长输管道阴极保护及阴极保护站维护基础知识
关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。
阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。
本文将阐述长输管道的阴极保护原理、方法及故障分析。
一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。
如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。
阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。
1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。
2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。
3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。
1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。
一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。
2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。
应当合理调整阴极保护的电位,避免出现极化过度的情况。
3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。
一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。
综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。
关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是输送石油、天然气等能源的重要设施,其安全运行需要关注防腐蚀和防止电化学腐蚀失效的问题。
阴极保护技术是一种保护长输管道金属的经济、有效的方法,本文将对长输管道阴极保护的原理、方法及故障的分析进行探讨。
一、阴极保护原理管道腐蚀的根本原因是电化学腐蚀,当管道作为阴极而周围环境当作阳极时,管道表面将出现金属的电子脱落,导致金属离子向外扩散,进而形成腐蚀。
阴极保护技术通过在管道表面制造负电位,使其成为静电阴极,从而减少或甚至消除电子脱落现象,从而防止或减缓管道腐蚀。
阴极保护主要包括直流阴极保护和交流阴极保护,其中直流阴极保护利用负电位防止管道腐蚀,交流阴极保护则通过改变管道表面的极性来防止腐蚀。
1. 阴极保护电流阴极保护电流是阴极保护的主要参数,它可以直接影响阴极保护的效果。
通常情况下,阴极保护电流的大小应该根据土壤电阻率和管道电流密度来确定,一般地说,管道的阴极保护电流应该保持在0.03~0.1A/m2之间。
阴极保护电源是阴极保护的核心,它通常包括直流阴极保护电源和交流阴极保护电源。
对于直流阴极保护电源,其一般需要提供相应的电流稳定性,可靠性以及有效的过流保护机制。
而对于交流阴极保护电源,其主要需要提供一定的非均匀电场分布能力,同时保证电源的电压和频率与管道周围环境相匹配。
3. 阴极保护绝缘节制阴极保护绝缘节制是一种保持管道电位稳定、减少腐蚀险情的技术。
阴极保护绝缘节制应能够有效地防止管道周围地下水的浸渍和电流干扰,同时保证管道电位的可靠性和稳定性。
一般地说,此类绝缘节制的材料应具备良好的腐蚀防护能力、良好的电绝缘性能以及耐高温、耐低温等特性。
阴极保护效果的检测是防止管道腐蚀以及其他电化学腐蚀失效的重要手段。
在阴极保护检测方面,根据管道的构造形式、使用环境以及技术特点等因素,在实际应用中常常采用电位测量、电阻率测量以及电流测量等多种检测手段。
这些检测手段在实际应用中的效果和精度均有相应的保障。
长输管道阴极保护基础知识交流

一、金属腐蚀与控制原理
6.埋地管道的外腐蚀 ➢腐蚀发生的不同类型
管线防腐层破损引起的腐蚀
金属成分、构造不同引起的腐蚀
一、金属腐蚀与控制原理
氧浓差引起的腐蚀: 在通气条件差(氧含量低)的环境下,钢结构对地电位较低。如埋设在
1.阴极保护的起源 其他科学家的研究工作
1890年,美国发明家爱迪生试验了外加电流法对船的保护方法,由于 没有合适的外加电源和阳极材料而未获成功。
1902年科恩采用直流电机首次实现了强制电流阴极保护的实际应用。 1906年盖波建立了第一个管道阴极保护系统,用一台容量为10V/12A的直流 发电机保护地下300m长的煤气管道,并获得专利。
➢正确选用耐腐蚀材料(供应、耐蚀、成本、强度、加工性、外观等因素) ➢合理的防腐设计(结构设计、工艺设计) ➢电化学保护(阴极保护、阳极保护) ➢改变环境 (脱硫、脱水、添加缓蚀剂、降温、降速、除氧、改变浓度) ➢金属表面覆盖层(金属与腐蚀性介质隔离) ➢腐蚀监/检测(间接手段)
一、金属腐蚀与控制原理
道路下的管道,对地电位较低,为阳极,首先发生腐蚀。对大直径管道,由 于其顶部相对干燥,通气较好,所以其底部通气较差,较容易腐蚀。
一、金属腐蚀与控制原理
硫酸盐还原菌腐蚀
我国大部分土壤中都含有硫酸盐还原菌,存在发生硫酸盐还原 菌腐蚀的风险。
一、金属腐蚀与控制原理
新旧管道腐蚀
一、金属腐蚀与控制原理
7.控制金属腐蚀的途径
腐蚀是一种化学过程,而且大多都是电化学过程,伴随着氧化还原反应的发生。 化学腐蚀:金属跟接触到的物质直接发生化学反应而引起的腐蚀。 电化学腐蚀:不纯的金属或合金与电解质溶液接触,会发生原电池反 应,比较活泼的金属失电子被氧化的腐蚀。腐蚀过程中有电流产生。
长输管道阴极保护方案

长输管道阴极保护方案
河南汇龙合金材料有限公司
2018年8月
技术部刘珍
为延长长输管道的使用寿命和保证管道的安全运行,长输管道必须实施阴极保护。
长输管道被保护的部分包括:长输管道首站入地点至末站出地点所有埋地部分的钢质管道、阀门、大型管道穿越部分等。
长输管道一般采用外加电流保护,分设若干个阴极保护站,特殊地质条件需要牺牲阳极进行辅助保护。
埋地钢质管道阴极保护主要分为二类:强制电流阴极保护、牺牲阳极阴极保护,个别管道采用强制电流和牺牲阳极交替保护。
当阴极
保护系统不能给管道提供足够的阴极保护电位时,管道外防腐层缺陷处会发生腐蚀;当阴极保护系统给管道提供的阴极保护电位过负时,管道外防腐层会发生析氢剥离。
长输管道是应用阴极保护最早的项目,也是阴极保护应用技术最成熟的项目。
适用范围:
输送天然气、原油、化工原料、淡水等埋地钢质长输管道
产品特点:
a)电位分布均匀
b)寿命长
c)工作电流密度大
d)施工简单
更多方案内容请联系公司索取。
长输管线知识

长输管线知识详解长输管线,作为现代工业社会的重要基础设施,承担着将各种流体(如石油、天然气、水等)从一地输送至另一地的关键任务。
这些管线通常跨越长距离,穿越各种地理环境,为经济和社会发展提供持续、稳定的能源和资源供应。
本文将详细探讨长输管线的组成、特点、应用以及相关的技术和安全问题。
一、长输管线的组成长输管线主要由输气管段、首站、压气站、中间分输站、阴极保护站、末站、清管站、干线截断阀室和储气库等组成。
这些组成部分各自承担着不同的功能,共同确保流体的稳定、高效输送。
1. 输气管段:这是长输管线的主体部分,负责将流体从起点输送至终点。
输气管段通常由高强度、耐腐蚀的材料制成,如钢管、铸铁管等,以确保管线的安全性和使用寿命。
2. 首站和末站:首站是长输管线的起点站,接收来自矿场净化厂或其他气源的净化天然气。
末站则是管线的终点站,负责将天然气转输给终点用户。
这两个站点通常配备有完善的计量、调压和分离设备,以确保流体的质量和输送效率。
3. 压气站:由于长输管线跨越长距离,流体在输送过程中会受到摩擦阻力和地形高差的影响,导致压力下降。
压气站的作用就是提供额外的压力,以维持流体的稳定输送。
4. 中间分输站和储气库:中间分输站负责将流体分输给不同的用户或支线。
储气库则用于储存多余的流体,以应对需求波动和供应中断等突发情况。
5. 阴极保护站和干线截断阀室:阴极保护站通过施加电流来防止管线腐蚀。
干线截断阀室则配备有紧急截断阀,用于在发生泄漏或其他紧急情况时迅速切断管线,以减少损失和影响。
6. 清管站:清管站负责定期清理管线内的杂质和积水,以确保管线的畅通和流体的质量。
二、长输管线的特点1. 距离长:长输管线通常跨越数十甚至数千公里的距离,穿越各种地理环境,如平原、山区、河流等。
这使得管线的建设和维护面临诸多挑战。
2. 用户多、地域广:长输管线服务于广泛的用户群体,包括工业、民用、商业等多个领域。
同时,管线覆盖的地域范围也非常广泛,需要满足不同地区的能源和资源需求。
长输管道阴极保护及阴极保护站维护基础知识

河南汇龙合金材料有限公司一家合金材料多元化延伸产品深加工、电气技术研发、工程承包为一体的高新企业。
长输管道阴极保护及阴极保护站维护基础知识河南汇龙合金材料有限公司2018年版1.目的:为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。
一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。
通过炼制,被赋予能量,才从离子状态转变成原子状态。
然而,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。
二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。
我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。
2.阴极保护原理2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。
)。
通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。
2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。
阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。
关于长输管道的阴极保护及故障分析

关于长输管道的阴极保护及故障分析长输管道是石油、天然气、化工产品等重要能源和物质运输的主要途径之一。
在使用过程中,长输管道的阴极保护是非常重要的。
本文将从长输管道阴极保护的原理、方法、故障类型及其分析等方面进行介绍。
一、阴极保护原理阴极保护是一种经济、有效的金属防腐措施,通过在金属表面施加一个负电位,将金属的电位调整到阴极区,在物质和能量的作用下,使金属表面处于保护状态,从而防止金属的电化学腐蚀。
在长输管道中,阴极保护的主要目的是保证管道金属表面的电位低于其溶解电位,使其处于被保护状态,从而防止腐蚀。
1. 熔融热浸镀法熔融热浸镀法是将金属作为阳极,通过在其表面浸涂含有阴离子的熔态物质,在高温下将该物质还原成金属的一种阴极保护方法。
该方法的优点是保护效果好,缺点是操作复杂,成本较高。
2. 电化学阴极保护法电化学阴极保护法是将外部电源与被保护金属合成电池,通过从外部输入一个反向电流,使金属的电位降低到保护电位以下,从而达到防腐的目的。
该方法的优点是施工简单,成本低,但需要对金属进行严格的电位控制。
渗入阻抗阴极保护法是一种新型的阴极保护方法,通过将阻抗控制器引入管道,将介质中的电导率、温度、湿度等参数作为参量,根据管道的工作状态和防腐要求计算出合适的电位值,并通过介质的渗入作用对管道进行阴极保护。
该方法的优点是操作简便,防腐效果好,但需要对阴极保护设备进行严格监护。
三、故障分析阴极保护设备在工作过程中也会出现一些故障,主要包括以下几点:1. 阳极失效阳极失效是指金属阳极在使用过程中出现脱落、损坏等情况,从而导致被保护金属表面的电位增加,无法达到保护状态,最终导致金属的腐蚀。
防止阳极失效的方法包括定期检查和更换。
2. 阴极材料污染长输管道中的介质可能会对阴极保护材料产生腐蚀或污染,从而导致阴极材料的损坏和阴极保护效果的降低。
预防阴极材料污染的方法包括管道清洗、选择防腐能力强的阴极材料等。
3. 阴极保护电流过小或过大阴极保护电流过小或过大都会导致保护效果下降。
长输管道站场区域阴极保护-精选文档

合金。工程实施后,进行电位实测,总结了很多经验。
陕京线也先后在采育、永清、通州等站实施区域阴极 保护;西气东输也陆续在甪直和古浪开展了区域阴保 研究;
边水平浅埋阳极组方式,这两个站的设计和实施由泵
站管理单位完成,由于输油泵站区域较大,地下管网
较多,管道电绝缘几乎没有实施,因此,这两个站的 区域阴保除靠近阳极地床的区域配管外,相当一部分 由于地下管道的相互电屏蔽而没有达到保护电位,普 遍在-0.75-0.8V C.S.E。
进入新世纪初,区域阴极保护进入全面尝试应用
中国石油天然气管道工程有限公司
CHINA PETROLEUM PIPELINE ENGINEERING CORPORATION
多年来站场内部埋地管网的腐蚀破坏事故不 断的发生,如忠—武输气管线站场在扩建开挖 时发现,站内管线防腐层脱落严重,又没有阴 极保护措施,造成了较为严重的腐蚀;07年初 在西气东输轮南首站以及陕京输气管道站内开 挖过程中,也同样发现防腐层破损严重,使管 道遭受了腐蚀;另外,早些年在阿—赛线、濮-临复线
由于站内设备、仪表设施以及人员相对比较 集中,站内腐蚀泄露的危害要比干线严重的多。
中国石油天然气管道工程有限公司
CHINA PETROLEUM PIPELINE ENGINEERING CORPORATION
正因为如此,站内腐蚀在国外油气储运工程中一直
都很重视,美国腐蚀工程师协会NACE要求站内管道 必须采取阴极保护。中石油最近十多年来也陆续在 许多管道工程中,如忠武线、库鄯线、黄岛首站、 太阳升和林源等泵站、鄯乌线,陕京输气管道、以 及广东LNG等诸多工程的工艺站场实施了区域阴极 保护,取得了一定的效果。一些管道项目如西一线、 西部原油成油管道等都正在实施增设区域阴极保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.目的为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。
一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。
通过炼制,被赋予能量,才从离子状态转变成原子状态。
然而,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。
二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。
我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。
2.阴极保护原理2.1所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。
)。
通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。
2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。
阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。
该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培)或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。
如,城市管网、小型储罐等。
根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。
牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。
本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。
因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。
强制电流保护原理:由外部的直流电源向被保护金属构筑物通以保护电流,使之阴极极化,达到阴极保护的一种方法。
该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。
强制电流保护原理图;3.阴极保护参数测试3.1要判定管道是否得到了保护,则须通过测得管道所在处的管地电位来判定。
为了便于实际应用,通过多年的实践与研究,得出了以下几个判断结构是否得到充分保护得判断准则。
1. NACE RP 0169 建议“在通电的情况下,埋地钢铁结构最小保护电位为-0.85V CSE 或更负, 在有硫酸盐还原菌存在的情况下,最小保护电位为-0.95V CSE ,该电位不含土壤中电压降(IR 降)”。
实际测量时,应根据瞬时断电电位进行判断。
目前流行的通电电位测量方法简便易行,但对测量中IR 降的含量没有给予足够重视。
其后果是很多认为阴极保护良好的管道发生腐蚀穿孔。
这方面的教训是很多的。
如:四川气田南干线,认为阴极保护良好,但实际内检测发现腐蚀深度在壁厚的10-19%的点多达410 处;个别位置的点蚀深度达到50%。
进行断电电位测量发现,很多点保护电位(断电电位)没有达到-0.85V CSE。
有效的方法是实际测量几点的IR 降,保护电位按0.85 + IR 降来确定。
IR 降可以通过通电电位减去瞬时断电电位来获得,也可以用瞬时通电电位减去结构自然电位来获得。
2.瞬时断电电位与自然电位电位之差不得小于100mV 。
在有些情况下,在断开电源0.2-0.5 秒内测量断电电位,待结构去极化后(24 或48 小时后)再测量结构电位(自然电位),其差值应不小于 100mV。
也可以用通电电位(极化后)减去瞬时通电电位来计算极化电位。
3.最大保护电位的限制应根据覆盖层及环境确定,以不损坏覆盖层的粘结力为准,一般瞬时断电电位不得低于-1.10V CSE 。
由于受旧规范的影响,很多人还认为阴极保护最大电位不能低于-1.5V CSE 。
事实上这种观念使错误的,造成的危害也是巨大的。
判断阴极保护电位是否过大应以断电电位为判断基础,只要断电电位不低于-1.1V CSE (西欧为-1.15V CSE),通电电位再大也没有关系。
3.2 管地电位是管道与其相邻土壤的电位差。
3.3 管地电位的测试方法:(1)当采用数字万用表测管地电位时,应将电压表的负接线柱(COM)与硫酸铜参比电极连接(硫酸铜参比电极应安放在管道的正上方并确保与大地土壤接触良好),正接线柱(V)与管道连接,仪表值指示的是管道相对于参比电极的电位值,正常情况下显示负值;(2)当采用直流指针式电压表测量管地电位时,应将直流指针式电压表的负接线柱(COM)与管道连接,正极接线柱(V)与硫酸铜参比电极连接(硫酸铜参比电极应安放在管道的正上方并确保与大地土壤接触良好),在指针发生反转的情况下,所记录的数据应该加负号。
3.4管地电位的组成(1)IR降:即电流流经涂层管子和土壤接触的界面以及和参比电极之间的土壤时产生的IR降;(2)由管地界面处的电化学变化引起的极化电位;(3)最初的或静态的管地电位,也称自然电位,即无外部电流影响的腐蚀电位;(在进行阴极保护之前,管子在土壤中所处的平衡电位就是腐蚀电位)所以最初用数字万用表测得的管地电位不是管道的真正保护电位,而是含有几种因素所组成的电位,所以要排出几种因素后,才能得道的真正阴极保护电位,就要采取进一步的测量。
3.5 极化探头使用方法最有效排除IR降的方法是采用极化探头测试,极化探头是一种长效、高稳定、消除IR降的埋地钢质管道阴极保护电位测量探头,主要适用于埋地及水下钢质管道腐蚀控制工程阴极保护电位的检测与监测,并能同时测量自腐蚀电位。
具有长效性、高稳定性特点,并能通过探头的特殊结构,消除土壤中90%左右的IR降。
极化探头具有三根接线(1号线为红色是参比电极,2号线为绿色是连接到极化试片,3号线为黄色是连接到自腐蚀试片)。
在测量管地电位时,首先把探头插入被测体附近的土壤中,如果土壤干燥,应在探头周围的土壤中浇入纯净水湿润。
在用2号绿色接线进行与管道的极化,当极化完全后,再将1 号参比电极线接到万用表的地线,把万用表的正极接到2号线同时接到被测体,待电位值稳定后,读取被测量体阴极保护电位值。
将2号线换为3号线接到万用表的正极,同时不要与被测量体相连接,待电位稳定后,即测量到自腐蚀电位。
如果要对管道进行长期监测时,就要把电位测量探头作为监测电极长期埋入地下,首先把探头装入牺牲阳极用在填料包内再埋入土壤中,并在探头周围的土壤中浇入纯净水湿润;再把1 号红色接线接到万用表的地线,2号接线接万用表的正极,同时与被测体固定连接,待电位稳定后,读取测量阴极保护电位值。
将2号接线换3号接线接到万用表的正极,同时不要与被测量体连接,待电位稳定后,即测量到自腐蚀电位。
3.6 测试桩之间阴极保护状况检测防腐层与阴极保护装置是埋地钢质管道的联合保护,保护效果的好坏直接关系到管道的使用寿命,因此对阴极保护系统运行状况的检测与评价也是非常重要的一项内容。
管道阴极保护系统有效性检测采用CIPS(密间隔电位)法按标准规定间距对管道ON/OFF电位进行测试。
在埋地管道的阴极保护系统中,被保护的管道每间隔一定的距离(例如一公里)有一个管地电位测试桩,是用导线与管体金属联结,然后引到地面上,并做好与地的绝缘。
阴极保护站的工作人员定期用毫伏表沿管线逐个在桩上测量该点的管对地电位,从阴极保护站的加电点开始观察所施加的电压沿管道的衰减情况,用以了解保护的范围和异常衰减的区段。
但是这种测量的结果是很粗糙的,只能对阴极保护状况做个大致的观察。
由于IR降的存在,在每个桩上所测得的管对地电位并不是直接加在破损点管道金属表面与土壤接触界面之间的电位,并不能准确判断对管道保护的效果。
CIPS测量成果图在消除IR降的诸多方法之中,断流法被普遍采用。
就是在中断阴极保护电流后的一瞬间,测量管体与土壤界面之间极化电位。
这个电位才是阴极保护对破损处金属所施加的起保护作用的电位。
通常我们把断流前所测的电位叫做ON电位,断流后所测的电位叫做OFF电位。
CIPS的含义是近间距管对地电位测量。
测量时,在阴极保护电源输出线上串接断流器,断流器以一定的周期断开或接通阴极保护电流。
例如在一秒周期中1/3秒断开,2/3秒接通。
测量从一个阴极保护测试桩开始,将尾线接在桩上,与管道连通,操作员手持探杖,沿管顶每间隔一定距离测量一个点,记录下每个点的ON/OFF电位。
这样就可以得到沿管道的管对地电位的两条曲线,如前所述,OFF 电位值是代表实际对金属表面施加的真实保护电位,看它相对-850毫伏的变化,可知某处阴极保护的实际效果。
根据NACE(美国腐蚀工程师协会)相应的解释标准对CIPS结果曲线进行解释。
CIPS的应用在对管道阴极保护的有效性评价及发现防腐层失效范围方面比以前前进了一大步。
首先,它的OFF电位曲线是基本消除了IR降的结果,更真实的描述了管道阴极保护的有效性。
其次,它可以反映出防腐层失效范围。
给出管道上阴极保护和防腐效果的具体的详细的描述。
因此CIPS系统一经问世,便被各管道公司广泛采用。
4.阴极保护站内维护与测试阴极保护站场内的主要是对恒电位仪仪器的自检和对仪器接线的测试,还有就是对绝缘接头(法兰)的漏电电阻、长效参比电极进行测试,并测试出辅助阳极接地电阻,判断它的接地性能;4.1 恒电位仪的特点恒电位仪的特点具体如下:——具有数字显示输出电压、输出电流、电位测量值;——机上装有假负载,便于仪器的自检,便于对仪器的维修;——仪器具有软起动功能、能防止雷击余波、可以阻抗50Hz的工频干扰,还可以进行限流、进行误差的报警等功能;——仪器具有运行状态自动切换的功能,当在无法进行恒电位控制的时候(如参比电极回路开路),变压整流器将会自动从恒电位工作状态切换到恒电流工作状态,并恒定在预先设定的电流值上;当远控给定信号输入时,变压整流器将会受到远控给定控制。
4.2 变压整流器的工作原理当仪器处于(自动)工作状态时,机内给定信号(标称电压)或外控给定信号和经阻抗变换器分离后的参比信号一起送入比较放大器,经高精度、高稳定性的比较放大器比较放大,输出误差控制信号(放大的差动电压),将此信号送入移相触发器根据该信号的大小,自动调节脉冲的移相时间,通过脉冲变压器输出触发脉冲调整极化回路可控硅的导通角,改变输出电压、电流的大小,使保护电位等于设定的给定电位,从而实现恒电位保护。