信号与系统期末总结

合集下载

信号与系统总结

信号与系统总结

信号与系统总结信号与系统是电子信息类专业中的一门重要课程,它是电子学、通信学和控制学的基础学科之一。

在学习这门课程过程中,我们主要学习了信号与系统的基本概念、性质以及在实际应用中的分析和处理方法。

以下是我对信号与系统这门课程的总结。

首先,信号是信息的载体。

在信号与系统的学习中,我们对信号进行了分类。

根据信号的特性,可以将信号分为连续时间信号和离散时间信号。

连续时间信号是定义在连续时间域上的函数,而离散时间信号是定义在离散时间点上的序列。

对于连续时间信号,我们学习了信号的时域表示、频域表示以及系统对信号的影响。

在时域上,我们可以通过信号的波形图来观察信号的特性,通过信号的傅里叶变换可以得到信号的频谱。

而对于离散时间信号,我们学习了离散时间信号的表示方法、离散时间傅里叶变换以及系统对离散时间信号的影响。

其次,系统是对信号的处理。

在信号与系统的学习中,我们主要学习了线性时间不变系统(LTI系统)。

线性时间不变系统是指对输入信号进行线性运算并且其输出与输入信号的时间关系不变的系统。

我们通过系统的冲激响应来描述系统的性质,并通过线性卷积来描述系统对输入信号的处理。

此外,我们还学习了系统的频率响应,包括系统的幅频响应和相频响应。

幅频响应描述了系统对不同频率信号的幅度放大或衰减程度,而相频响应描述了系统对不同频率信号的相位延迟或提前程度。

最后,信号与系统的分析和处理方法。

在信号与系统的学习中,我们学习了多种信号与系统的分析和处理方法。

其中,时域分析方法主要包括信号的加法、乘法、移位、数乘和反褶等运算,以及系统的时域特性分析方法,如单位冲激函数、单位阶跃函数、单位斜坡函数、冲击响应和阶跃响应等。

频域分析方法主要包括信号的傅里叶变换、频域性质分析和系统的频率响应分析。

此外,我们还学习了离散时间信号的离散傅里叶变换(DFT)和离散傅里叶级数(DFS),以及系统的差分方程和差分方程的解法。

总的来说,信号与系统是电子信息类专业中一门重要的基础课程,它为我们理解和掌握电子信号的基本原理和处理方法提供了基础。

信号与系统总结

信号与系统总结

信号与系统总结一、信号与系统的概述信号与系统是电子工程和通信领域中的重要基础课程。

信号是信息的表达形式,是在时间、空间或其他独立变量上的函数。

系统是对信号的处理和转换,可以是线性或非线性的,可以是时不变或时变的。

本文将从以下几个方面对信号与系统进行总结和探讨。

二、信号的分类信号可以按照多个维度进行分类,包括: 1. 按时间域和频率域分类: - 时间域信号:在时间上表示的信号,如脉冲信号、阶跃信号等。

- 频率域信号:在频率上表示的信号,如正弦信号、方波信号等。

2.按连续和离散分类:–连续信号:在整个时间范围上是连续变化的,如模拟信号。

–离散信号:仅在某些特定时间点存在取值,如数字信号。

3.按能量和功率分类:–能量信号:在整个时间范围上的能量有限,如有限长脉冲信号。

–功率信号:在一段时间内的平均功率有限,如正弦信号。

三、系统的分类系统可以按照多个维度进行分类,包括: 1. 按线性和非线性分类: - 线性系统:满足叠加性和齐次性的系统。

- 非线性系统:不满足叠加性和齐次性的系统。

2.按时不变和时变分类:–时不变系统:系统的特性随时间保持不变。

–时变系统:系统的特性随时间变化。

3.按因果和非因果分类:–因果系统:系统的输出仅依赖于当前和过去的输入。

–非因果系统:系统的输出依赖于未来的输入。

4.按LTI和非LTI分类:–线性时不变系统(LTI):线性和时不变的系统。

–非LTI系统:不满足线性和时不变性的系统。

四、信号与系统的性质信号与系统具有多种重要性质,包括: 1. 线性性质:对于线性系统,输入信号的线性组合会产生相应的输出信号线性组合。

2. 时不变性质:时不变系统对于延迟输入信号也会有相同的延迟输出信号。

3. 因果性质:因果系统的输出仅依赖于当前和过去的输入。

4. 稳定性质:对于有界输入,稳定系统的输出也是有界的。

5. 可逆性质:存在反演关系的系统可以将输出信号还原为输入信号。

五、常见信号与系统的应用信号与系统在多个领域中都有广泛的应用,包括: 1. 通信领域:调制解调、信道编码等。

信号与系统期末总结

信号与系统期末总结
jω0 t jϕ ( ω ) j ω0 t +ϕ ( ω0 )
( s = σ + jω )
→e
jω0 t
H (ω0 ) = H (ω0 ) e
Y (ω ) = X (ω ) H (ω ) e st → e st H ( s ) Y ( s) = X ( s) H ( s)
PDF pdfFactory
f ( t ) = sin tu( t − 1)= sin( t − 1 + 1)u( t − 1)
cos1 + s sin1 − s F ( s) = e 2 s +1
PDF pdfFactory
= sin( t − 1)cos1u( t − 1) + cos( t − 1)sin1u( t − 1)
ω
1. 理解其物理意义:通低频,阻高频; 2. 了解上升时间
PDF pdfFactory

调制:
调制和解调(频移+滤波)
f ( t ) = g ( t ) cos ω 0 t
g( t )
乘法器
解调:
g ( t ) cos(ω 0 t )
cos ω 0 t
1 F (ω ) = [G (ω − ω 0 ) + G (ω + ω 0 )] 2
Ts
t
Sa(ω c t ) 抽样函数
h(t ) = Ts Ts
ωC Sa(ω C t ) π
Y (ω )
1
− ω moω m
π ωC t
O
ω
PDF pdfFactory

系统函数和频率响应
R(ω ) 响应信号的傅 氏 变换 ∴ H (ω ) = = E (ω ) 激 励 信号的傅 氏 变换

信号与系统_复习知识总结

信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。

在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。

一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。

2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。

(2)离散时间信号:只在一些特定时刻上有取值的信号。

(3)连续振幅信号:信号的幅度在一定范围内连续变化。

(4)离散振幅信号:信号的幅度只能取离散值。

二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。

(2)波形表示法:用图形表示信号。

2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。

(2)图形表示法:用折线图表示离散时间信号。

三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。

(2)齐次性:输入信号的倍数与输出信号的倍数相同。

2.时不变性:系统的输出不随输入信号在时间上的变化而变化。

3.扩展性:输入信号的时延会导致输出信号的时延。

4.稳定性:系统的输出有界,当输入信号有界时。

5.因果性:系统的输出只依赖于当前和过去的输入信号值。

6.可逆性:系统的输出可以唯一地反映输入信号的信息。

四、离散时间系统的性质1.线性性质:具有加性和齐次性。

2.时不变性:输入信号的时移会导致输出信号的相应时移。

3.稳定性:系统的输出有界,当输入信号有界时。

4.因果性:系统的输出只依赖于当前和过去的输入信号值。

五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。

2.线性时不变系统:具有加性和齐次性。

3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。

4.非线性系统:不具有加性和齐次性。

六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。

信号与系统期末重点总结

信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。

2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。

3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。

4. 系统的定义:系统是将输入信号转换为输出信号的过程。

5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。

二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。

(2)幅度谱与相位谱:复指数信号的频谱特性。

(3)周期信号:特点是在一个周期内重复。

(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。

2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。

(2)冲击响应与系统特性:系统的特性通过冲击响应得到。

(3)卷积积分:输入信号与系统冲激响应的积分运算。

3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。

(2)Fourier变换:将时域信号转换为频域信号。

(3)Laplace变换:用于解决微分方程。

三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。

(2)离散频谱:离散时间信号的频域特性。

(3)周期信号:在离散时间中周期性重复的信号。

(4)离散时间系统的线性时不变性:线性组合和时延等。

2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。

(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。

(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。

3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。

(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。

(3)Z变换:傅立叶变换在离散时间中的推广。

四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。

信号与系统-复习总结

信号与系统-复习总结

信号与系统-复习总结.doc信号与系统复习总结前言信号与系统是电子工程、通信工程和自动控制等专业的基础课程之一。

它主要研究信号的特性、系统的分析方法以及信号与系统之间的相互作用。

通过对信号与系统的学习,可以为后续课程打下坚实的基础。

以下是我对信号与系统课程的复习总结。

第一部分:信号的基本概念1.1 信号的分类信号可以分为连续时间信号和离散时间信号,根据信号的确定性与否,又可以分为确定性信号和随机信号。

1.2 信号的基本属性信号的基本属性包括幅度、频率、相位和时延等。

这些属性决定了信号的基本特性。

1.3 信号的运算信号的基本运算包括加法、减法、乘法、卷积等。

这些运算是信号处理中的基础。

第二部分:系统的特性2.1 系统的分类系统可以分为线性时不变系统(LTI系统)、线性时变系统、非线性系统等。

2.2 系统的特性系统的特性包括因果性、稳定性、可逆性等。

这些特性决定了系统对信号的处理能力。

2.3 系统的数学模型系统的数学模型通常包括差分方程、状态空间模型、传递函数等。

第三部分:信号与系统的分析方法3.1 时域分析时域分析是直接在时间轴上对信号进行分析的方法,包括信号的时域特性分析和系统的时域响应分析。

3.2 频域分析频域分析是将信号从时间域转换到频率域进行分析的方法,包括傅里叶变换、拉普拉斯变换等。

3.3 复频域分析复频域分析是利用拉普拉斯变换将信号和系统从时域转换到复频域进行分析的方法。

3.4 系统的状态空间分析状态空间分析是一种现代的系统分析方法,它利用状态变量来描述系统的动态行为。

第四部分:信号与系统的实际应用4.1 通信系统信号与系统的知识在通信系统中有着广泛的应用,如信号的调制与解调、信道编码与解码等。

4.2 控制系统在控制系统中,信号与系统的知识用于系统的设计和分析,如PID控制器的设计、系统稳定性分析等。

4.3 滤波器设计滤波器设计是信号处理中的一个重要应用,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计。

信号与系统课程期末总结

信号与系统课程期末总结

信号与系统课程期末总结本学期历时一学期的《信号与系统》课程快要结束了,感触良多,在此特作如下总结:首先说说刚接触这门课程时的感受吧!《信号与系统》,顾名思义,就是研究信号和信号系统的课程,应该是属于电信学院的基础课程,感觉略紧张。

刚开课老师就说明了我们的学习方针:1.什么是信号?2.什么是系统?3.信号作用于系统产生什么响应?这是我们学习的大方向。

信号是消息的表现形式,消息是信号的具体内容;系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

信号主要分为确定性信号和随机信号,其中,确定性信号对于指定的某一时刻t,可确定以相应的函数值f,若干不连续点除外;随机信号则具有未可预知的不确定性。

信号又可分为时域信号和频域信号;课上,我们了解学习了信号输入系统的响应、连续时间系统的时域分析、离散时间系统的时域分析,还有傅立叶变换、拉普拉斯变换、z变换等等。

其中,三大变换是重中之重,也是《信号与系统》课程里面的难点,另外还有现行时不变系统等等知识点也是重难点,在学习的过程中应用比较广,也比较费劲。

好了,接下来就总结总结这半学期的学习感悟吧!老师多次说学习“三般变换”很重要——傅立叶变换、拉普拉斯变换、z变换,确实,这三般变化是这门课程重要内容,不过学习的过程是艰辛的,亚历山大呀!由此及彼,我也渐渐对学习有了更多感悟:学习过程中,我们不一定什么都懂、什么都明白,可以这样说,有不明白的地方很正常,这在将来的各方面的学习过程中也是必然会经常遇到的,但是无论如何我们不应该放弃,决不能抱着“破罐子破摔”的心态来自暴自弃。

Never !!!还有,我觉得老师经常说的一句话很有道理:“忽视基础将永远落后!”基础很重要,不仅仅是专业课程的学习,在其它方方面面的学习中都是一个真理,忽视基础将永远落后!历时半学期的《信号与系统》课程就快结束,在此,特别感谢王老师的辛勤教导,谢谢您!也同时谢谢助教师兄和师姐,谢谢!。

信号与系统总结报告

信号与系统总结报告

信号与系统总结报告信号与系统是一门电子信息类本科阶段的专业基础课。

通过本学期对该课程的学习,我了解了什么是信号,什么是系统,掌握了基本的信号分析的理论和方法和对线性时不变系统的描述方法,并且对求解微分方程有了一定的了解。

最后学习了傅里叶变换和拉普拉斯变换,明白了如何用matlab去求解本课程的问题。

1.1信号与系统信号是一种物理量(电,光,声)的变化,近代中使用的电台发出的电磁波也是一种信号,所以信号本身是带有信息的。

而系统是一组相互有联系的事物并具有特定功能的整体,又分为物理系统和非物理系统,每一个系统都有各自的数学模型,两个不同的系统可能有相同的数学模型。

1.2信号从不同的角度看,信号也有不同的分类。

信号可分为确定性信号和随机性信号,周期信号与非周期信号,连续时间信号与离散时间信号。

还有一种离散信号:采样信号和数字信号。

在该课程中,还有几种类似数学函数的信号,指数信号和正弦信号;其表达式与对应的函数表达式也类似。

另外,如果指数信号的指数因子为一复数,则称为复指数信号,其表达式为 f(t)=Kest,s=σ+jw。

还有一种Sa(t)函数,其表达式为sint/t。

从数学上来讲,它也是一个偶函数。

1.2.1 信号的运算另外,信号也可以像数字那样进行运算,可以进行加减,数乘运算。

信号的运算以图像为基础进行运算;包括反褶运算:f(t)->f(-t),以y轴为轴,将图像对称到另一边,时移运算:f(t)->f(t-t1),该运算移动法则类似数学上的左加右减;尺度变换运算:f(t)->f(2t)表示将图像压缩。

除此之外,信号还有微分,积分运算,运算过后仍然是一个信号。

1.2.2信号的分类单位斜边信号指的是从某一时刻开始随时间正比例增长的信号,表达式为R (t)=t,(t>=0)。

单位阶跃信号从数学上来讲,是一个常数函数图像;单位冲激信号有不同的定义方法,狄拉克提出了一种方法,因此它又叫狄拉克函数;用极限也可以定义它,冲激函数也可以把冲激所在位置处的函数值抽取出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( t ) = sin tu( t − 1)= sin( t − 1 + 1)u( t − 1)
cos1 + s sin1 − s F ( s) = e 2 s +1
PDF pdfFactory
= sin( t − 1)cos1u( t − 1) + cos( t − 1)sin1u( t − 1)
u(t)
( α 为 大 于 0的 实 数 )
sgn ( t )
抽样及抽样定理
f(t) 1
F (ω )
o p(t)
(1)
t
oω m − ωm
ω
P(ω ) L
L o TS fS(t) L o T S

E L t 相 乘 L t
s
(ω s )
L − ωs 卷 积 L − ωs
s
o
ωs F s (ω ) 1 Ts L
拉普拉斯变换对
常用的拉氏变换对:P181 表4-1 性质 − sτ 1 f t − τ u t − τ ↔ F s e ( ) ( ) ( ) δ (t) 1 u(t ) f ( t ) e− at ↔ F ( s + a ) s 1 −α t 1 e u(t ) 周期 化因子 − sT 1−e s +α n! t nu ( t ) s n+1 s cos ( ω t ) u ( t ) s2 + ω 2 sin ( ω t ) u ( t ) 2 ω 2 s +ω
由系统函数列微分方程
s+3 已知 系统的系统 函 数 H (s ) = 2 , 请写 出描述 s + 3s + 2 此 系统的 微 分方程。
R ( s) s+3 H ( s) = 2 = s + 3s + 2 E ( s )
d2 r ( t ) d r (t) de(t) +3 + 2r ( t ) = + 3e ( t ) 2 dt dt dt
PDF pdfFactory
三、拉普拉斯变换
• 基础
– 正变换(单边) – 逆变换:部分分式展开法 – 性质
• 应用
– 解微分方程 (关键:边界条件确定,习题26 ),动态电路的分析(电路的s域等效模型) – 系统函数,零极点,频率响应特性
PDF pdfFactory
R ( s ) ( s 2 + 3 s + 2 ) = E ( s )( s + 3 )
PDF pdfFactory

求系统的单位冲激响应:
2Ω 1H
i L (0 − ) e (t ) 1F
2
v C (t )

s 1 s VC ( s )
+
E ( s)
画出电路的s域模型图(不含附加项) 1 VC ( s ) 1 sC H ( s) = = = 2 E ( s ) R + sL + 1 s + 2s + 1 sC 单位冲激响应
jω0 t jϕ ( ω ) j ω0 t +ϕ ( ω0 )
( s = σ + jω )
→e
jω0 t
H (ω0 ) = H (ω0 ) e
Y (ω ) = X (ω ) H (ω ) e st → e st H ( s ) Y ( s) = X ( s) H ( s)
PDF pdfFactory

4.线性——将信号分解,分别求响应,再叠加
1 n −1 z变换:x ( n ) = X z z ( ) dz z =1 ∫ 2 πj 1 π jω j nω e dω DTFT : x ( n ) = X e ( ) ∫ 2 π −π 线性时不变: e j nω0 → e j nω0 H e jω0 z → z H ( z)
Y ( s) = F ( s ) + kY ( s ) G ( s)
+

+
X (s )
Y ( s) G ( s) 1 = = 2 H ( s) = F ( s ) 1 − kG ( s ) s + 3 s + 2 − k
k
−3 ± 1 + 4k p1,2 = 2 因果 系统 稳 定性的 条件 为极点位于 s平面 的 左半平面, 或极点 的 实部小于 0, 可得 k <2
o
− jω t0
E (ω )的幅度由H (ω ) 加权,
t
群延迟:
PDF pdfFactory
dϕ (ω ) τg = − dω
o
t
相延迟: τ p = −
ϕ (ω ) ω
K , t 0为 常 数

理想低通滤波器
H (ω )
ϕ (ω )
ωC
− ωC O
ωC ω
− ωC O

3.线性——将信号分解,分别求响应,再叠加
1 傅里叶变换:x ( t )Hale Waihona Puke = 2π∫∞ −∞
X ( ω ) e jω t dω
1 σ + j∞ st 拉普拉斯变换:x ( t ) = X s e ds ( ) ∫ 2 π j σ − j∞ 线性时不变: H (ω ) = H (ω ) e e
1 ∞ X ( jλ ) 1 ∞ R ( jλ ) R(jω ) = ∫ d λ X ( jω ) = − ∫ dλ π −∞ ω − λ π −∞ ω − λ
ω
oω m ω s
ω
f s ( t ) = f ( t )δ T ( t ) =
1 1 Fs ( ω ) = F f ( t ) δ T ( t ) = 2π F ( ω ) ∗ δ T ( ω ) = T s
PDF pdfFactory
n= − ∞
∑ f (nT )δ (t − nT )
e ( t ) = ∫ e (τ ) δ ( t − τ ) d τ ⇒ r ( t ) = ∫ e (τ ) h ( t − τ ) d τ
−∞



−∞
x ( n) =
m =−∞
∑ x ( m ) δ ( n − m ) ⇒ y ( n) = ∑ x ( m ) h ( n − m )
m =−∞
PDF pdfFactory
拉普拉斯变换的时移性质:向u(t)靠拢
ϕ L[ f (t )] = L sin ω t + ω = L[sin(ωt ) cos ϕ + cos ωt sin ϕ ] ω cos ϕ + s sin ϕ = 2 2 s +ω
Ts
t
Sa(ω c t ) 抽样函数
h(t ) = Ts Ts
ωC Sa(ω C t ) π
Y (ω )
1
− ω moω m
π ωC t
O
ω
PDF pdfFactory

系统函数和频率响应
R(ω ) 响应信号的傅 氏 变换 ∴ H (ω ) = = E (ω ) 激 励 信号的傅 氏 变换
h(t ) = L−1 [H (s )] = t e − t u(t )
PDF pdfFactory
判断系统的稳定性 例:给定因果系统如图所示,图中G ( s ) =
k取何值时系统稳定?
F (s )
( s + 1)( s + 2 )
G (s ) Y (s )
1

解:
一、本课程的基本脉络
信号的表示 信号分析 信号的运算 信号与系统 系统的表示 系统分析 系统的性质
•研究确定性信号经线性时不变系统传输与处理 的基本概念和基本分析方法,从时间域到变换 域,从连续到离散,从输入输出描述到状态空 间描述。
PDF pdfFactory
n n jω z = r e ( )
( r =1)
( )
Y ( e jω ) = X ( e jω ) H ( e jω ) Y ( z) = X ( z) H ( z)
PDF pdfFactory

二、主要内容
• 信号的表示和运算; • 系统的表示和性质:线性,时不变性,因果性, 稳定性,频率响应特性 • 系统的输入-输出描述法 – 时域:微(差)分方程;单位样值响应 – 变换域:系统函数,零、极点图,频率响应 特性; • 系统的状态变量分析法:信号流图,梅森增益 公式,连续时间状态方程的建立和求解。
R(ω ) = E (ω ) ⋅ H (ω )
ϕ r (ω ) = ϕ e (ω ) + ϕ h (ω ) E ( ω ) 的相位由ϕ h ( ω ) 修正。 系统的无失真传输条件 r ( t ) = Ke( t − t 0 ) e (t ) r (t ) h(t ) = Kδ (t − t 0 ) H (ω ) = Ke
理想低通
A 2
g0 (t )
g( t )
G0 (ω ) A 4 2ω 0
ω
cos ω 0 t
本地载波, 与发送端载波 同频同相
− 2ω 0
O ω mω c
ω m < ω c < 2ω 0 − ω m

PDF pdfFactory
希尔伯特变换
希尔伯特变换器:
2. H ( jω ) = − j sgn(ω ) 1 3.h(t ) = πt 应用:单边带信号的产生 因果系统的系统函数H ( jω )的实部与虚部满足 希尔伯特变换约束关系,即: H (jω ) = R ( jω ) + jX (jω )
线性系统的分析方法
输入—输出描述法 系统的两种分析 方法 状态变量分析法
相关文档
最新文档