函数及其表示练习题及答案

合集下载

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析1.下列四组中的f(x),g(x),表示同一个函数的是().A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=-1C.f(x)=x2,g(x)=()4D.f(x)=x3,g(x)=【答案】D【解析】A:函数的定义域为,函数的定义域为,所以定义域不相同,B:函数的定义域为,函数的定义域为,所以定义域不相同,C:函数的定义域为,函数的定义域为,所以定义域不相同.【考点】函数的三要素.2.下列式子中不能表示函数y=f(x)的是( ).A.x=y2+1B.y=2x2+1C.x-2y=6D.x=【答案】A【解析】因为函数的概念包含两条:①非空数集A,B;②对于任意,都有唯一的;而选项A中,当时,,不满足函数的概念;故选A.【考点】函数的概念.3.设是的两个非空子集,如果存在一个从到的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对应的序号是(写出所有“保序同构”的集合对的对应的序号).【答案】②③④.【解析】“保序同构”的集合是指存在一函数满足:(1).S是的定义域,T是值域,(2). 在S上递增.对于①,若任意,当时,可能有,不是恒有成立,所以①中的两个集合不一定是保序同构,对于②,取符合保序同构定义,对于③,取函数符合保序同构定义,对于④,取符合保序同构定义,故选②③④.【考点】新概念信息题,单调函数的概念,蕴含映射思想.4.下列各组函数中,表示同一函数的是( )A.B.C.D.【答案】B【解析】根据题意,对于A,定义域不同,故不成立,对于B,由于定义域和对应法则相同,因此成立,对于C,由于定义域不同,前者是x>1,后者是-1 1 ,故错误,对于D,由于定义域不同,前者是R,后者是,故选B.【考点】同一函数点评:本题考查函数的三要素:定义域、对应法则、值域,只有三要素完全相同,才能判断两个函数是同一个函数,这是判定两个函数为同一函数的标准.5.下列函数中,与函数相同的是()A.B.C.D.【答案】C【解析】根据题意,由于函数,那么对于A,由于对应关系不一样,定义域相同不是同一函数,对于B,由于,对应关系式不同,不成立,对于D,由于定义域相同,对应法则不同,不是同一函数,排除法选C.【考点】同一个函数的概念点评:本题考查了两个函数图象是否相同,即是否为同一个函数的判断方法.6.已知为实数,(1)若,求在上最大值和最小值;(2)若在和上都是递增的,求的取值范围。

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案

高一数学必修一第一章(中)函数及其表示练习题及答案高一数学(必修1)第一章:函数及其表示基础训练选择题1.判断下列各组中的两个函数是同一函数的为()A。

⑴、⑵B。

⑵、⑶C。

⑷D。

⑶、⑸2.函数y=f(x)的图象与直线x=1的公共点数目是()A。

1B。

0或1C。

2D。

1或23.已知集合A={1.2.3.k},B={4.7.a。

4.a^2+3a},且a∈N,x∈A,y∈B*,使B中元素y=3x+1和A中的元素x对应,则a,k的值分别为()A。

2,3B。

3,4C。

3,5D。

2,54.已知f(x)={x+2(x≤-1),x^2(-1<x<2),2x(x≥2)},若f(x)=3,则x的值是()A。

1B。

1或-3C。

1,或±3D。

35.为了得到函数y=f(-2x)的图象,可以把函数y=f(1-2x)的图象适当平移,这个平移是()A。

沿x轴向右平移1个单位B。

沿x轴向右平移1/2个单位C。

沿x轴向左平移1个单位D。

沿x轴向左平移1/2个单位6.设f(x)={x-2(x≥10),f[f(x+6)](x<10)},则f(5)的值为()A。

10B。

11C。

12D。

13填空题1.设函数f(x)={1/(x-1)(x≥1),2/x(xa,则实数a的取值范围是(0.1)。

2.函数y=(x-2)/(x^2-4)的定义域是R-{-2.2}。

3.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

4.函数y=(x-1)/(x-x^2)的定义域是(-∞。

0)∪(1.+∞)。

5.函数f(x)=x+(1/x)的最小值是2.解答题1.求函数f(x)=3x/(x+1)的定义域为R-{-1}。

解:当x+1≠0时,即x≠-1时,f(x)有意义,所以f(x)的定义域为R-{-1}。

2.求函数y=(x^2+x+1)/(x+1)的值域。

解:y=(x^2+x+1)/(x+1)=x+1+1/(x+1),当x→±∞时,y→±∞,所以y的值域为R-{-1}。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列各组函数为同一函数的是()A.,B.C.D.【答案】B【解析】选项A中两函数的定义域不同,选项B中两函数的定义域和对应关系均相同,选项C中两函数的定义域不同,选项D中两函数的对应关系不同,所以只有B中两函数是同一个函数.【考点】本小题主要考查函数的三要素的判断,考查学生的判断推理能力.点评:函数有三要素:定义域、值域和对应关系,其实只要定义域和对应关系相同就能得出两函数是同一个函数.2.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.3.下列哪组中的两个函数是同一函数()A.与B.与C.与D.与【答案】B【解析】根据同一函数的定义可知,定义域和对应法则相同时。

那么选项A中,定义域不同,选项B中,定义域和对应法则相同;选项C中,定义域不同,选项D中,定义域不同,故选B.4.定义在R上的偶函数满足:对任意的,有.则( ) A.B.C.D.【答案】B【解析】因为函数在R上的偶函数,那么且在给定区间上是减函数,那么在x<0上递增函数,因此可知f(-3)="f(3)," f(-2)=f(2),所以f(-3)<f(-2)< f(1),故选B.5.若函数,则=_____ __ _____【解析】因为函数,,令x=1,则可知f(2)=1-1=0.6.(本小题满分12分)已知,求的值【答案】n-【解析】本试题主要是考查了函数解析式的运用。

根据由已知得,f(1)=且f(x)+ =+=1,得到所求的函数值。

解:由已知得,f(1)=且f(x)+ =+=1∴=n-1+=n-7.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】B【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于D选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于B选项,符合映射的意义,故选B.8.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】D【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于B选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于D选项,符合映射的意义,故选D.9.下列各组函数中表示同一函数的是()①与;②与;③与;④与.A.①②B.②③C.③④D.①④【答案】C【解析】因为①与;中定义域不同②与;对应关系不同,③与;相同。

函数及其表示含答案

函数及其表示含答案

函数及其表示1. 设f 是从集合A 到集合B 的映射,下列四个说法:①集合A 中的每一个元素在集合B 中都有元素与之对应;②集合B 中的每一个元素在集合A 中也都有元素与之对应;③集合A 中不同的元素在集合B 中的对应元素也不同;④集合B 中不同的元素在集合A 中的对应元素也不同,其中正确的是( )A . ①②B . ②③C . ③④D . ①④2.下列给出的四组函数是同一个函数的是( )A. ()f x x =,()2g x =B. ()f x x =,()g x =C. ()f x x =,()g x =D. ()1f x =,()0g x x =3.下列各组函数中,表示同一个函数的是( )A.y=x-1和y=112+-x x B.y=x 0和y=1 C. ()2f x x =和()()21g x x =+ D. ()f x =x x 2)(和()g x =2)(x x 4.已知集合P={x|0≤x ≤4},Q={y|0≤y ≤2},从P 到Q 的对应法则是f ,则下列对应不是从P 到Q 的函数的是( )A. f :x →y=21xB. f :x →y=31x C. f :x →y=23x D. f :x →y=41x 5.设集合A ={x|0≤x ≤6},B ={y|0≤y ≤2},则从A 到B 的对应法则f 不是映射的是( )A .f :12x y x →=B .f :13x y x →= C .f :14x y x →= D .f :16x y x →=6. 已知函数()f x =F ,()g x =31-+x x 的定义域为G ,那么集合F 、G 的关系是( ) A. F=G B. F ⊆G C. G ⊆F D. F ∪G=G7. 已知函数()f x =1122++++kx kx x x 的定义域是R ,则实数k 的取值范围是( ) A. k ≠0 B. 0≤k<4 C. 0≤k ≤4 D. 0<k<48.已知⎪⎭⎫ ⎝⎛+-x x f 11=2211x x +-,则()f x 的解析式可能为( ) A. 21x x + B. -212x x + C. 212x x + D. -21xx + 9.已知()12g x x =-,()f g x =⎡⎤⎣⎦221xx -(x ≠0),则f (21)等于( )A.1B.3C.15D.2010.已知函数()f x 的定义域是[0,2],则函数()g x = f (x+21)+f (x-21)的定义域是( ) A.[0,2] B.[-21,23] C.[21,25] D.[21,23] 11.已知()f x 的定义域为[-2,2],则()21f x -的定义域为( )A.[-1,3]B.[0,3]C.[3-,3]D.[-4,4]12.已知函数()f x =822--x x 的定义域为A ,()g x =||11a x --的定义域为B ,若A ∩B=∅,则实数a 的取值范围是( )A.(-2,4)B.[-1,3]C.[-2,4]D.(-1,3)13.函数y =1x 2+2的值域为( ) A .R B .{y|y ≥12} C .{y|y ≤12} D .{y|0<y ≤12}14.已知()f x =xx 1-,则()4f x x =的根是( ) A.21 B.-21 C.2 D.-2 15.已知()2132f x x +=-,且()4f a =,则a=_______________.16.函数()f x 对于任意实数x 满足条件()2f x +=)(1x f ,若()15f =-,则()()5f f =_________. 17.已知集合A 中的元素(x ,y)在映射f 的作用下与集合B 中的元素(x +y 2,x -y 2)相对应,则与B 中的元素(0,3)相对应的A 中的元素是________.18.已知211x f x x ⎛⎫= ⎪-⎝⎭,求()f x 的解析式.19.已知二次函数()f x 满足:()01f =,且对任意的x 都有()()11f x f x x +=++,求()f x 的解析式。

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析1.设常数,函数,若,则.【答案】3【解析】由题意,则,所以.【考点】函数的定义.2.在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图象可表示为()【答案】B【解析】当t∈[-1,0]时,S增速越来越平缓,当t∈[0,1]时,S增速越来越快,选B项.3.已知,,,映射.对于直线上任意一点,,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知,则映射的“相关直线”有多少条()A.B.C.D.无数【答案】B【解析】当直线的斜率存在时,不放设直线的方程为,设点的坐标为,且,则点的坐标为,由于点在直线上,则有,即,因此有,解得;当直线的斜率不存在时,设直线的方程为,在此直线上任取一点,则点,由于点也在直线上,因此有(非定值),此时,直线不存在.综上所述,映射的“相关直线”为或,有两条,故选B.【考点】新定义4.若f(x+1)=2f(x),则f(x)等于()xA.2x B.2x C.x+2D.log2【答案】B【解析】若f(x)=2x,则f(x+1)=2x+2,不满足f(x+1)=2f(x),故排除A.若f(x)=2x,则f(x+1)=2x+1=2×2x=2f(x),故满足条件.若f(x)=x+2,则f(x+1)=x+3,不满足f(x+1)=2f(x),故排除C.若f(x)=log2x,则f(x+1)=log2(x+1),不满足f(x+1)=2f(x),故排除D.故选B.5.下列图象表示函数关系y=f(x)的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.6.已知函数和的图像关于原点对称,且.(1)求函数的解析式;(2)解不等式;(3)若函数在区间上是增函数,求实数的取值范围.【答案】(1);(2) 解集为;(3) .【解析】(1)两个函数的图象关于某点或某条直线对称,一般设待求解析式的函数图象上任一点的坐标为,求出这点的对称点的坐标,当然这里是用表示的式子,然后把点代入已知解析式,就能求出结论;(2)这是含有绝对值的不等式,解题时,一般按照绝对值的定义分类讨论以去掉绝对值符号,便于解题;(3),这是含参数的二次函数,解题时,首先对二次项系数分类,即分二次项系数为0,不为0,其中不为0还要分为是正数,还是负数进行讨论,在二次项系数不为0时,只要讨论其对称轴与给定区间的关系就能求得结论.试题解析:(1)设是函数图像上任一点,则关于原点对称的点在函数的图像上,(1分)所以,故.(2分)所以,函数的解析式是.(1分)(2)由,得,(1分)即.(1分)当时,有,△,不等式无解;(1分)当时,有,,解得.(2分)综上,不等式的解集为.(1分)(3).(1分)①当时,在区间上是增函数,符合题意.(1分)②当时,函数图像的对称轴是直线.(1分)因为在区间上是增函数,所以,1)当时,,函数图像开口向上,故,解得;(1分)2)当时,,函数图像开口向下,故,解得.(1分)综上,的取值范围是.(1分)【考点】(1)函数图象的对称问题;(2)含绝对值的不等式;(3)函数的单调性.7.设二次函数,对任意实数,有恒成立;数列满足.(1)求函数的解析式和值域;(2)证明:当时,数列在该区间上是递增数列;(3)已知,是否存在非零整数,使得对任意,都有恒成立,若存在,求之;若不存在,说明理由.【答案】(1),值域为;(2)证明见解析;(3)存在,且.【解析】(1)这是一个不等式恒成立问题,把不等式转化为恒成立,那么这一定是二次不等式,恒成立的条件是可解得,从而得到的解析式,其值域也易求得;(2)要证明数列在该区间上是递增数列,即证,也即,根据的定义,可把化为关于的二次函数,再利用,可得结论;(3)这是一道存在性问题,解决问题的方法一般是假设存在符合题意的结论,本题中假设存在,使不等式成立,为了求出,一般要把不等式左边的和求出来,这就要求我们要研究清楚第一项是什么?这个和是什么数列的和?由,从而,,不妨设,则(),对这个递推公式我们可以两边取对数把问题转化为,这是数列的递推公式,可以变为一个等比数列,方法是上式可变为,即数列是公比为2的等比数列,其通项公式易求,反过来,可求得,从而求出不等式左边的和,化简不等式.试题解析:(1)由恒成立等价于恒成立,从而得:,化简得,从而得,所以,3分其值域为. 4分(2)解:6分, 8分从而得,即,所以数列在区间上是递增数列. 10分(3)由(2)知,从而;,即;12分令,则有且;从而有,可得,所以数列是为首项,公比为的等比数列,从而得,即,所以,所以,所以,所以,.即,所以,恒成立. 15分当为奇数时,即恒成立,当且仅当时,有最小值为. 16分当为偶数时,即恒成立,当且仅当时,有最大值为. 17分所以,对任意,有.又非零整数, 18分【考点】(1)二次不等式恒成立问题与函数的值域;(2)递增数列;(3)递推公式,的数列通项公式,等比数列的前项和.8.下列各组函数中,表示同一函数的是( )A.B.C.D.【答案】A【解析】A选项是对的.B选项的定义域不同一个大于零另一个不等于零,所以不是同一函数排除B.C选项的定义域也是不同,一个不等于3另一个属于任意实数.排除C.D选项也是定义域不同,一个不等于零,另一个属于任意实数.故选A.【考点】1.函数的概念.2.相等函数的概念.9.设为实常数,是定义在R上的奇函数,当时,.若“,”是假命题,则的取值范围为 .【答案】【解析】是定义在R上的奇函数,故可求解析式为又“”是假命题,则是真命题,当时,,解得,①当时,,结合均值不等式有,得或,②①②取交集得的取值范围是.【考点】1.根据奇偶性求函数解析式;2.特称命题的否定;3.不等式恒成立问题.10.已知,其中、为常数,且,若为常数,则的值为 .【答案】.【解析】,,则,则有,即,则有,且,由得到,所以有,因式分解得,因为,所以,.【考点】函数的概念11.记实数中的最大数为max{} , 最小数为min{}则max{min{}}= ()A.B.1C.3D.【答案】D【解析】如图所示,所求最高点应为两点之一,故,,故答案选D.【考点】本小题主要考查分段函数、零点、函数的图象12.设则.【答案】【解析】.【考点】分段函数求值.13.若函数,则=()A.lg101B.2C.1D.0【答案】B【解析】因为,所以=f(1)=1+1=2,故选B.【考点】本题主要考查分段函数的概念,二次函数、对数函数的图象和性质。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.函数的定义域为()A.B.C.[1,2]D.【答案】A【解析】由题意,得,解得且,所以原函数的定义域为,故选A.【考点】函数的定义域.2.若函数的定义域是 ,则函数的定义域是()A.[-1,1]B.[-1,1)C.D.(-1,1)【答案】C【解析】由f(x)的定义域可知,所以g(x)的定义域为.3.如图所示,当时,函数的图象是 ( )【答案】D【解析】对于D,当a<0时,b<0,所以抛物线的开口向下,并且直线的斜率为负值,在y轴上的截距为负值.因而选D.4.设函数是上的减函数,则有()A.B.C.D.【答案】D【解析】因为函数在 R上递减的,则说明2a-1<0,那么,选D.5.(本小题满分12分)已知,求的值【答案】n-【解析】本试题主要是考查了函数解析式的运用。

根据由已知得,f(1)=且f(x)+ =+=1,得到所求的函数值。

解:由已知得,f(1)=且f(x)+ =+=1∴=n-1+=n-6.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.【答案】D【解析】解:根据映射的概念,在集合A中的每一个元素在集合B中都有唯一的元素和它对应,观察所给的四个选项,对于A选项,在B中有2个元素与它对应,不是映射,对于B选项,在B中没有和A的元素0对应的象,对于C选项,在B中没有与A的元素0对应的象,对于D选项,符合映射的意义,故选D.7.下列各组函数中表示同一函数的是()①与;②与;③与;④与.A.①②B.②③C.③④D.①④【答案】C【解析】因为①与;中定义域不同②与;对应关系不同,③与;相同。

④与相同,故选C.8.已知函数.(1)求函数的定义域;(2)判断的奇偶性并证明你的结论;(3)试讨论的单调性.【答案】(1). (2)函数f(x)是奇函数.(3)在上为减函数;在为减函数.【解析】本试题主要是考查了函数的奇偶性和定义域单调性的综合运用。

(完整版)函数及其表示练习题及答案

(完整版)函数及其表示练习题及答案

i函数及其表示练习题一.选择题1函数满足则常数等于()23(,32)(-≠+=xxcxxf,)]([xxff=cA B33-C D33-或35-或2. 已知,那么等于())0(1)]([,21)(22≠-=-=xxxxgfxxg21(fA B151C D3303.函数的值域是()2y=A B[2,2]-[1,2]C D[0,2][4已知,则的解析式为()2211(11x xfx x--=++()f xA B21xx+212xx+-C D212xx+21xx+-5.设是R上的任意函数,则下列叙述正确的是 ( )()f x(A)是奇函数 (B)是奇函数()()f x f x-()()f x f x-(C) 是偶函数 (D) 是偶函数()()f x f x--()()f x f x+-6. 下列图中,画在同一坐标系中,函数与函数bxaxy+=2)0,0(≠≠+=babaxy的图象只可能是()7.已知二次函数,若,则的值为()0()(2>++=aaxxxf0)(<mf)1(+mfAl l )A .正数B .负数C .0D .符号与a 有关8. 已知的定义域为,则的定义域为()(x f )2,1[-|)(|x f )A .B .C .D .)2,1[-]1,1[-)2,2(-)2,2[-9. 已知在克的盐水中,加入克的盐水,浓度变为,将y 表示成x 的函x %a y %b %c 数关系式( )A .B .C .D .x b c ac y --=x cb ac y --=x a c b c y --=x ac cb y --=10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=,那么等于(p q f =)3()72(f )A .B .C .D .qp +qp 23+qp 32+23qp +11. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为(A )y =[10x ](B )y =[310x +](C )y =[410x +](D )y =[510x +]12.已知函数则()()2113,f x x x =+≤≤A . B .()()12202f x x x -=+≤≤()()12124f x x x -=-+≤≤C . D .()()12202f x x x -=-≤≤()()12104f x x x -=-≤≤13.函数的定义域为y =A .B .()4,1--()4,1-C . D .()1,1-(1,1]-14.设函数则的值为()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩()12f f ⎛⎫ ⎪ ⎪⎝⎭A .B .C . D.15162716-891815. 定义在上的函数满足R ()f x ()()()()()2,,12f x y f x f y xy x y R f +=++∈=则等于( )()3f - A. 2 B. 3 C. 6 D .916.下列函数中与函数有相同定义域的是 ( )y =A .B 。

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析1.已知奇函数当时,,则当时,的表达式是( ). A.B.C.D.【答案】A.【解析】设,则;;因为函数是奇函数,所以,即.【考点】函数的解析式、函数的奇偶性.2.已知,,,则;【答案】.【解析】令得,;令得,;令得,.【考点】函数的求值.3.已知,且,则等于_____________.【答案】【解析】令,则,,令,则.【考点】函数的解析式.4.下列关于函数、函数的定义域、函数的值域、函数的对应法测的结构图正确的是()【答案】A【解析】根据函数的三要素有函数的定义域、值域、对应法则,可知A正确.【考点】函数的概念.5.下列各组函数是同一函数的是()A.与B.与C.与D.与【答案】D【解析】函数的要素由两个:定义域与对应法则。

=x(x-1),所以,是同一函数的是与,选D。

【考点】函数的概念点评:简单题,函数的要素由两个:定义域与对应法则。

6.下列各组函数中表示同一函数的是()A.与B.与C.与D.与【答案】D【解析】在D项中,函数与的定义域和对于关系一致,所以是相同函数。

故选D。

【考点】相同函数点评:要看两个函数是否相同,只要看这两个函数的定义域和对于关系是否一致。

7.下列四个函数中,与y=x表示同一函数的是()A.y=()2B.y=C.y=D.y=【答案】B【解析】根据同一函数的定义可知定义域和对应法则相同的即为所求,那么可知选项A定义域不同,选项C,对应法则不同;选项D,定义域不同,故选B8.对任意实数,定义运算,其中是常数,等式右边的运算是通常的加法和乘法运算.已知,并且有一个非零常数,使得对任意实数,都有,则的值是______________【答案】4【解析】由定义可知,所以,所以恒成立,所以.,.9.图中的阴影部分由底为,高为的等腰三角形及高为和的两矩形所构成.设函数是图中阴影部分介于平行线及之间的那一部分的面积,则函数的图象大致为【答案】C【解析】解:根据图象可知在[0,1]上面积增长的速度变慢,在图形上反映出切线的斜率在变小;在[1,2]上面积增长速度恒定,在[2,3]上面积增长速度恒定,而在[1,2]上面积增长速度大于在[2,3]上面积增长速度,故选:C10.给出函数,则等于()A.B.C.D.【答案】 B【解析】解:因为函数,则,选C11.设,在上任取三个数,以为边均可构成的三角形,则的范围是()A.B.C.D.【答案】C【解析】解:由f′(x)=3x2-3=3(x+1)(x-1)=0得到x1=1,x2=-1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m-2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m-2>0 ①;f(1)+f(1)>f(2),即-4+2m>2+m②由①②得到m>6为所求12.(本小题满分14分)求函数在区间上的最大值和最小值.【答案】函数在上的最小值为,最大值为【解析】∵,令,即,解得(舍去),.当时,,单调递增;当时,,单调递减.∴为函数的极大值.又∵,,∴函数在上的最小值为,最大值为13.设函数的定义域为,若存在常数,使对一切实数均成立,则称为“海宝”函数. 给出下列函数:①;②;③;④其中是“海宝”函数的序号为【答案】③【解析】解:由题意可知若存在常数,使对一切实数均成立,则称为“海宝”函数.,那么可以知道对于成立,则①;②④都不能找到这样的常数k使得成立,所以只有选③是个有界函数,成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示练习题一.选择题1 函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或2. 已知)0(1)]([,21)(22≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A 15 B 1C 3D 303.函数2y = )A [2,2]-B [1,2]C [0,2]D [4 已知2211()11x x f x x--=++,则()f x 的解析式为( )A21x x + B 212x x+- C 212x x + D 21xx +- 5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( )(A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( )7.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为( )A .正数B .负数C .0D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( )A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[-9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( )A .x b c ac y --=B .x cb ac y --=C .x a c b c y --=D .x ac cb y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( )A .q p +B .q p 23+C .q p 32+D .23q p +11. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为(A )y =[](B )y =[](C )y =[] (D )y =[] 12.已知函数()()2113,f x x x =+≤≤则A .()()12202f x x x -=+≤≤B .()()12124f x x x -=-+≤≤C .()()12202f x x x -=-≤≤D .()()12104f x x x -=-≤≤ 13.函数ln 1x y +=的定义域为A .4,1--B .()4,1-C .()1,1-D .(1,1]-14.设函数()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩则()12f f ⎛⎫⎪ ⎪⎝⎭的值为 A .1516 B .2716- C .89D.18 15. 定义在R 上的函数()f x 满足()()()()()2,,12f x y f x f y xy x y R f +=++∈=则()3f -等于( )A. 2B. 3C. 6 D .916.下列函数中与函数y =有相同定义域的是 ( ) A .()ln f x x = B 。

()1f x x= C 。

()f x x = D 。

()x f x e = 17. 若函数f(x)=,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 18.下列各组函数表示同一函数的是( ) A.2(),()f x g x == B .0()1,()f x g x x ==C .()()()()t t g x x x x x f =⎩⎨⎧<-≥=,00D .21()1,()1x f x x g x x -=+=-19 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A 10B 11C 12D 1320. 函数()y f x =的图象与直线1x =的公共点数目是( ) A 1 B 0 C 0或1 D 1或2二.填空题 1. 函数1(0)y x x x=+>的值域为 2. 设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为3.(2008山东)已知()234log 3233,x f x =+则()()()()82482f f f f ++++L 的值等于 4. (2010杭州模拟)已知2211f x x x x ⎛⎫-=+ ⎪⎝⎭,则函数值()3f = 5. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是三、解答题1 设,αβ是方程24420,()x mx m x R -++=∈的两实根,当m 为何值时,22αβ+有最小值?求出这个最小值2 求下列函数的值域(1)xxy -+=43 (2)152222++++=x x x x y3.动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x 表示P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.4. 已知函数)(x f ,)(x g 同时满足:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 的值.5 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值函数及其表示练习题答案1.()3,(),32()3223cf x x cxx f x c f x c x x ====-+-+得2. 令[]2211111(),12,,()()152242x g x x x f f g x x -=-===== 3 224(2)44,02,20x x x -+=--+≤≤-≤≤ 022,02y ≤≤≤4. 令22211()1121,,()11111()1t x t t t t x f t t x t t t----+====-+++++则11. 解析:法一:特殊取值法,若x=56,y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B法二:设,15. 解析()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()1010120101,00.01111211112,10.12121221214,2 2.23131231316,3 6.f f f f f f f f f f f f f f f f f f f f f f f f f f f f =+=++⨯⨯=+∴==-+=-++⨯-⨯=-+-∴-=-=-+=-++⨯-⨯=-+-∴-=-=-+=-++⨯-⨯=-+-∴-=17. 【答案】C【解析】本题主要考查函数的对数的单调性、对数的基本运算及分类讨论思想,属于中等题。

由分段函数的表达式知,需要对a 的正负进行分类讨论。

【温馨提示】分类函数不等式一般通过分类讨论的方式求解,解对数不等式既要注意真数大于0,同事要注意底数在(0,1)上时,不等号的方向不要写错。

19. [][](5)(11)(9)(15)(13)11f f f f f f f =====二.填空题答案1. 因为0>x ,于是2121=⋅≥+=xx x x y ,当且仅当x =1时取等号 所以1(0)y x x x=+>的值域为),2[+∞ 2. 由202x x +>-得,()f x 的定义域为22x -<<。

故22,222 2.x x⎧-<<⎪⎪⎨⎪-<<⎪⎩解得()()4,11,4x ∈--U ,故⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛x f x f 22的定义域为()()4,11,4Y -- 3.解析 因()2234log 32334log 3233x x f x =+=+,故()24log 233.f x x =+ 于是()()()()8242412823382008.f f f +++=++++⨯=L L 4. 115. (),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时 三.解答题答案1. 解:21616(2)0,21,m m m m ∆=-+≥≥≤-或222222min1()21211,()2m m m αβαβαβαβ+=+-=--=-+=当时2. 解:(1)∵343,43,,141x y y y xy x x y x y +-=-=+=≠--+得, ∴值域为{}|1y y ≠-(2)解:因22131()24x x x ++=++,故对任意实数x ,210,x x ++>由此可得该函数的定义域为R 。

又因2222222252223332213111()24x x x x y x x x x x x x +++++===+=+++++++++ ,故23226113()224y <≤+=-++,由此得值域为}{26y y <≤。

R 函数的定义域为∴3. 解:显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时,PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式. 4. 解:令y x =得:)0()()(22g y g x f =+. 再令0=x ,即得1,0)0(=g . 若0)0(=g ,令1==y x时,得0)1(=f 不合题意,故1)0(=g ;)1()1()1()1()11()0(f f g g g g +=-=,即1)1(12+=g ,所以0)1(=g ;那么0)1()0()1()0()10()1(=+=-=-f f g g g g ,1)1()1()1()1()]1(1[)2(-=-+-=--=f f g g g g .5. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即 min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

相关文档
最新文档