显示译码器和数码管的应用
数码显示译码器实训报告

一、实训目的通过本次实训,掌握数码显示译码器的基本原理、工作原理及电路设计方法,了解数码显示译码器在数字电路中的应用,提高动手能力和实践技能。
二、实训内容1. 数码显示译码器原理及分类(1)原理:数码显示译码器是一种将二进制、BCD码等编码转换为数码管显示的电路。
它主要由编码器、译码器、驱动器等组成。
(2)分类:根据编码方式,可分为二进制译码器、BCD码译码器、十六进制译码器等;根据输出方式,可分为共阳极译码器和共阴极译码器。
2. 数码显示译码器电路设计(1)共阳极译码器电路设计以4-7译码器为例,输入端为二进制编码,输出端为7段数码管的驱动信号。
电路图如下:```A||+---+---+---+---+| | | | |B---+ | | +---C| | | | |+---+---+---+---+| | | |D---+ | +---E| | | |+---+---+---+---+| | | | |F---+ | | +---G| | | | |+---+---+---+---+H```(2)共阴极译码器电路设计以CC4511BCD译码器为例,输入端为BCD码,输出端为7段数码管的驱动信号。
电路图如下:```A||+---+---+---+---+| | | | |B---+ | | +---C| | | | |+---+---+---+---+| | | |D---+ | +---E| | | |+---+---+---+---+| | | |F---+ | | +---G| | | |+---+---+---+---+H```3. 数码显示译码器应用(1)计时器:将计数器输出的二进制编码转换为数码管显示,实现计时功能。
(2)数码管显示模块:在嵌入式系统、智能仪表等设备中,将数字信号转换为数码管显示,方便用户读取数据。
(3)地址译码:在存储器、I/O端口等地址译码电路中,将地址信号转换为输出端口,实现数据传输。
七段数码管显示实验报告

七段数码管显示实验报告实验目的:本实验的目的是通过控制7段数码管的亮灭状态来显示不同的数字和字母。
实验原理:7段数码管常用于显示数字和字母,每个数码管由7个LED灯组成,分别表示A、B、C、D、E、F、G等7个段。
通过控制这些LED灯的亮灭状态,就可以显示不同的数字和字母。
在实际应用中,通常需要使用一个译码器来根据输入的数字或字母输出相应的控制信号。
常用的译码器有7447、DM9368等。
这些译码器通常都是BCD码到7段数码管的译码器。
在本实验中,我们将使用7447译码器来控制7段数码管的亮灭状态。
7447译码器具有4个输入线和7个输出线,每个输入线上的BCD码可以转换成相应的控制信号,用于控制数码管的7个LED 灯。
实验材料:1.7段数码管2.7447译码器3.电路板4.电压源5.连接线实验步骤:1.将7447译码器插入电路板上相应的插槽中,并将数码管连接到电路板上。
2.将电压源连接到电路板上,并调节电压和电流值。
3.根据所需显示的数字或字母,设置相应的BCD码输入信号。
4.打开电源,观察数码管是否能够正确显示。
实验结果:通过本实验,我们可以成功控制7段数码管的亮灭状态,实现了数字和字母的显示。
同时,我们也了解了7447译码器的原理和使用方法。
实验小结:本实验是电子技术的基础实验之一,通过实验我们深入了解了7段数码管和7447译码器的原理和应用,同时也锻炼了我们的动手能力和实验技能。
在实际应用中,7段数码管和译码器常常被用于数字显示、计数器、时钟、温度计等电子设备中,具有广泛的应用前景。
数码管显示电路的原理

数码管显示电路的原理
数码管显示电路通过控制电压信号的高低来驱动数码管的不同段进行显示。
数码管是由多个发光二极管组成的,每个发光二极管对应显示一个数字或符号。
数码管显示电路主要由以下几个部分组成:
1. 数字信号发生器:用来产生需要显示的数字或符号的电信号。
该信号可以通过逻辑门、计数器、微控制器等方式产生。
2. 译码器:将数字信号转换为控制数码管显示的信号。
译码器一般采用BCD码(二进制编码十进制)或者7段码来表示数字。
3. 驱动电路:将译码器输出的信号转换为适合驱动数码管的电压和电流。
驱动电路一般使用三极管、开关电路等来完成。
4. 数码管:由多个发光二极管(LED)组成,每个发光二极管对应一个数字或符号的显示段。
数码管的引脚连接到驱动电路上。
5. 电源电路:为整个数码管显示电路提供工作电压。
一般使用稳压电源或者适配器来提供稳定的直流电压。
工作原理如下:
当数字信号发生器产生需要显示的数字或符号的电信号时,该
信号经过译码器转换为对应的亮灭控制信号,然后通过驱动电路产生适合数码管的控制电压和电流。
驱动电路按照控制信号的要求,通过对应的引脚将控制信号传递给数码管。
这样,数码管的不同段就会根据控制信号的高低来亮灭,从而显示出对应的数字或符号。
整个数码管显示电路在工作时,可以通过改变数字信号的输入来实现不同数字或符号的动态显示。
经过适当的控制和调节,数码管显示电路可以显示出各种数字、字母、符号等。
译码器和数码显示器实验思考题

译码器和数码显示器实验思考题引言译码器和数码显示器是数字电路中常见的组件,它们在信息处理和显示方面起到重要作用。
本文将探讨译码器和数码显示器的原理、应用以及相关实验思考题。
一、译码器的原理与应用1.1 原理译码器是一种将输入信号转换为输出信号的电路。
其基本原理是根据输入信号的不同组合方式,选择性地激活输出线路上的某些信号。
常见的译码器有二-四译码器、三-八译码器等。
二-四译码器是最简单的一种译码器。
它有两个输入线A和B,两个输出线Y0、Y1、Y2和Y3。
根据输入信号A和B的不同组合,只有一个输出线上会出现高电平,其余输出线都为低电平。
1.2 应用1.2.1 地址译码在计算机系统中,地址译码是非常重要的一环。
CPU通过地址总线向外部存储器发送读写请求时,需要将地址信息转换为对应的存储单元或外设。
例如,在一个具有16个存储单元(从0到15)的系统中,使用一个四位的地址来表示存储单元的编号。
这时可以使用一个四-十六译码器将四位地址转换为对应的存储单元。
1.2.2 按键译码在数字电路中,我们经常需要使用按键输入,例如控制电器设备的开关、调节音量等。
此时可以使用译码器将按键输入转换为相应的信号输出。
例如,一个有八个按键的面板,可以使用一个三-八译码器将按键输入转换为三位二进制编码输出。
这样就可以通过编码器输出的信号来控制其他电路或设备。
二、数码显示器的原理与应用2.1 原理数码显示器是一种能够直观地显示数字或字符信息的设备。
它由多个发光二极管(LED)组成,每个LED代表一个数字或字符。
常见的数码显示器有七段数码管和十六段数码管。
七段数码管由7个发光二极管组成,分别代表数字0-9和字母A-F。
十六段数码管由16个发光二极管组成,可以显示更多字符。
2.2 应用2.2.1 数字显示最常见的应用是将数字信息直观地显示出来。
例如,在计算器、电子钟、电子秤等设备中,可以使用数码显示器将数字信息显示出来。
2.2.2 字符显示数码显示器还可以用于显示字符信息。
实验四编码器,译码器,数码管(定稿)

实验四编码器、译码器、数码管一、实验目的1.掌握编码器、译码器和七段数码管的工作原理和特点。
2.熟悉常用编码器、译码器、七段数码管的逻辑功能和他们的典型应用。
3. 熟悉“数字拨码器”(即“拨码开关”)的使用。
二、实验器材1. 数字实验箱 1台2. 集成电路:74LS139、 74LS248、 74LS145、 74LS147、 74LS148 各1片74LS138 2片3. 电阻: 200Ω 14个4. 七段显示数码管:LTS—547RF 1个三、预习要求1.复习编码器、译码器和七段数码管的工作原理和设计方法。
2. 熟悉实验中所用编码器、译码器、七段数码管集成电路的管脚排列和逻辑功能。
3. 画好实验用逻辑表。
四、实验原理和电路按照逻辑功能的不同特点,常把数字电路分成两大类:一类叫做组合逻辑电路,另一类叫做时序逻辑电路。
组合逻辑电路在任何时刻其输出信号的稳态值,仅决定于该时刻各个输人端信号的取值组合。
在这种电路中,输入信号作用以前电路的状态对输出信号无影响。
通常,组合逻辑电路由门电路组成。
(一)组合逻辑电路的分析方法:a.根据逻辑图,逐级写出函数表达式。
b.进行化简:用公式法或图形法进行化简、归纳。
必要时,画出真值表分析逻辑功能。
(二)组合逻辑电路的设计方法:从给定逻辑要求出发,求出逻辑图。
一般分以下四步进行。
a.分析要求:将问题分析清楚,理清哪些是输入变量,哪些是输出函数。
进行逻辑变量定义(即定义字母A、B、C、D ……所代表的具体事物)。
b. 根据要求的输入、输出关系,列出真值表。
c. 进行化简:变量比较少时,用图形法;变量多时,可用公式法化简。
化简后,得出逻辑式。
d. 画逻辑图:按逻辑式画出逻辑图。
进行上述四步工作,设计已基本完成,但还需选择元件——数字集成电路,进行实验论证。
值得注意的是,这些步骤的顺序并不是固定不变的,实际设计时,应根据具体情况和问题难易程度进行取舍。
(三)常用组合逻辑电路:1.编码器编码器是一种常用的组合逻辑电路,用于实现编码操作。
显示译码电路实验报告

显示译码电路实验报告显示译码电路实验报告引言:在现代电子技术领域,显示译码电路扮演着重要的角色。
它们可以将数字信号转换为人们可以理解的可视化信息,广泛应用于计算机、电视、手机等设备中。
本实验旨在通过搭建一个显示译码电路,探索其原理和应用。
一、实验目的本实验的目的是了解显示译码电路的工作原理,掌握其基本应用。
通过实践操作,学生们可以更好地理解数字电路的运行机制,提高实际动手能力。
二、实验材料和器件1. 74LS47芯片:这是一种BCD-7段译码器,用于将4位二进制输入转换为7段数码管的输出。
2. 7段数码管:用于显示数字和字母等字符。
3. 连接线、电源等辅助器件。
三、实验步骤1. 连接电路:将74LS47芯片与7段数码管通过连接线连接起来,确保电路连接正确无误。
2. 施加电源:将电路连接到适当的电源上,确保电压和电流符合芯片的工作要求。
3. 输入信号:通过开关或其他输入设备提供4位二进制输入信号。
4. 观察结果:观察7段数码管上显示的字符是否与输入信号对应,验证译码电路的正确性。
四、实验结果与分析经过实验操作,我们成功搭建了显示译码电路,并进行了测试。
在输入4位二进制数的情况下,数码管正确显示了对应的字符。
这表明译码电路能够准确地将二进制信号转换为可视化的字符信息。
通过进一步的观察和分析,我们发现译码电路的工作原理是将输入的二进制数映射到对应的数码管段上。
每个数码管段代表一个二进制位,通过控制该段的通断状态,可以显示不同的字符。
而74LS47芯片则起到了译码的作用,将二进制输入转换为对应的数码管段控制信号。
这种显示译码电路广泛应用于各种计算机和电子设备中。
它使得数字信息可以以更加直观和易读的方式展示给用户,提高了人机交互的效率和便利性。
例如,在计算机屏幕上显示的字符、数字时钟、电子秤等设备都使用了类似的译码电路。
五、实验总结通过本次实验,我们深入了解了显示译码电路的工作原理和应用。
通过实际操作,我们掌握了搭建和测试译码电路的方法,提高了动手实践能力。
编码器、译码器及数码管显示实验(肖思文)

学院:信息科学与工程学院
专业班级:物联网工程1001
姓名:肖思文 学号:20100810324
编码器、译码器及数码管显示实验实验
报告
基本知识点:
1、组合逻辑电路的分析测试、设计方法和步骤
2、编码器、译码器等常用中规模集成电路的性能及使用方法
3、数码显示、译码器的应用
实验过程:
1、测试变量译码器的逻辑功能
(1)、电路图如图
实验结论:实验现象符合实验预期的结果,实验正确。
2.编码、译码、显示电路的设计
(1)、电路图如图:
此实验在做的过程中还是遇到一点小问题,后来发现是实验导线的问题,后来还是自己完成了。
能够正确的显示了实验结果。
实验总结:
由于这次实验相对于比较简单,做起来也比较顺手,所以实验做的比较快,但是由于对于动态显示不是很清楚和明白,所以在那个地方花了稍微比较多一点的时间去弄懂,这个实验同时加深了自己对实验箱上面连线组成逻辑电路理解。
QUARTUS应用二---计数器设计(实验报告模板)

可编程逻辑器件FPGA实验二
计数译码显示系统设计
一、实验目的
1、掌握中规模集成计数器的逻辑功能,以及任意进制计数器的设计方法
2、熟悉显示译码器和数码管的原理及设计应用
3、了解用数字可编程器件实现集成计数译码显示电路的方法
4、学会分频器的使用
5、进一步熟悉QUARTUS软件的基本使用方法
实验原理
1、计数器
(简述设计中所用两种集成计数器功能原理)
2、显示译码器和数码管
(简述显示译码器和数码管的分类)
3、分频器
(简述分频器的功能)
二、实验内容
1、用74161设计一个十九进制的计数器
(1)原理图
(2)功能仿真波形
(3)时序仿真波形
2、用74190设计一个十二进制减法计数器
(1)原理图
(2)功能仿真波形
(3)时序仿真波形
三、实验总结
1、实验故障及解决方法
2、实验体会
四、思考题
1、七段数码管分为共阴极和共阳极两类,本实验用的是哪一类?对两种数码管,各需选用
何种型号的译码器?
2、在采用集成计数器构成任意N进制计数器时,常采用哪两种方法?各有何特点?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
显示译码器和数码管的应用设计与仿真
一、实验目的
1.熟练掌握显示译码器和七段译码器的使用方法。
二、实验要求
1. 绘图必须规范、严谨。
2. 在实验中了解共阳极数码管和共阴极数码管的区别。
3. 打印实验报告上交,同时上传所有Proteus、Word文档。
三、实验设备
计算机、Proteus软件、Word软件、74LS47 3片、74LS48 1片、七段共
阳极数码管3个、七段四位位选共阴极数码管1个。
四、实验项目
显示译码器和数码管的应用设计
五、实验内容及步骤
(1)74LS47的测灯功能
74LS47是BCD码到七段显示译码器,输出低电平有效,必须接共阳极七
段数码管。
74LS47有七个输入端和七个输出端。
七个输出端分别接数码管的a、b、c、d、e、f、g端:七个输入端中D、C、B、A接四位BCD码,另外
三个段即3、4、5端是功能端,低电平有效,平时不用时一般都接高电平,
不能够悬空,在proteus中的连线如图1所示
图 1 74LS47功能测试
在74LS47的个输入端接LOGICSTATE,先令4、5端为高电平,即让其引脚功能失效,令3端为低电平,发现此时数码管显示为‘8’。
改变输入BCD码,则
数码管显示不改变。
因此,3端为测灯输入端LT,因为数码管容易缺段,用这个端可以判断所接数码管那个段已烧坏,对以后复杂电路功能测试和故障找寻带来方便。
(2)74LS47的灭零功能
74LS47的4、5端是灭零输入和输出功能。
即多个74LS47分别驱动数码管显示多位十进制数十进制数时(比如共三位,最高位为百位),当百位上的数为零时,此时一定不能显示;在判断十位上数是否为零,亦不能显示;此时个位上是零可以显示。
另一种情况,当百位不为零时,即使十位上为零也必须显示。
按照这个规律,设计如图2所示电路图
图 2 74LS47灭灯功能应用电路
百位显示译码器的灭零输入端RBI接地,灭零优先权最高,只要输入端的BCD码为零,输入端现实就灭掉,当输入端显示灭零后,在RBO端输出一个
低电平信号,这个信号接到十位的灭零输入端RBI上,即十位的灭零优先权
是建立在百位灭零的基础上的。
个位不能灭零,故RBI端接高电平。
不灭零和百位不灭零显示。
如图3、图4所示
图 3 74LS47十位不灭零电路仿真
图 4 74LS47百位不灭零电路仿真(3)七段四位位选共阴极数码管的应用
为了节省电路接线,数码管通常做成几位共段码数据线的形式。
比如,四位共阴极位选数码管用来显示一个四位十进制数。
这四位十进制
BCD码分时由74LS48(驱动共阴极数码管)的输入端共给。
传递哪一位
数,对应的位选信号(即四个共阴极端)应选通,极为低电平。
只要时
间配合无误,即可分别在不同的位上显示不同的数据,一般数据和位选
信号的扫描频率设在30Hz以上,可以看到四位数据同时在显示。
如图5
为七段四位位选共阴极数码管的测试电路。
图5七段四位位选共阴极数码管的应用
电路中,数码管的DP引脚为每个数码管的小数点,需要显示时可单独控制,一般不从显示器上接。
六、实验心得
在本实验中,我们使用74LS47和74LS48集成芯片来测试它们的运行逻辑功能。
在
74LS47中可以根据其引脚功能的3端来判断所接数码管那个段已烧坏。
在连接电路图
的时候,要注意集成芯片的引脚要与数码管上的引脚相对应,否则数码管可能会无法显示,或者烧毁数码管中的二极管。
在仿真七段四位位选共阴极数码管时,位选信号的扫
描频率一般要设置在30Hz以上,才能保证数码管的正常运行。
在仿真的时候,应给多
试几次把集成芯片的引脚互换测试看能不能成功,这样还能加强记忆。