生物化学糖酵解课件ppt
合集下载
生物化学糖酵解糖异生和戊糖磷酸途径(共63张PPT)

糖
阶
消耗
段 2 ATP
⑤
Continue for
2nd phase
5
14-2b
丙糖阶段 生成
4 ATP &
2 NADH
发酵还包括
在无氧条件下
由丙酮酸继续
反应并最终生
成乳酸/乙醇
等
6
P28-3
Glc + 2NAD+ + 2ADP + 2Pi → 2 pyruvate + 2NADH + 2H+ + 2ATP + 2H2O
- 通常细胞内的[Glc] 仅为 4 mmol,故只有当[血糖] 很高时才能由Glc激酶在 肝脏活化Glc以合成糖原
(G6P → G1P → UDP-Glc)
8
(诱导契合) 与Glc的结合引发两个结构域相对转动17º而靠近(~8Å),使被结合的Glc 与待结合的Mg2+-ATP更为接近,并相应阻断H2O进入活性位点水解ATP
2-PG
-
的[2,3-BPG]
高达5 mM,可调节
Hb对O2的亲和性
21
p532⑨
- 烯醇化酶 - 2-PG的 导致分子内能量重新分布…
2-PG和 的磷酰基水解∆G’o具有很大差值: 2-PG: -17.6 kJ/mol (→glycerate, as for 3-PG)
足以在下步反应中合
成ATP
有一羰基(利于负碳离子形成)
10
(重排异构 & E-碱性残基的交替广义酸-碱催化)
酶活性位点 碱性残基
吡喃葡糖开环
(cf. Fig. 11-4)
C2的H+移除促进顺
-烯二醇中间物的形
生物化学课件:11 糖酵解

生物化学
第11章 糖代谢
——糖酵解
第一节 生物体内的糖类
一、糖的概念
糖是多羟基醛与多羟基 酮及其衍生物或聚合物 的总称
甘油醛
二羟丙酮
含有不同碳原子数的单糖都有其醛糖和酮糖形式
单糖结构通式
Name
Formula
三碳糖(Triose) 四碳糖(Tetrose) 五碳糖(Pentose) 六碳糖(Hexose) 七碳糖(Heptose) 八碳糖(Octose)
醇式丙酮酸(phosphoenolpyruvate, PEP); ⑽ 磷酸烯醇式丙酮酸(PEP)将高能磷酸基交给ADP生
成ATP
。CHO
CH OH
CH2 O P
3-磷酸甘油醛
NAD++Pi
NADH+H+
(6)
O=C O P
3-磷酸甘油醛 脱氢酶,GAPDH
C OH
CH2 O P
1,3-二磷酸甘油酸
一些细菌 和真菌能 分泌纤维 素酶
三、糖的生理功能
1. 生物体的主要能源物质
通过生物氧化提供生命活动需要的能量,能源贮存
2. 提供合成体内其他物质的原料
如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等 物质的原料。
3. 作为机体组织细胞的组成成分
糖脂、糖蛋白构成生物膜,纤维素,肽聚糖。
4. 作为细胞识别的信息分子
砷酸(AsO43-)与磷酸(PO43-) 结构相似,替代磷酸形成1-砷酸3-磷酸甘油酸,但其不稳定易水 解为3-磷酸甘油酸,这样导致无 法形成高能磷酸键,不能生产 ATP,但并不影响酵解反应。
解偶联剂:解除氧化和磷酸化的 偶联作用
。CHO
CH OH
CH2 O P
第11章 糖代谢
——糖酵解
第一节 生物体内的糖类
一、糖的概念
糖是多羟基醛与多羟基 酮及其衍生物或聚合物 的总称
甘油醛
二羟丙酮
含有不同碳原子数的单糖都有其醛糖和酮糖形式
单糖结构通式
Name
Formula
三碳糖(Triose) 四碳糖(Tetrose) 五碳糖(Pentose) 六碳糖(Hexose) 七碳糖(Heptose) 八碳糖(Octose)
醇式丙酮酸(phosphoenolpyruvate, PEP); ⑽ 磷酸烯醇式丙酮酸(PEP)将高能磷酸基交给ADP生
成ATP
。CHO
CH OH
CH2 O P
3-磷酸甘油醛
NAD++Pi
NADH+H+
(6)
O=C O P
3-磷酸甘油醛 脱氢酶,GAPDH
C OH
CH2 O P
1,3-二磷酸甘油酸
一些细菌 和真菌能 分泌纤维 素酶
三、糖的生理功能
1. 生物体的主要能源物质
通过生物氧化提供生命活动需要的能量,能源贮存
2. 提供合成体内其他物质的原料
如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等 物质的原料。
3. 作为机体组织细胞的组成成分
糖脂、糖蛋白构成生物膜,纤维素,肽聚糖。
4. 作为细胞识别的信息分子
砷酸(AsO43-)与磷酸(PO43-) 结构相似,替代磷酸形成1-砷酸3-磷酸甘油酸,但其不稳定易水 解为3-磷酸甘油酸,这样导致无 法形成高能磷酸键,不能生产 ATP,但并不影响酵解反应。
解偶联剂:解除氧化和磷酸化的 偶联作用
。CHO
CH OH
CH2 O P
生物化学 --糖代谢(共32张PPT)

新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O
15.糖酵解

NADH+H+
(6)
O=C O P
CH OH
C OH
CH2 O P
3-磷酸甘油醛
3-磷酸甘油醛 脱氢酶,GAPDH
CH2 O P
1,3-二磷酸甘油酸
砷酸(AsO43-)与磷酸(PO43-)结构相 似,替代磷酸形成1-砷酸-3-磷酸甘油酸, 但其不稳定易水解,这样导致无法形成高 能键,不能生产ATP,但并不影响酵解反
⑺ 1,3-二磷酸甘油酸脱磷酸,将其交给ADP生成ATP ; ⑻ 3-磷酸甘油酸异构为2-磷酸甘油酸; ⑼ 2-磷酸甘油酸(glycerate-2-phosphate)脱水生成磷酸烯醇
式丙酮酸(phosphoenolpyruvate, PEP); ⑽ 磷酸烯醇式丙酮酸(PEP)将高能磷酸基交给ADP生成
糖酵解途径可为抗癌治疗提供靶标
当肿瘤生长时,细胞相互挤在一起并可能切断输送氧气的 血管。由于大多数细胞需要氧气来制造大量的能量储存物 质ATP,因此这种状况对肿瘤很不利。 因而癌细胞进化出 了以无氧糖酵解为主要的供能方式。抑制糖酵解途径可以 抑制肿瘤细胞的生长。
Valeria Fantin等, Cancer Cell杂志 (2006年6月)
C=O HO-C-H
H-C-OH H-C-OH 6 CH2O- P 果糖-1,6-二磷酸
1
H2C O
P
2
CO
3
磷酸二羟丙酮 H2COH
4
HC O
5
HCOH
6
H2C O
P
磷酸甘油醛
3.放能阶段——丙酮酸的生成
3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙 酮酸,包括五步反应。
⑹ 3-磷酸甘油醛脱氢并磷酸化生成1,3-二磷酸甘油酸 (glycerate-1,3-diphosphate);
生物化学第22章糖酵解作用

丙酮酸生成乳酸的反应
丙酮酸
乳酸脱氢酶
乳酸
酵解的总反应式
在无氧条件下,每分子葡萄糖代谢形成乳酸的总 反应方程式如下: C6H12O6 + 2ADP + 2Pi → 2C3H6O3 + 2ATP + 2H2O
(二)生成乙醇
1.丙酮酸脱羧形成乙醛
丙酮酸脱羧酶
丙酮酸
乙醛
(二)生成乙醇
2.乙醛还原成乙醇
合成糖原 磷酸戊糖途径
葡萄糖
己糖激酶
葡萄糖-6-磷酸(可能不积累)
磷酸葡萄糖异构酶
果糖-பைடு நூலகம்-磷酸(积累)
磷酸果糖激酶被抑制
果糖-1,6-二磷酸
Return
丙酮酸激酶对糖酵解 的调节作用
九、其他六碳糖进入糖酵解途径
四种六碳糖构型比较
D-葡萄糖
D-甘露糖
D-半乳糖
D-果糖
果糖进入糖酵解途径
(肌肉中)
己糖激酶
果糖
果糖-6-磷酸
果糖进入糖酵解途径
(肝脏中)
①
果糖激酶
果糖
果糖-1-磷酸
果糖进入糖酵解途径
(肝脏中)
②
果糖-1-磷酸醛缩酶
果糖-1-磷酸
③
甘油醛激酶
甘油醛 二羟丙酮磷酸
甘油醛
甘油醛-3-磷酸
甘油醛 甘油 甘油-3-磷酸
④
醇脱氢酶
⑤
甘油激酶
⑥
甘油磷酸脱氢酶
果
糖
甘油
进
入
糖
甘油-3-磷酸
酵
在代谢途径中,催化基本上不可逆反应的酶 所处的部位是控制代谢反应的有力部位。在糖酵 解途径中,由己糖激酶、磷酸果糖激酶和丙酮酸 激酶催化的反应实际上都是不可逆反应,因此, 这三种酶都具有调节糖酵解途径的作用。
生物化学糖酵解课件ppt综述

乙醇脱氢酶
乙醛
NADH
丙酮酸
丙酮酸脱羧酶
CO2
乙醇
NAD+
七、糖酵解作用的调节 糖酵解代谢途径有三个关键酶:
己糖激酶
磷酸果糖激酶
丙酮酸激酶
三种酶催化的反应均为不可逆的,因此,都具
有调节糖酵解的作用。
其中,磷酸果糖激酶所催化的反应是糖酵解的 限速步骤。
1.磷酸果糖激酶(PFK)的调节
① ATP:高浓度的ATP使酶与底物F-6-P的亲和力降
无氧条件下分解生成2分子丙酮酸并释放出能量的
过程。
总反应式:
Glc+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+H++2H2O 它是氧化磷酸化和三羧酸循环的前奏。 是动物、植物、微生物细胞中葡萄糖分解产生能
量的共同代谢途径。
二、糖酵解途径的实验依据
酵母抽提液的发酵速度比完整酵母慢,且逐渐缓
将经过透析失活的酵母液混合在一起后又恢复发
酵能力
由此推断发酵需要两类物质:一是热不稳定的, 不可透析的组分即酶;二是热稳定的可透析的组 分,如辅酶、ATP、金属离子等。
碘乙酸对酵母生长有抑制作用 将葡萄糖、酵母抽提液及碘乙酸一起保温,可以 分离出少量的磷酸丙糖(主要是3-磷酸甘油醛和 磷酸二羟丙酮的平衡混合物)
3.丙酮酸激酶的调节
果糖-1,6-二磷酸对该酶有激活作用;
ATP是该酶的变构抑制剂;
丙氨酸为该酶的变构抑制剂;
共价修饰调节:该酶的去磷酸化形式为活性形
式;磷酸化形式为非活性形式。
高浓度葡萄糖促进该酶的去磷酸化;
八、其它糖进入糖酵解的途径
糖原 1-磷酸葡萄糖
乙醛
NADH
丙酮酸
丙酮酸脱羧酶
CO2
乙醇
NAD+
七、糖酵解作用的调节 糖酵解代谢途径有三个关键酶:
己糖激酶
磷酸果糖激酶
丙酮酸激酶
三种酶催化的反应均为不可逆的,因此,都具
有调节糖酵解的作用。
其中,磷酸果糖激酶所催化的反应是糖酵解的 限速步骤。
1.磷酸果糖激酶(PFK)的调节
① ATP:高浓度的ATP使酶与底物F-6-P的亲和力降
无氧条件下分解生成2分子丙酮酸并释放出能量的
过程。
总反应式:
Glc+2Pi+2ADP+2NAD+ 2丙酮酸+2ATP+2NADH+H++2H2O 它是氧化磷酸化和三羧酸循环的前奏。 是动物、植物、微生物细胞中葡萄糖分解产生能
量的共同代谢途径。
二、糖酵解途径的实验依据
酵母抽提液的发酵速度比完整酵母慢,且逐渐缓
将经过透析失活的酵母液混合在一起后又恢复发
酵能力
由此推断发酵需要两类物质:一是热不稳定的, 不可透析的组分即酶;二是热稳定的可透析的组 分,如辅酶、ATP、金属离子等。
碘乙酸对酵母生长有抑制作用 将葡萄糖、酵母抽提液及碘乙酸一起保温,可以 分离出少量的磷酸丙糖(主要是3-磷酸甘油醛和 磷酸二羟丙酮的平衡混合物)
3.丙酮酸激酶的调节
果糖-1,6-二磷酸对该酶有激活作用;
ATP是该酶的变构抑制剂;
丙氨酸为该酶的变构抑制剂;
共价修饰调节:该酶的去磷酸化形式为活性形
式;磷酸化形式为非活性形式。
高浓度葡萄糖促进该酶的去磷酸化;
八、其它糖进入糖酵解的途径
糖原 1-磷酸葡萄糖