七年级数学竞赛试卷

合集下载

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

3.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,E a+2000的值不能是().1998⨯1998+1998,b=-1999⨯1999+1999,c=-2000⨯2000+2000,CF=BC,则长方形ABCD的面积是阴影部分面积的d+2000,则a,b,c,d的大小关系是(9.有理数-3,+8,-12,0.1,0,,-10,5,-0.4中,绝对值小于1的数共有_____个;所有七年级数学竞赛(时间100分钟满分100分)一、选择题:(每小题4分,共32分)1.(-1)2000的值是().(A)2000(B)1(C)-1(D)-2000二、填空题:(每题4分,共44分)1.用科学计数法表示2150000=__________.2.有理数a、b、c在数轴上的位置如图所示:若m=│a+b│-│b-1│-│a-c│-│1-c│,则1000m=_________.A D2.a是有理数,则11若△BDF的面积为6平方厘米,则长方形ABCD的面积6(A)1(B)-1(C)0(D)-20003.若a<0,则2000a+11│a│等于().(A)2007a(B)-2007a(C)-1989a(D)1989a 是________平方厘米.F4.a的相反数是2b+1,b的相反数是3a+1,则a2+b2=____.B C5.某商店将某种超级VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”4.已知a=-1999⨯1999-1999则abc=().2000⨯2000-20002001⨯2001-2001的广告,结果每台超级VCD仍获利208元,那么每台超级VCD的进价是________.6.如图,C是线段AB上的一点,D是线段CB的中点.已知图(A)-1(B)3(C)-3(D)15.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利()(A)25%(B)40%(C)50%(D)66.7%6.如图,长方形ABCD中,E是AB的中点,F是BC上的一点,且A D13 ()倍.E中所有线段的长度之和为23,线段AC的长度与线段CB的A C D B长度都是正整数,则线段AC的长度为_______.7.张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券1000元.回家后他在存单的背面记下了当国库券于2003年7月8日到期后他可获得的利息数为390元.若张先生计算无误的话,则该种国库券的年利率是________.8.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇.相遇后,甲、乙步行速(A)2(B)3(C)4(D)57.若四个有理数a,b,c,d满足B 1111a-1997=b+1998=c-1999=)F C度都提高了1千米/小时.当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,则A、B两地的距离是_________千米.(A)a>c>b>d(B)b>d>a>c;(C)c>a>b>d(D)d>b>a>c8.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入-1,并将所显示的结果再次输入,这时显示的结果应当是().(A)2(B)3(C)4(D)513正数的平方和等于_________.10.设m和n为大于0的整数,且3m+2n=225.(1)如果m和n的最大公约数为15,则m+n=________.(2)如果m和n的最小公倍数为45,则m+n=________.11.若a、b、c是两两不等的非0数码,按逆时针箭头指向组成的两位数a 2.如图所示,边长为3厘米与5厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为ab,bc都是7的倍数(如图),则可组成三位数abc共_______个;圆心,边长为半径的圆弧.则阴影部分的面积是多其中的最大的三位数与最小的三位数的和等于_________.b c少?(取3).三、解答题(每小题12分,共24分)1.某书店积存了画片若干张.按每张5角出售,无人买.现决定按成本价出售,一下子全部售出.共卖了31元9角3分.则该书店积存了这种画片多少张?每张成本价多少元?a - 1997 = 2. ∵a 是有理数, ∴不论a 取任何有理数, 11当选(D)时, 111998 ⨯ (1998 + 1) =- 1999 ⨯19981998 ⨯1999 = -1 ,1999 ⨯ (1999 +1) =- 2000 ⨯ (2000 +1) =- 2001 ⨯20002000 ⨯2001 = -1 ,FQ= 1 b,FG= 12 BC ·FQ= 1因△BFC 的面积= 12 a · 2 2 · b · 4 解之得 x= 36= 18ab)= 1 2 ab-(48 ab ∴ x 所以若按标价出售可获利为 3 ⎩-b 3a 1 5 ,b=- 2解之得 a=- 12 b,又∵以FC= 1 ∴ BE= 1∴a +b = 1 5 .23 a ⨯ b = ∴阴影部分的面积= 1答案:7.由 1 1 b + 1998 = 1 c - 1999 =1d + 2000 ,一、选择题1. 由-1的偶次方为正1,-1的奇次方为负1可得(-1)2000=1,所以应选(B).a + 2000 的值永远不会是0. ∴选(C).但要注意a + 2000 这个式子本身无意义, ∴不能选(D).故选(C)是正确的.3.∵ a<0,∴│a │=-a,∴ 2000a+11│a │=2000a-11a=1989a,所以应选(D).4.∵ a=- 1999 ⨯ (1999 - 1)可知a-1997=b+1998=c-1999=d+2000,由这个连等式可得:a>b,a<c,a>d;b<c,b>d,c>d,由 此可得c>a>b>d,故应选(C).8.因为当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1 之和,所以若输入-1,则显示屏的结果为(-1)2+1=2,再将2输入,则显示屏的结果为22+1=5 ,故应选择(D). 二、填空题1.∵ 2150000=2.16× 106∴ 用科学计数法表示2150000=2.15×106 .2.由图示可知,b<a<0,c>0,∴ │a+b │=-(a+b),│b-1│=1-b,│a-c │=c-a,│1-c │=1-c, ∴ 1000n=1000×(-a-b-1+b-c+a-1+c)=1000×(-2)b= 2000 ⨯ (2000 -1) 2000 ⨯1999 1999 ⨯2000 = -1,=-20003.如图所示.设这个长方形ABCD 的长为a 厘米,宽为b 厘米.即BC=a,AB=b,则其面积为ab 平方厘米. ∵ E 为AD 的中点,F 为CE 的中点,∴过F 作FG ⊥CD,FQ ⊥BC 且分别交CD 于G 、BC 于Q,则c= 2001⨯ (2001 -1)∴ abc=(-1)×(-1)×(-1)=-1,故应选(A).5.设某种商品的标价为x,进价为y.由题意可得:80%x=(1+20%)y2 y .3y = 2 ,这就是说标价是进价的1.5倍,12 y - y = 2 y ,即是进价的50%,所以应选(C).6.设长方形ABCD 的长为a,宽为b,则其面积为ab.在△ABC 中, ∵ E 是AB 的中点,12 CD= 2 4 a.1 1 1b,同理△FCD 的面积= ∴△BDF 的面积△= BCD 的面积-( △BFC 的面积△+ CDF 的面积),即1 1 ab+∴ ab=48.∴ 长方形ABCD 的面积是48平方厘米.⎧-a = 2b + 1 4.∵ a 的相反数是2b+1,b 的相反数是3a+1,由此可得: ⎨5 .a,2 3 a,∴ BF= 3a,2 212 1 ∴ △EBF 的面积为 ⨯ 21 1 6 ab △但 ABC 的面积=2 ab , 5.设每台超级VCD 的进价为x 元,则按进价提高35%,然后打出“九折”的出售价每台为x ·(1+35%)×90%元,由题意可列方程为:1 12 ab - 6 ab =3 ab ,∴ 长方形的面积是阴影部分面积的3倍,故应选(B).x · ((1+35%)×90%-50=x+2081.35×0.9x=x+2580.215x=2583∴ AC= 23 - 7CD9.绝对值小于1的数共有5个.所有正数的平方和等于89 109x=12001 ∴ 每台超级VCD 的进价是1200元.∴ 阴影部分面积=4 π R 2 = 6.由图知,图中共有六条线段,即AC 、AD 、AB 、CD 、CB 、DB.又因D 是CB 的中点, 所以CD=DB,CB=2CD,AB=AC+2CD,AD=AC+CD,由题意可得AC+AD+AB+CD+CB+DB=23,即AC+AC+CD+AC+2CD+CD+2CD+CD=23,也即 3AC+7CD=233 ,∵ AC 是正整数,∴ 23-7CD ∣3的条件是CD=2,也即23-7CD=9时,能被3整除, ∴AC=3.7.设该国库券的年利率为x,则由题意可列方程:1000×5×x=390解之得 x=7.8%所以,该国库券的年利率为7.8%.8.设甲每小时行v 1千米,乙每小时行v 2千米,则甲乙两地的距离就是2(v 1+v 2)千米.由题意可得:3.6·(v 1+v 2+2)=4(v 1+v 2),0.4(v 1+v 2)=7.2, v 1+v 2=18.∴2(v 1+v 2)=2×18=36,即A 、B 两地的距离为36千米.900 .10.∵ m 、n 为大于0的整数,且3m+2n=225,若(m,n)=15,则3m=3×15=45,2n= 2×90=180,∴ m=15,n=90∴(1)m+n=15+90=105.(2)若[m,n]=45,则m+n=45+45=90.11.若 ab , b c 都是7的倍数,则可组成 abc 的三位数共有15个,其中最大的是984,最小的是142,它们的和是1126. 三、 解答题1.∵ 每张的成本价小于5角.但又能被31元9角3分整除. 所以可设每张成本价为x 角y 分,则3193∣ xy ,显然 xy =31(分).即每张成本价为0. 31 元. 这种画片共有3193÷31=103(张).25 ⨯ 34 = 18.752.根据已知可得,S Δ ABC =S 梯形BCDE∴S Δ ABC -S 梯形BCFE = S 梯形BCDE - S 梯形BCFE ,即S Δ cdf = S Δ aef。

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。

A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。

2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。

5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。

三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。

如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。

2. 一个班级有40名学生,其中男生和女生的比例是3:2。

如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。

现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。

在一个直角三角形中,直角边的平方和等于斜边的平方。

2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。

A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。

则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题一、竞赛题与经典题。

1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。

再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。

然后进行除法运算32÷4 = 8。

最后进行加法运算-8+8 = 0。

2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。

所以化简结果为-2a + b。

3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。

再移项,3x-2x=6 + 3+2。

合并同类项得x = 11。

4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。

解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。

所以AB = 5-( 3)=5 + 3 = 8。

5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。

解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。

又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。

6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。

然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。

最后进行减法运算2-2 = 0。

7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案一.选择题(共10小题,共30分)1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( )A .2C ︒-B .2C ︒+ C .3C ︒+D .3C ︒-2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2;B .57.510⨯千米2;C .47510⨯千米2;D .57510⨯千米23.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( ) A .3(2)+- B .3(2)-- C .3(2)⨯- D .(3)(2)-÷-5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 二.填空题(共5小题,15分)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB的中点,则点C 所表示的数是 .12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,要准备 种不同的车票.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 (只写一种)15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -= .三.解答题(共8小题,共75分)16.(8分)先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................17.(9分)平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?18.(9分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x+---的值. 19.(9分)先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+10=-,故原式110=-;请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.20.(9分)已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.21.(10分)已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --. (1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 22.(10分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆. 23.(11分)如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.参考答案1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( ) A .2C ︒- B .2C ︒+ C .3C ︒+ D .3C ︒-【解答】解:“正”和“负”相对,如果温度上升3C ︒,记作3C ︒+, 温度下降2C ︒记作2C ︒-. 故选:A .2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2B .57.510⨯千米2C .47510⨯千米2D .57510⨯千米2 【解答】解:数据750000用科学记数法可表示57.510⨯, 故选:B .3.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识. 故选:A .4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3(2)+-B .3(2)--C .3(2)⨯-D .(3)(2)-÷- 【解答】解:.3(2)1A +-=,故A 不符合题意; .3(2)325B --=+=,故B 不符合题意; .3(2)6C ⨯-=-,故C 符合题意;D .(3)(2) 1.5-÷-=,故D 不符合题意.综上,只有C 计算结果为负. 故选:C .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .1 【解答】解:由题意得, |21|3a +=,解得,1a =或2a =-, 故选:A .6.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【解答】解:将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B .7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 【解答】解:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =, 3m ∴=,2n =,8m n ∴=.故选:C .8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =【解答】解:A 、2a ab =-,即20a ab +=,即()0a a b +=,当0a b +=时,2a ab =-一定成立,故选项一定能由0a b +=得到;B 、因为a b =-,即a 与b 互为相反数,根据互为相反数的两个数的绝对值相等,得到||||a b =; C 、因为a b =-,即a 与b 互为相反数,则0a =,0b =不一定成立,故不能由0a b +=得到;D 、因为a b =-,即a 与b 互为相反数,则22a b =,一定成立,故能由0a b +=得到. 故只有C 不一定能由0a b +=得到. 故选:C .9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+【解答】解:方程两边同时乘以6得:2(1)63(31)x x x -+=+,故选:B .10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 【解答】解:C 是线段AB 的中点,12AB cm =, 11126()22AC BC AB cm ∴===⨯=, 点D 是线段AC 的三等分点, ①当13AD AC =时,如图,26410()3BD BC CD BC AC cm =+=+=+=; ②当23AD AC =时,如图, 1628()3BD BC CD BC AC cm =+'=+=+=.所以线段BD 的长为10cm 或8cm , 故选:C .二.填空题(共5小题)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 1- .【解答】解:数轴上A ,B 两点所表示的数分别是4-和2,∴线段AB 的中点所表示的数1(42)12=-+=-. 即点C 所表示的数是1-. 故答案为:1-12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折, 依题意,得:180********%10x⨯-=⨯, 解得:8x =. 故答案为:8.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问要准备 种不同的车票. 【解答】解:(1)如图:根据线段的定义:可知图中共有线段有AC ,AD ,AE ,AF ,AB ,CD 、CE ,CF 、CB 、DE ,DF 、DB 、EF ,EB ,FB 共15条,有15种不同的票价;因车票需要考虑方向性,如,“A C →”与“C A →”票价相同,但车票不同,故需要准备30种车票. 故答案为: 30.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 8(6)[4(2)]24⨯-÷÷-= (只写一种) 【解答】解:8(6)[4(2)]24⨯-÷÷-= 故答案为:8(6)[4(2)]24⨯-÷÷-=.(答案不唯一) 15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -=1394π- .【解答】解:339S =⨯=正方形,290393604ADC S ππ⨯==扇形, 2902360EAF S ππ⨯==扇形,()129139944EAF ADC S S S S S πππ⎛⎫∴-=--=--=- ⎪⎝⎭正方形扇形扇形. 故答案为:1394π-.三.解答题(共8小题)16.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =. 【解答】解:原式2233626x xy y x y =---+23x xy =-,把1x =-,2y =代入223(1)3(1)27x xy -=--⨯-⨯=.17.平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?【解答】解:如答图所示,连接AC ,BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.18.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x +---的值.【解答】解:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 0a b ∴+=,1cd =,2x =±,当2x =时,111(1)32(01)31227222a b cd x +---=⨯--⨯-⨯=-;当2x =-时,111(1)32(01)312(2)222a b cd x +---=⨯--⨯-⨯-=.19.先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解: (方 法一) 原式12112151()[()()]()()30361053062=-÷++--=-÷-1330=-⨯110=-(方 法二) 原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+ 10=-故原式110=-请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.【解答】解: 原式的倒数为13221()()6143742-+-÷-1322()(42)61437=-+-⨯- 79281214=-+-+=-故原式114=-.20.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.【解答】解:(1)由数轴可得:0c a b <<<, 0a b ∴+<,0a c +<,0b c ->,(2)0a b +<,0a c +<,0b c ->, ||||||0a b a c b c a b a c b c ∴+-++-=--+++-=.故答案为:(1)<;<;>.21.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 【解答】解:(1)根据题意知22232(31)B x x x x =----+ 2223231x x x x =---+- 223x x =---,则22(31)(23)A B x x x x -=-+---- 223123x x x x =-++++244x x =++;(2)x 是最大的负整数, 1x ∴=-,则原式24(1)14=⨯--+414=-+ 7=.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.23.如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC = BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.【解答】解:(1)①AB CD =, AB BC CD BC ∴+=+, 即,AC BD =, 故答案为:=;②34BC AC =,且12AC cm =, 3129()4BC cm ∴=⨯=,1293()AB CD AC BC cm ∴==-=-=, 12315()AD AC CD cm ∴=+=+=,故答案为:15; (2)如图,设每份为x ,则3AB x =,4BC x =,5CD x =,12AD x =, M 是AB 的中点,点N 是CD 的中点N , 32AM BM x ∴==,52CN DN x ==, 又16MN =, ∴3541622x x x ++=, 解得,2x =,1224()AD x cm ∴==,答:AD 的长为24cm.。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

初中七年级数学竞赛试题及参考答案1

初中七年级数学竞赛试题及参考答案1

七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是随意有理数,则2 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3交换其中的一个非0数码后,使所得的数最大,则被交换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1的对应点A 、B , A 是线段的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。

两人做嬉戏,嬉戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。

则赢的时机大的一方是( )A .红方B .蓝方C .两方时机一样D .不知道 5.假如在正八边形硬纸板上剪下一个三角形(如图①中的阴影局部),那么图②,图③,图④中的阴影局部,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影局部,依次进展的变换不行行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中一样的物体质量相等。

图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( ) A .15 B .16 C .18 D .19 二.填空题(每题4分,共28分)x图①图②图③ 图④9.定义a*,若3*31,则x 的值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)数学竞赛试题
2012——2013学年第一学期姓名班级
一、选择题(10×4=40)
1、清晨,蜗牛从树根沿着树干往上爬,树高10米,白天爬上4米,夜间滑下3米,那
么蜗牛从树根爬上树顶需几天()
A、10天
B、9天
C、8天
D、7天
2、如果△+△= ★,○= □+□,△= ○+○+○+○,那么★÷□=()
A、2
B、4
C、8
D、16
3、某商家为了吸引顾客,先把原价提升了20%,再以八折出售,实际上商家给顾客的
优惠是( )
A、16%
B、20%
C、4%
D、2%
4、缸内红茶菌的面积每天长大一倍,若19天长满整个缸面,那么经过()天
长满缸面的一半
A 、5 B、7 C 、16 D、18
5、下列说法中不正确的是()
A、小于-1的有理数比它的倒数小
B、非负数的相反数不一定比它本身小
C、小于零的有理数的立方小于原数
D、小于零的有理数的二次幂大于原数
6、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),
然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()
7、在一列数1,2,3,4,……,1000中,数字“0”出现的次数一共为()(A)182 (B)189 (C)192 (D)194 8、若5
=
a,3
=
b,那么b
a⨯的值有( )个
(A)4 (B)3 (C)2 (D)1
9.如图1,在数轴上表示到原点的距离为3个单位的点有
A.D点B.A点
C.A点和D点D.B点和C点
10、若∣x-
2
1
∣+(2y+1)2=0,则x2+y2的值是()
A、0
B、
2
1
C、
4
1
D、1
二填空题(8×5=40)
1、有一条长500米的公路,现在要对公路进行绿化,每隔4米栽树一颗,这样一共要
栽树_________颗。

2、定义:a⊙b=ab+a+b,若3⊙x=27,则x的值是________。

3、小明在做数学作业时,把一个多项式加上ab+3bc-2ac时误认为减去此式,所以得到
答案为:2ab-3bc+4ac,试求出正确的答案:________________。

4、一次晚会有n(n≥2)人参加,假设每每两人握一次手,那么一共有_________次握手。

如果n=100,共有_________次握手。

5、线段AB被分为2:3:4三部分,若第一部分与第三部分的两个中点距离是4.2cm,
那么线段AB的长为___________cm。

6、从山脚到山顶的公路上为3千米,小明上山每小时行走2千米,下山时每小时行3
千米,那么小明上山和下山的平均速度为____________千米/小时。

7、某省有两种手机的收费方式:“小灵通”每月话费是10元月租费,加上每分钟0.4
元通话费;“神州行”每月话费是25元月租费,加上每分钟0.2元的通话费。

若某手机用户估计月通话时间在150分钟左右,则他应选择 _____________方式。

8、有人问杨老师:“你班里有多少学生?”,杨老师说:“我班现在有一半学生在参加
数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。

则杨老师班里学生的人数是。

图1
三 计算题(5×8=40)
1、()()20032003
42425.013
1)51()5131(⨯-+-+-÷÷-
2、三家文具店,作业本的价格都是每本0.5元,不过店家的优惠措施不同,华丰店:一律九折优惠;新华店:买5本送1本;文苑店:满55元八折优惠。

某班要买作业本100本,你认为去哪家买比较合算?为什么?
3、有若干个数,第一个数记作a 1,第二个数记作a 2,第三个数记作a 3……,
第n 个数记作a n ,若a 1=-0.5,从第二个数开始,每个数都等于1与它前面的数差的倒数。

(8分)
(1)计算 a 2=___________ a 3=__________
a 4=____________
(2)猜想 a 2004=__________
a 2005=__________
4、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200
元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
5、医学研究表明,身高是具有一定遗传性的,因此可以根据父母身高预测子女成年后的身高,其计算方法是:
儿子身高=21
(父亲身高+母亲身高)×1.08
女儿身高=
2
1
(父亲身高×0.923+母亲身高) (1)如果某对父母的身高分别是m 米和n 米,请人预测他们儿子和女儿成年后的身高。

(用代数式表示)
(2)小明(男)的父亲身高1.75米,母亲身高1.62米,求小明成年后的身高。

相关文档
最新文档