答题15.(本小题满分14分)已知:|3|2,:(1)(1)0p x q x m x m -≤-+--≤,若p ⌝是q ⌝充分而不必要条件,求实数m 的取值范围.解:由题意 p: 232≤-≤-x ∴ 51≤≤x …… (3分)∴p ⌝:51><x x 或……. (5分) q :11+≤≤-m x m …… (8分) ∴q ⌝:11+>-<m x m x 或…… (10分)又∵p ⌝是q ⌝充分而不必要条件∴⎩⎨⎧≤+≥-5111m m 且等号不同时成立∴42≤≤m …… (14分) 16.(本小题14分)设命题p :方程17622=-++a y a x 表示双曲线,命题q :圆9)1(22=-+y x 与圆16)1()(22=++-y a x 相交. 若“p ⌝且q ”为真命题,求实数a 的取值范围.解:若p 真,即方程22167x y a a +=+-表示双曲线,则()()670a a +-<,67a ∴-<<. ………………………………………5分 若q 真,即圆()2219x y +-=与圆()()22116x a y -++=相交,则17,a <<∴-<< …………………………………………10分 若“p ⌝且q ”为真命题,则p 假q 真,67a a a ≤-≥⎧⎪∴⎨-<<⎪⎩或6a -≤-, ∴符合条件的实数a的取值范围是6a -<≤-. ………………………………14分17.(本小题满分14分) 如图,在直三棱柱ABC -A 1B 1C 1中, AB =AC ,点D 为BC 中点,点E 为BD 中点,点F 在AC 1上, 且AC 1=4AF .(1)求证:平面ADF ⊥平面BCC 1B 1; (2)求证:EF //平面ABB 1A 1.证明:(1) 因为直三棱柱ABC -A 1B 1C 1,所以CC 1⊥平面ABC ,而AD ⊂平面ABC , 所以CC 1⊥AD . ……………… 2分又AB =AC ,D 为BC 中点,所以AD ⊥BC ,……………… 4分 因为BC ⋂CC 1=C ,BC ⊂平面BCC 1B 1,CC 1⊂平面BCC 1B 1,所以AD ⊥平面BCC 1B 1, ……………… 6分因为AD ⊂平面ADF ,所以平面ADF ⊥平面BCC 1B 1. ……………… 7分 (2) 连结CF 延长交AA 1于点G ,连结GB .因为AC 1=4AF ,AA 1//CC 1,所以CF =3FG ,……………… 9分又因为D 为BC 中点,点E 为BD 中点,所以CE =3EB ,……………… 11分 所以EF //GB ,而EF ⊄平面ABBA 1,GB ⊂平面ABBA 1,所以EF //平面ABBA 1. ……………… 14分 18.(15分)如图在直角梯形ABCD 中,AD=3,AB=4,BC=,曲线DE 上任一点到A 、B 两点距离之和为常数. (1)建立适当的坐标系,求曲线DE 的方程;(2)过C 点作一条与曲线DE 相交且以C 为中点的弦,求出弦所在直线的方程.解:⑴a =21(|AD |+|BD |)=4,可求出曲线DE 的方程为121622y x +=1,(-2≤x ≤4,0≤y ≤23) ………………7分 (2)椭圆弧DE 与y 轴的交点M (0,),与x 轴的交点N (4,0),C (2,)为M ,N 的中点,所以弦MN 即为所求,其所在直线方程为3223+-=x y .……15分ABCC 1A 1B 1FE D G ABCC 1A 1B 1 FE D19.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC. (1) 求证:平面AEC ⊥平面ABE ; (2) 点F 在BE 上,若DE//平面ACF ,求BEBF的值。
邗江中学(集团)2013-2014学年高二下学期期中考试数学试题及答案(理)

第Ⅰ卷一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.复数322ii+的虚部为______. 2.用反证法证明:“b a >”,应假设为 ▲ .3.某人5次上班途中所花的时间(单位:分钟)分别为x ,8,10,11,9.已知这组数据的平均数为10,则这组数据的方差为 ▲ .4.某校有教师200人,男生1200人,女生1000人,现用分层抽样从所有师生中抽取一个容量为n 的样本,已知女生抽取的人数是80人,则n = ▲ .5.下面是一个算法的伪代码.如果输出的y 的值是10,则输入的x 的值是 ▲ . 6.如图是从甲、乙两个班级各随机选出9名同学进行测验成绩的茎叶图,从图中看,平均成绩较高的是 ▲ 班.8.若直线b x y +-=与函数xy 1-=图象的切线垂直且过切点,则实数=b ▲ . 9.若(x +3y )n的展开式中各项系数的和等于(7a +b )10的展开式中二项式系数的和,则n 的值为________.10.如图,正方体1111D C B A ABCD -,点M 是1AA 的中点,点O 是底面ABCD 的中心,P 是11B C 上的任意一点,则直线BM 与OP 所成的角大小为 ▲ .11.在Rt△ABC 中,∠A =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为 ▲ .12.命题“∃(12)x ∈,时,满足不等式240x mx ++≥”是假命题,则m 的取值范围 ▲ .13.过原点向曲线a x x y ++=232可作三条切线,则实数a 的取值范围是 ▲ .14.如图,用一块形状为半椭圆1422=+y x )0(≥y 的铁皮截取一个以短轴BC 为底的等腰梯形ABCD ,记所得等腰梯形ABCD 的面积为S ,则1S的最小值是 ▲ .二、解答题:本大题共6小题,共90分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014.4注:本试卷考试时间120分钟,总分值160分一、填空题:本大题共14小题,每小题5分,共70分.1.已知全集},3,2,1,0{=U集合},3,2,1{},1,0{==BA则=BAC U)(▲2.函数()f x=的定义域为▲3.已知复数z1=-2+i,z2=a+2i(i为虚数单位,a∈R).若z1z2为实数,则a的值为▲.4.“sin sinαβ=”是“αβ=”的▲条件.(填:充分不必要、必要不充分、充要、既不充分又不必要)5.若函数⎩⎨⎧>≤+=1,lg1,1)(2xxxxxf,则f(f(10)= ▲.6.函数1()f x xx=+的值域为▲.7.若方程3log3=+xx的解所在的区间是(), 1k k+,则整数k=▲.8. 设357log6,log10,log14a b c===,则,,a b c的大小关系是▲.9.如果函数2()21xf x a=--是定义在(,0)(0,)-∞⋃+∞上的奇函数, 则a的值为▲10.由命题“02,2≤++∈∃mxxRx”是假命题,求得实数m的取值范围是),(+∞a,则实数a的值是▲.11.对大于或等于2的自然数m的n次方幂有如下分解方式:3122+=53132++=753142+++=5323+=119733++=1917151343+++=根据上述分解规律,则9753152++++=,若)(*3Nnm∈的分解中最小的数是91,则m的值为▲。
12.定义域为R的函数()f x满足(1)2()f x f x+=,且当]1,0[∈x时,2()f x x x=-,则当[2,1]x∈--时,()f x的最小值为▲.13. 已知函数),()(2Rbabaxxxf∈++=的值域为),0[+∞,若关于x的不等式cxf<)(的解集为)8,(+mm,则实数c的值为▲.江苏省扬州中学2013—2014学年度第二学期期中考试高二数学(文)试卷14.已知定义在R 上的偶函数()f x 满足对任意x R ∈都有(4)()f x f x +=,且当[]2,0x ∈-时,1()()12x f x =-.若在区间(2,6)-内函数()()log (2)a g x f x x =-+有3个不同的零点,则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.已知复数z 1满足z 1·i =1+i (i 为虚数单位),复数z 2的虚部为2. (1)求z 1;(2)若z 1·z 2是纯虚数,求z 2.16.已知集合A={}2|230x x x --<,B={}|(1)(1)0x x m x m -+--≥,(1)当0m =时,求A B ⋂(2)若p :2230x x --<,q :(1)(1)0x m x m -+--≥,且q 是p 的必要不充分条件,求实数m 的取值范围.17.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为x (米),外周长(梯形的上底.....线段..BC 与两腰长的和......)为y (米).⑴求y 关于x 的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内?⑶当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.6018.已知函数xxx f -+=11log )(3. (1)判断并证明()f x 的奇偶性;(2)当,21,0时⎥⎦⎤⎢⎣⎡∈x 函数[]1)()(2+⋅-=x f a x f y 的最小值为2a-,求实数a 的值。
19.已知函数2()21,(0)g x ax ax b a =-++>在区间]3,2[上的最大值为4,最小值为1, 记()()f x g x =. (1)求实数a 、b 的值;(2)若不等式21(log )()2f k f >成立,求实数k 的取值范围; (3)定义在[,]p q 上的一个函数()m x ,用分法011:i i n T p x x x x x q -=<<<<<<=将区间[,]p q 任意划分成n 个小区间,如果存在一个常数0M >,使得不等式11()()nii i m x m xM -=-≤∑恒成立,则称该函数()m x 为[,]p q 上的有界变差函数,试判断函数()f x 是否为[1,3]上的有界变差函数?若是,求出M 的最小值;若不是,请说明理由.20.(16分)已知函数2()f x ax x =-⋅,(),)g x a b =∈R .(1)当0b =时,若()(,2]f x -∞在上单调递减,求a 的取值范围;(2)求满足下列条件的所有整数对(,)a b :存在0x ,使得0()()f x f x 是的最大值,0()()g x g x 是的最小值;(3)对满足(2)中的条件的整数对(,)a b ,试构造一个定义在{|D x x =∈R 且2,}x k k ≠∈Z 上的函数()h x :使(2)()h x h x +=,且当(2,0)x ∈-时,()()h x f x =.命题人:高一年级组江苏省扬州中学2013~2014学年第二学期期中考试高二(文科)数学试卷答题纸成绩一、填空题(每小题5分,计70分)1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.二、解答题(本大题共6小题,计90分) 15.(14分) 16.(14分)17.(14分)_______________ 学号_____ 班级___________座位号__________ 姓名_____________………封……………线……………内……………不……………要……………答……………题………………18.(16分) 19.(16分)(请将20题解答写在答题纸反面)高二数学(文科)期中试卷参考答案 2014.41. {2,3}2. (1,2)3. 44. 必要不充分5. 26. (,2][2,)-∞-⋃+∞7. 2 8. a b c >> 9.-1 10.1 11.10 12. 116-13. 16,14. ⎤⎦15.解 (1)因为z 1·i =1+i , 所以z 1=1+ii =1-i .(2)因为z 2的虚部为2,故设z 2=m +2i (m ∈R ).因为z 1·z 2=(1-i)(m +2i)=(m +2)+(2-m )i 为纯虚数,所以m +2=0,且2-m ≠0,解得m =-2.所以z 2=-2+2i .16、解析(1):{}{}2|230|13A x x x x x =--<=-<<,{}{}|(1)(1)0|11B x x x x x x =+-≥=≥≤-或{}|13A B x x ∴⋂=≤<(2) p 为:(1,3)-,而q 为: (,1][1,)m m -∞-⋃++∞, 又q 是p 的必要不充分条件, 即p q ⇒所以 11m +≤-或13m -≥ ⇒ 4m ≥或2m ≤- 即实数m 的取值范围为(,2][4,)-∞-⋃+∞。
17.⑴1()2AD BC h =+,其中22x AD BC BC x =+⋅=+,2h x =, ∴1(22BC x =+,得182x BC x =-,由1802h x x BC x ⎧=≥⎪⎪⎨⎪=->⎪⎩,得26x ≤< ∴1832,(26)2xy BC x x x =+=+≤<; ⑵18310.52x y x =+≤得34x ≤≤∵[3,4][2,6)⊂ ∴腰长x 的范围是 [3,4]⑶1832x y x =+≥=,当并且仅当1832x x =,即[2,6)x =时等号成立.∴外周长的最小值为18.(1)证明:,011>-+xx)1,1(-∈∴x 函数的定义域为)1,1(-关于原点对称,33311()()log log log 1011()(),()x xf x f x x x f x f x f x -+-+=+==+-∴-=-又故函数为奇函数。
(2)令[]1(),0,,0,12f x t x t ⎡⎤=∈∴∈⎢⎥⎣⎦函数[]41)2(11)()(2222a a t at t x f a x f y -+-=+-=+⋅-=设函数[]1)()(2+⋅-=x f a x f y 的最小值为)(a g① 若0≤a ,当0=t 时,函数取到最小值1)(=a g ;由2a-=1,得2-=a ② 若20<<a ,当2a t =时,函数取到最小值41)(2a a g -=由4122a a -=-,得51±=a (舍)③ 若2≥a ,当1=t 时,函数取到最小值a a g -=2)(由a a-=-22,解得4=a ,42=-=∴a a 或 19.解:(1)a b x a x g -++-=1)1()(2,因为0>a ,所以)(x g 在区间]3,2[上是增函数,故⎩⎨⎧==4)3(1)2(g g ,解得⎩⎨⎧==01b a .(2)由已知可得2()()21f x g x x x ==-+,为偶函数. 所以不等式21(log )()2f k f >,可化为210log 2k ≤<,或23log 2k >解得,2(,2)(22,)k ∈+∞. (3)函数)(x f 为[1,3]上的有界变差函数函数)(x f 是[1,3]上的单调递增函数,且对任意划分 011:13i i n T x x x x x -=<<<<<<=011(1)()()()()(3)n n f f x f x f x f x f -∴=<<<<=11021101()()()()()()()()()()(3)(1)4ni i n n n i f x f x f x f x f x f x f x f x f x f x f f --=∴-=-+-++-=-=-=∑∴存在常数4M ≥,使得11()()ni i i f x f x M -=-≤∑(n i ,,2,1 =)恒成立,所以,M 的最小值为4.20、解: (1)当0b =时,()24f x ax x =-,若0a =,()4f x x =-,则()f x 在(],2-∞上单调递减,符合题意; 若0a ≠,要使()f x 在(],2-∞上单调递减,必须满足0,42,2a a>⎧⎪⎨≥⎪⎩ ∴01a <≤.综上所述,a 的取值范围是[]0,1(2)若0a =,()f x =-,则()f x 无最大值, 故0a ≠,∴()f x 为二次函数,要使()f x 有最大值,必须满足20,420,a b b <⎧⎨+-≥⎩即0a <且11b ≤+,此时,0x ()f x 有最大值.又()g x 取最小值时,0x a =,a =∈Z ,则2a =∵0a <且11b ≤≤,∴)20a a <≤∈Z ,得1a =-,此时1b =-或3b =. ∴满足条件的整数对(),a b 是()()1,1,1,3---. (3)当整数对是()()1,1,1,3---时,()22f x x x =-- (2)()h x h x +=,()h x ∴是以2为周期的周期函数,又当()2,0x ∈-时,()()h x f x =,构造()h x 如下:当()22,2,x k k k ∈-∈Z ,则,()()()()()222222h x h x k f x k x k x k =-=-=----, 故()()()()2222,22,2,.h x x k x k x k k k =----∈-∈Z。