高一数学教案:函数及其表示

合集下载

高一数学教案设计:函数及其表示

高一数学教案设计:函数及其表示

第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。

教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。

教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域?⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。

高一数学教案:函数及其表示

高一数学教案:函数及其表示

第一课时:1.2.1函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。

教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。

教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是2=-.1305h t tB.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ). ④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域?⑤练习:2=-+,求f(0)、f(1)、f(2)、f(-1)的值。

高一数学教案-函数及其表示、解析式(学生学案)

高一数学教案-函数及其表示、解析式(学生学案)

函数及其表示、解析式(学生学案)知识结构:1.函数的基本概念(1)函数的定义:设a、b是非空数集,如果按照某种确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么称f:a→b为从集合a到集合b的一个函数,记作:y=f(x),x∈a.2.映射的概念一般地,设a、b是两个非空的集合,如果按某一个确定的对应关系f,使对于集合a中的任意一个元素x,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a→b为从集合a到集合b的一个映射.3.分段函数与复合函数①如果一个函数在定义域的不同子集中因对应关系不同而用几个不同的式子来表示,这样的函数叫做分段函数.分段函数的求法是分别求出解析式再组合在一起,但要注意各区间之间的点不重复、无遗漏。

②如果y=f(u),u=g(x),那么函数y=f[g(x)]叫做复合函数,其中f(u)叫做外层函数,g(x)叫做内层函数。

基础训练:1.下列各对函数中,表示同一函数的是().a.f(x)=lg x2,g(x)=2lg x b.f(x)=lg,g(x)=lg(x+1)-lg(x-1) c.f(u)=,g(v)= d.f(x)=2,g(x)=2.设函数,则=________.3.设集合,,从到有四种对应如图所示:其中能表示为到的函数关系的有_____ ____.4.已知函数是一次函数,且, ,则 __ __.5.设函数,,则 _________; __________.6.设函数, ,则 ___________; ____; ____.7.(1),,;(2),,;(3),,.上述三个对应__________________是到的映射.例题选讲:例1:判断下列对应是否是从集合a到集合b的映射:(1)a=r,b={x|x>0},f:x→|x|; (2)a=n,b=n,f:x→|x-2|;(3)a={x|x>0},b=r,f:x→x2.例2:设有函数组:① ,;② ,;③ ,;④ ,.其中表示同一个函数的有_________例3:(1)已知f=lg x,求f(x);(2)已知函数,求;(3)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的表达式.(4)已知f(x)+ 2f=2x+1,求f(x).例4例4.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出的函数解析式.例5.矩形的长,宽,动点、分别在、上,且,(1)将的面积表示为的函数,求函数的解析式;(2)求的最大值.巩固作业:a组:一、选择题:1.下列函数中,与函数相同的函数是()。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

高一新知必修1第一章 第2节《函数及其表示》

高一新知必修1第一章 第2节《函数及其表示》
解题后的思考: y f ( 例 3 思路分析:
1)题意分析:已知 f ( x 1) ,求 f ( x ) 2)解题思路:换元法 解答过程:令 t x 1 ,则 x t 1 , f (t ) 2(t 1)2 1 2t 2 4t 3 。
f ( x) 2 x2 4 x 3 。
当 x >-2 时, y = 解题后的思考: 分段函数的定义域是各段函数解析式中自变量取值集合的并集; 分段函数的值域是各段函数 取值集合的并集。 例 9 解答过程:∵-3<0 ∴ f (-3)=0, ∴ f ( f (-3) )= f (0)= ,又 >0 ∴ f ( f ( f (3))) =f( )= +1。 解题后的思考:求分段函数的函数值时,首先应确定自变量在定义域中所处的范围,然后按相应的对应关系 求值。
三、考点分析:
掌握函数的概念与表示,对于映射的概念只需要了解,本节知识点在单独出题时多为简单题,揉在综合题中 考查。
1、函数的概念: 一般地,设 A、B 是非空的数集,如果按照某种确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在 集合 B 中都有唯一确定的数 f ( x ) 和它对应,那么就称 f :A→B 为从集合 A 到集合 B 的一个函数,记作:
(3) f ( x) x , g ( x)
x2 ;
(4) f ( x) 3 x 4 x3 , F ( x) x 3 x 1 ; (5) f1 ( x) ( 2x 5) 2 , f 2 ( x) 2 x 5 。 A. (1) 、 (2) B. (2) 、 (3) C. (4) D. (3) 、 (5) 2. 函数 y f ( x) 的图象与直线 x 1 的公共点的数目是( ) 3. 已知集合 A 1, 2,3, k , B 4, 7, a , a 3a ,且 a N * , x A, y B ,若使 B 中元素 y 3x 1 和 A 中

高中数学教案《函数及其表示》

高中数学教案《函数及其表示》

高中数学教案《函数及其表示》•相关推荐高中数学教案《函数及其表示》作为一位无私奉献的人民教师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。

教案要怎么写呢?下面是小编帮大家整理的高中数学教案《函数及其表示》,希望能够帮助到大家。

教学准备1.教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示函数的定义域;3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.教学重点/难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学用具多媒体4.标签函数及其表示教学过程(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.3、分析、归纳以上三个实例,它们有什么共同点;4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的`取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y=ax+b(a≠0)y=ax2+bx+c(a≠0)y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.师:归纳总结(三)质疑答辩,排难解惑,发展思维。

高一数学函数教案5篇

高一数学函数教案5篇

高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。

教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。

教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。

“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表) ②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。

→求223,{1,0,1,2}y x x x =-+∈-值域.2.教学区间及写法:① 概念:设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; {x|a<x<b}=(a,b) 叫开区间;{x|a ≤x<b}=[a,b) ; {x|a<x ≤b}=(a,b] ;都叫半开半闭区间。

② 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大” ③ 练习用区间表示:R 、{x|x ≥a}、{x|x>a}、{x|x ≤b}、{x|x<b}④ 用区间表示:函数y =x 的定义域 ,值域是 。

(观察法)3.小结:函数模型应用思想;函数概念;二次函数的值域;区间表示三、巩固练习: 1. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)2. 探究:举例日常生活中函数应用模型的实例. 什么样的曲线不能作为函数的图象?3. 课堂作业:书P21 1、2题.第二课时: 1.2.1 函数的概念(二)教学要求:会求一些简单函数的定义域与值域,并能用“区间”的符号表示;掌握判别两个函数是否相同的方法。

教学重点:会求一些简单函数的定义域与值域。

教学难点:值域求法。

教学过程:一、复习准备:1. 提问:什么叫函数?其三要素是什么?函数y =xx 23与y =3x 是不是同一个函数?为什么?2. 用区间表示函数y =kx +b 、y =ax 2+bx +c 、y =xk的定义域与值域.二、讲授新课:1.教学函数定义域:①出示例1:求下列函数的定义域(用区间表示)f(x)=232--x x ; f(x)=1+x -xx -2 学生试求→订正→小结:定义域求法(分式、根式、组合式)②练习:求定义域(用区间)→f(x)=23x x -+- f(x) ③小结:求定义域步骤:列不等式(组) → 解不等式(组)2.教学函数相同的判别:①讨论:函数y=x 、y=(x )2、y=23x x 、y=44x 、y=2x 有何关系? ②练习:判断下列函数f (x )与g (x )是否表示同一个函数,说明理由?A. f ( x ) = (x -1) 0;g ( x ) = 1 ; B. f ( x ) = x ; g ( x ) = 2xC .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ; ②小结:函数是否相同,看定义域和对应法则。

3.教学函数值域的求法:① 例2:求值域(用区间表示):y =x 2-2x +4;y =35+-x ;f(x)=432+-x x ;f(x)=32+-x x 先口答前面三个 → 变第三个求 → 如何利用第二个来求第四个②小结求值域的方法: 观察法、配方法、拆分法、基本函数法三、巩固练习: 1.求下列函数定义域:()f x =1()11/f x x =+ 2. 已知f(x+1)=2x 2-3x +1,求f(-1)。

变:1()1x f x x -=+,求f(f(x)) 解法一:先求f(x),即设x +1=t ;(换元法) 解法二:先求f(x),利用凑配法; 解法三:令x +1=-1,则x =-2,再代入求。

(特殊值法)3.f(x)的定义域是[0,1],则f(x+a)的定义域是。

4.求函数y=-x2+4x-1 ,x∈[-1,3) 在值域。

解法(数形结合法):画出二次函数图像→找出区间→观察值域5.课堂作业:书P27 1、2、3题。

第三课时: 1.2.2 函数的表示法(一)教学要求:明确函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点,在实际情境中,会根据不同的需要选择恰当的方法表示函数。

通过具体实例,了解简单的分段函数,并能简单应用。

教学重点:会根据不同的需要选择恰当的方法表示函数。

教学难点:分段函数的表示及其图象。

教学过程:一、复习准备:1.提问:函数的概念?函数的三要素?2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:1.教学函数的三种表示方法:①结合实例说明三种表示法→比较优点解析法:用数学表达式表示两个变量之间的对应关系. 优点:简明;给自变量求函数值.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势。

列表法:列出表格来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值。

具体实例如:二次函数等;股市走势图;列车时刻表;银行利率表。

②出示例1. 某种笔记本的单价是2元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .师生共练→小结:函数“y=f(x)”有三种含义(解析表达式、图象、对应值表).③讨论:函数图象有何特征?所有的函数都可用解析法表示吗?④练习:作业本每本0.3元,买x个作业本的钱数y(元). 试用三种方法表示此实例中的函数.④看书P22例4.下表是某班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次 第二次 第三次 第四次 第五次 第六次 甲98 87 91 92 88 95 乙90 76 88 75 86 80 丙68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6请你对这三们同学在高一学年度的数学学习情况做一个分析.提问:分析什么(成绩的变化、成绩的比较)?借助什么进行分析?小结解答步骤:分别作点→连线→观察→结论讨论:离散的点为什么用虚线连接起来?此例能用解析法表示表示吗?2.教学分段函数:①出示例2:写出函数解析式,并画出函数的图像。

邮局寄信,不超过20g 重时付邮资0.5元,超过20g 重而不超过40g 重付邮资1元。

每封x 克(0<x ≤40)重的信应付邮资数(元)。

(学生写出解析式→ 试画图像 → 集体订正 )②练习:A. 写函数式再画图像:某水果批发店,100kg 内单价1元/kg ,500kg 内、100kg 及以上0.8元/kg ,500kg 及以上0.6元/kg 。

批发x 千克应付的钱数(元)。

B. 画出函数f(x)=|x -1|+|x +2|的图像。

③提出: 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同)→ 生活实例3.看书,并小结:三种表示方法及优点;分段函数概念;函数图象可以是一些点或线段三、巩固练习:1.已知f(x)=⎩⎨⎧+∞∈+-∞∈+),0[,12)0,(,322x x x x ,求f(0)、f[f(-1)]的值。

2.作业:P277,8,9题第四课时:1.2.2 函数的表示法(二)教学要求:了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.教学重点:映射的概念.教学难点:理解概念。

教学过程:一、复习准备:1. 举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:对于任何一个实数a,数轴上都有唯一的点P和它对应;对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;对于任意一个三角形,都有唯一确定的面积和它对应;某影院的某场电影的每一张电影票有唯一确定的座位与它对应;2. 讨论:函数存在怎样的对应?其对应有何特点?3. 导入:函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,即映射(mapping).二、讲授新课:1. 教学映射概念:①先看几个例子,两个集合A、B的元素之间的一些对应关系,并用图示意{1,4,9}A=, {3,2,1,1,2,3}B=---,对应法则:开平方;{3,2,1,1,2,3}A=---,{1,4,9}B=,对应法则:平方;{30,45,60}A=︒︒︒,1{}2B=, 对应法则:求正弦;②定义映射:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应:f A B→为从集合A到集合B的一个映射(mapping).记作“:f A B→”关键: A中任意,B中唯一;对应法则f.③分析上面的例子是否映射?举例日常生活中的映射实例?④讨论:映射的一些对应情况?(一对一;多对一)一对多是映射吗?→举例一一映射的实例(一对一)2.教学例题:① 出示例1. 探究从集合A 到集合B 一些对应法则,哪些是映射,哪些是一一映射? A ={P | P 是数轴上的点},B =R ; A ={三角形},B ={圆};A ={ P | P 是平面直角体系中的点}, {(,)|,}B x y x R y R =∈∈; A ={高一某班学生},B = ?( 师生探究从A 到B 对应关系 → 辨别是否映射?一一映射? → 小结:A 中任意,B 中唯一)② 讨论:如果是从B 到A 呢?③ 练习:判断下列两个对应是否是集合A 到集合B 的映射?A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则:21f x x →+;*,{0,1}A N B ==,对应法则:2f x x →除以得的余数;A N =,{0,1,2}B =,:3f x x →被除所得的余数; 设111{1,2,3,4},{1,,,}234X Y ==:f x x →取倒数; {|2,},A x x x N B N =>∈=,:f x x →小于的最大质数3. 小结:映射概念.三、巩固练习: 1. 练习:书P26 2、3、4题; 2.课堂作业:书P28 10题. 第五课时 1.2 函数及其表示 (练习课)教学要求:会求一些简单函数的定义域和值域;能解决简单函数应用问题;掌握分段函数、区间、函数的三种表示法;会解决一些函数记号的问题.教学重点:求定义域与值域,解决函数简单应用问题.教学难点:函数记号的理解.教学过程:一、基础习题练习: (口答下列基础题的主要解答过程 → 指出题型解答方法)1. 说出下列函数的定义域与值域: 835y x =+; 243y x x =-+; 2143y x x =-+.2. 已知1()1f x x =-,求f , ((3))f f , (())f f x .3. 已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩,作出()f x 的图象,求(1),(1),(0),{[(1)]}f f f f f f --的值.二、教学典型例题:1.函数()f x 记号的理解与运用:① 出示例1. 已知f (x )=x 2-1 g (x1求f [g (x )](师生共练→小结:代入法;理解中间自变量)② 练习:已知)(x f =x 2-x+3 求: f(x+1), f(x1) 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].③ 出示例2.若1f x =+)求(x f )分析:如何理解1f )? 如何转化为(x f )解法一:换元法,设1t =,则……解法二:配元法,2111)f x =-=+),则…… 解法三:代入法,将x 用2(1)(1)x x -≥代入,则……讨论:(x f )中,自变量x 的取值范围?④ 练习:若1()1x f x x=-, 求(x f ). 2. 函数应用问题:①出示例3. 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x 分钟,两种通讯方式的费用分别为12,y y (元). Ⅰ.写出12,y y 与x 之间的函数关系式? Ⅱ.一个月内通话多少分钟,两种通讯方式的费用相同? Ⅲ.若某人预计一个月内使用话费200元,应选择哪种通讯方式?( 师生共练 → 讨论:如何改动,更与实际接近? → 小结:简单函数应用模型 )三、巩固练习:1. 已知)(x f 满足12()()3f x f x x+=,求)(x f . 2.若函数)(x f y =的定义域为[-1,1],求函数11()()44y f x f x =+-的定义域3.设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(x f 的解析式.。

相关文档
最新文档