7.7 机械能守恒定律的应用
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学的一个基本定律,基于质点系的动能和势能守恒。
应用广泛,不仅在物理学和工程学领域中有重要的应用,还可以用于探索自然界的现象,如机械系统的运动以及衍射和透射的现象等。
机械能守恒定律的应用一般可以分为以下几个方面:1. 机械系统的运动学分析机械系统的运动学分析是机械能守恒定律应用的一个重要方面。
在机械系统的运动中,当机械系统中的质点的动能和势能发生变化时,机械能守恒定律可以用来描述机械系统的运动状态。
这是因为机械能守恒定律可以把机械系统的动能和势能统一起来,描述各种机械能的转化过程,从而揭示机械系统的运动规律。
2. 动力学分析机械能守恒定律也可以用于机械系统的动力学分析,即利用力学原理分析机械系统的运动。
在动力学分析中,机械能守恒定律可以用来描述机械系统中的能量转化过程,并且根据保守力的定义,机械能守恒定律可以应用于一些复杂的力学系统中,例如弹性分析和简谐振动分析等。
3. 能量转移分析机械能守恒定律还可以用于描述能量转移过程。
当机械系统中有多个物体或者质点时,一些物体或者质点的机械能的改变会导致其他物体或者质点的机械能发生变化。
应用机械能守恒定律可以描述机械能在不同物体或者质点之间的转移和转化过程,分析物体或者质点之间的互动关系。
4. 实际工程应用机械能守恒定律还可以用于实际的工程设计和应用中。
例如,这个定律可以用于分析蒸汽轮机和燃气轮机等能量转换设备的能量转移过程,和电站发电过程中的能量变化。
机械能守恒定律也可以用于设计机动车辆和飞机等交通工具的发动机动力系统和轮程。
总的来说,机械能守恒定律是理解运动和能量转换的基本定律,它的应用不仅限于物理学和工程学,也可以用于研究自然界的现象,解释物理现象,如弹性分析,电磁波,粒子加速器等,并在生活的各个方面,如交通、工业生产和住房设计等方面得到应用。
机械能守恒定律的应用

机械能守恒定律的应用在物理学中,机械能守恒定律是一条基本的物理定律,它描述了在一个孤立的力学系统中,总的机械能保持不变。
这个定律可以被广泛应用于各种物理现象和工程问题中。
本文将探讨机械能守恒定律的应用,并以实际例子加以说明。
一、弹簧势能和重力势能的转化机械能守恒定律可以应用于弹簧势能和重力势能的相互转化的问题。
考虑一个弹簧与一个质点连接,并将这个质点放置在重力场中。
当质点在弹簧的作用下沿着垂直方向运动时,弹簧的势能和重力势能会相互转化。
假设质点在某一时刻具有高度h,速度v,弹簧的劲度系数为k。
根据机械能守恒定律,质点的机械能E可以表示为:E = mgh + (1/2)mv^2 + (1/2)kx^2其中m是质点的质量,g是重力加速度,x是弹簧的伸缩量。
在运动过程中,如果质点在距离平衡位置的位置发生变化,即x不等于零,那么弹簧的势能和重力势能会发生相应的变化。
然而,总的机械能E在整个过程中保持不变。
二、轨道运动中的机械能守恒机械能守恒定律在轨道运动中也有重要的应用。
考虑一个质点在离心力和引力的作用下在一个假设无摩擦的平面上运动。
根据机械能守恒定律,质点的机械能E在整个运动过程中保持不变。
在一个闭合轨道上,质点具有速度v和离心力F_c,引力和重力力F_g。
根据机械能守恒定律,质点的机械能E可以表示为:E = (1/2)mv^2 - GmM/r其中M是引力中心的质量,r是质点与引力中心之间的距离,G是引力常数。
在闭合轨道上,质点的速度和距离会相应变化,但机械能E保持不变。
三、动能转化与物体碰撞机械能守恒定律还可以应用于动能转化和物体碰撞的问题。
在一个孤立的力学系统中,当两个物体碰撞时,它们的机械能可以部分转化为其他形式的能量,如热能或变形能。
考虑两个质量分别为m1和m2的物体,在碰撞前具有速度v1和v2。
根据机械能守恒定律,碰撞后物体的机械能E'可以表示为:E' = (1/2)m1v1'^2 + (1/2)m2v2'^2其中v1'和v2'是碰撞后物体的速度。
机械能守恒定律在生活中的应用

机械能守恒定律在生活中的应用机械能守恒定律是热力学理论之一,它明确指出了机械能在物质系统中的守恒,也就是机械能是不会因物质系统的任何变化,而耗散掉或消失,而是以形式转移而变化形式,如势能转换成做功的动能,动能转换成位能等。
机械能守恒定律,更具体地说是物体在运动过程中,机械能总量保持不变,在生活中其应用是极为广泛的,下面我们就来看一下机械能守恒定律在生活中的应用。
首先是功的概念。
功的大小取决于物体的运动量,而机械能守恒定律就是在描述物体在运动过程中机械能的守恒性质,这意味着物体在运动过程中,机械能不会发生改变,功也就不会发生改变,功的定义就是物体运动过程中,物体所受外力所产生的机械能变化的绝对值,因此机械能守恒定律对求解功的数值也是十分有用的。
其次是动量的概念。
动量的大小取决于物体的速度和质量,而机械能守恒定律可以帮助我们理解物体的动量的守恒性质,也就是物体在运动过程中,动量不会发生改变,在动量保持不变的前提下,机械能守恒定律也就可以帮助我们求解物体的动量,所以机械能守恒定律可以用来求解物体的动量,尤其是当物体发生冲突或碰撞等运动中,机械能守恒定律就显得更加的重要。
第三是热力学的概念。
热力学就是研究热能的转化过程,而机械能守恒定律就是指当某一物质系统经历热力学变化后,机械能总量不变。
这就意味着热力学变化会一方面损耗掉能量,另一方面会形成新的能量,所以机械能守恒定律可以帮助我们理解热力学变化过程中,物体能量净变化的过程。
最后是简谐运动。
简谐运动是物体运动的一种特殊形式,其运动中,物体总能保持原有的运动轨迹,而这正是机械能守恒定律起作用的地方,机械能守恒定律指出,物体在受外力作用时,不会改变机械能的总量,而内力是外力的反作用,因此物体的简谐运动就能够保持机械能的守恒,也就保持了物体原有的运动轨迹。
从上述内容可以看出,机械能守恒定律在生活中的应用非常广泛,它可以帮助我们理解功、动量、热力学以及简谐运动等基本概念,同时更能帮助我们确定物体的功与动量,以及热力学变化过程中物体能量净变化的过程,这样就可以让人们在生活中更好地利用基本物理定律,更好地掌握非常实用的知识和技能。
机械能守恒定律的应用

7、7 机械能守恒定律的应用一、教学目标1.熟悉应用机械能守恒定律解题的步骤.2.明了应用机械能守恒定律分析问题的注意点.二、重点·难点及解决办法1.重点:机械能守恒定律的具体应用。
2.难点:应用机械能守恒定律和动能定律分析解决较复杂的力学问题。
3.解决办法(1)分析典型例题,解剖麻雀,从而掌握机械能守恒定律应用的程序和方法。
(2)比较研究,能准确选择解决力学问题的方法、灵活运用各种定律分析问题。
三、教学步骤【引入新课】复习上节课的机械能守恒定律内容及数学表达式. 【新课教学】1、应用机械能守恒定律解题的步骤:(1)根据题意选取研究对象(物体或系统);(2)分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒; (3)确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能; (4)根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性。
例1:如图所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为。
的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?分析及解答: 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v m mg c 2= 得 gR mR v mc 2212= 在圆轨道最高点小球机械能mgR mgR E C 221+=在释放点,小球机械能为 mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解设R h 25= 同理,小球在最低点机械能 221B B mv E =gR v E E B C B 5:=小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.例2.长l=80cm 的细绳上端固定,下端系一个质量m =100g 的小球。
物理知识点总结机械能守恒定律的应用

物理知识点总结机械能守恒定律的应用物理知识点总结:机械能守恒定律的应用机械能守恒定律是物理学中一个重要的定律,它描述了一个封闭系统中机械能的守恒。
在本文中,我们将会详细介绍机械能守恒定律的含义、应用以及相关的例子。
一、机械能守恒定律的含义机械能守恒定律是指在一个封闭系统中,当没有外力做功或外力对系统做正功与负功平衡时,系统的总机械能保持不变。
机械能包括动能和势能两部分,动能可表示为1/2mv^2,势能可表示为mgh,其中m 为物体的质量,v为速度,g为重力加速度,h为高度。
二、机械能守恒定律的应用1. 秋千摆动在秋千这个经典的例子中,可以应用机械能守恒定律。
当秋千从最高处释放,没有外力做功时,机械能守恒,动能转化为势能,然后势能转化为动能,不断循环。
2. 弹簧振动当一个物体通过弹簧与墙面相连并被压缩后释放,可以应用机械能守恒定律。
在没有摩擦力和其他非保守力的情况下,弹簧的弹性势能转化为物体的动能,并且在振动过程中能量始终保持不变。
3. 自由落体在自由落体过程中,可以应用机械能守恒定律。
当物体从某一高度自由下落时,重力势能逐渐转化为动能,当物体到达地面时,势能完全转化为动能。
4. 滑雪运动滑雪是运用机械能守恒定律的典型例子。
当滑雪者从山顶下滑时,势能逐渐转化为动能,滑雪者的速度逐渐增加。
而当滑雪者到达平地时,动能完全转化为势能,速度变为零。
5. 力学竞赛项目在力学竞赛项目中,可以运用机械能守恒定律进行分析。
例如,当一个小球从一定高度掉落并击中一个静止的小球时,可以利用机械能守恒定律求解出小球的初始速度或者悬挂点的高度等信息。
三、结论机械能守恒定律是描述封闭系统中机械能守恒的重要定律。
通过应用该定律可以解决多种物理问题,包括秋千摆动、弹簧振动、自由落体、滑雪运动等等。
理解和掌握机械能守恒定律的应用,有助于我们更好地理解和解决物理问题。
机械能守恒定律的运用

机械能守恒定律的运用机械能守恒定律是物理学的基本定律之一,也被视为物理学中最重要的定律之一。
该定律指出,一个系统在不受任何外界额外能量输入的情况下,它的总机械能保持不变。
换言之,机械能守恒定律告诉我们,能量即使在不同形式之间转换,总量仍然保持恒定不变。
机械能包括两种形式:动能和势能。
动能是物体在运动中具有的能量,通常表示为K=1/2mv^2(其中m是物体的质量,v是物体的速度)。
势能是物体在受力下具有的能量,通常表示为U=mgh(其中m是物体的质量,g是重力加速度,h是物体的高度)。
机械能守恒定律的应用十分广泛,下面列举了一些常见的例子:1. 滑动摩擦问题在摩擦力不可忽略的情况下,机械能不再是一个恒定值,但摩擦能量可以通过其他方法来解决。
例如,一个物体在斜面上滑动时,摩擦力会减缓物体的速度,从而减少它的动能。
但这种“丢失”的动能会转化为热能,热能会通过摩擦表面散失掉,而机械能仍然守恒。
2. 弹性碰撞问题弹性碰撞指的是两个物体在碰撞时不会失去动能的碰撞。
在这种情况下,机械能守恒定律仍然成立。
例如,一个弹性绳子上的小球撞击另一个小球时,它们之间的动能和势能会以某种方式转化,但总机械能仍然保持不变。
3. 物体下落问题当一个物体从一定的高度落下时,它的势能会被转化为动能。
这个过程可以用机械能守恒定律来描述。
例如,当一个物体从10米高度落下时,如果忽略空气阻力,那么它最终的动能将等于它的势能减去由于空气阻力导致的能量损失。
4. 旋转运动问题在旋转问题中,需要考虑旋转物体的动能和势能。
例如,一个物体绕着轴旋转时,其动能和势能之间存在着某种相互转化。
总之,机械能守恒定律是物理学中最为重要的定律之一,它可以用于解决各种各样的问题,涵盖了机械系统中的大部分现象。
对于该定律的深入理解不仅能够促进我们对机械系统的理解,更能够为我们处理各种与机械能有关的问题提供帮助。
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学中一个非常重要的定律,它对于解释和预测物体运动过程中能量的转化和守恒具有重要的意义。
本文将探讨机械能守恒定律的应用,并通过实例来说明其在实际生活中的重要性。
一、机械能守恒定律的基本概念机械能守恒定律是指在不考虑外力和摩擦力的情况下,系统的机械能保持不变。
机械能由动能和势能两部分组成,动能是物体由于运动而具有的能量,势能是物体由于位置的不同而具有的能量。
根据机械能守恒定律,总机械能保持不变,即初始时的机械能等于末尾时的机械能。
二、机械能守恒定律的应用1. 自由落体运动自由落体运动是指物体在只受重力作用下垂直下落的运动。
根据机械能守恒定律,物体在下落过程中动能的增加等于势能的减少。
例如,一个从高处自由落下的物体在下落的过程中,重力对它做功,势能转化为动能,因此速度会逐渐增加。
2. 弹簧振子弹簧振子是指以弹簧为主要组成部分的振动系统。
根据机械能守恒定律,弹簧振子在振动过程中总机械能保持不变。
当弹簧振子从最大振幅处通行过中点时,势能为零,动能最大;而当弹簧振子从最大振幅处通过最大位移点时,势能最大,动能为零。
3. 车辆制动在车辆制动过程中,制动器对车轮施加摩擦力,将车轮的动能转化为热能,以达到减速和停车的目的。
根据机械能守恒定律,在制动过程中车轮的动能逐渐减小,而热能的产生与动能的消失量相等。
4. 能源利用机械能守恒定律在能源利用中有着广泛的应用。
例如,水力发电利用水的势能和动能转化为电能;风力发电利用风的动能转化为电能。
在能源转换的过程中,我们可以依靠机械能守恒定律来预测和计算能源转化的效率和能量损失情况。
总结:机械能守恒定律是物理学中非常重要的定律,它描述了物体运动过程中能量的转化和守恒。
在自由落体运动、弹簧振子、车辆制动和能源利用等方面都可以应用机械能守恒定律来解释和预测现象。
了解和应用机械能守恒定律有助于我们更好地理解和利用自然界的能量,发展可持续的能源利用方式。
机械能守恒定律的运用

机械能守恒定律的运用一、机械能守恒定律简介机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。
根据机械能守恒定律,我们可以通过计算物体的机械能来分析物体的运动。
二、机械能守恒定律的适用范围机械能守恒定律适用于不受空气阻力和其他非保守力的影响的封闭系统。
在这种情况下,物体的机械能可以通过机械能的转化来保持不变。
机械能包括物体的动能和势能两部分,其中动能与物体的质量和速度有关,势能则与物体的位置和形状有关。
三、机械能守恒定律的数学表达式根据机械能守恒定律,我们可以得到以下数学表达式:总机械能 = 动能 + 势能总机械能 = 常数这意味着在没有外力做功的情况下,物体的总机械能保持不变。
四、机械能守恒定律的运用举例1. 自由落体运动自由落体是指在重力作用下,物体在没有空气阻力的情况下垂直地向下运动。
根据机械能守恒定律,我们可以分析自由落体运动。
在自由落体过程中,物体只受到重力做功,而没有其他外力做功。
因此,物体的机械能保持不变。
起初,物体处于较高位置,只有势能,没有动能。
随着物体下落,势能减少,而动能增加。
当物体到达地面时,势能减少到零,动能达到最大值。
可以利用机械能守恒定律的数学表达式来计算物体在不同位置的势能和动能。
2. 弹簧振动弹簧振动是指当给定物体与一个或多个弹簧连接时,物体在弹簧的作用下来回运动。
在没有外力作用的情况下,根据机械能守恒定律,物体的总机械能保持不变。
在弹簧振动过程中,物体的机械能转化为势能和动能之间的相互转换。
当物体离开平衡位置时,弹簧产生弹性力,将物体拉回平衡位置,使得物体的动能减小,势能增加。
当物体通过平衡位置时,动能最大,势能最小。
可以利用机械能守恒定律的数学表达式来分析弹簧振动过程中势能和动能的变化。
五、结论机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律的应用1、应用机械能守恒定律解题的步骤:(1)根据题意选取研究对象(物体或系统);(2)分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒; (3)确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能; (4)根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性。
例1:如图所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为。
的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?分析及解答: 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v m m g c 2= 得 gR mR v mc 2212= 在圆轨道最高点小球机械能mgR mgR E C 221+=在释放点,小球机械能为 m g h E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解设R h 25= 同理,小球在最低点机械能 221B B mv E =gR v E E B C B 5:=小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.例2.长l=80cm 的细绳上端固定,下端系一个质量m =100g 的小球。
将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放。
不计 各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2。
分析及解答:小球运动过程中,重力势能的变化量0)60cos 1(0=--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k -=∆。
机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg m l v m 又在最低点时,有lv m mg T 2=- 在最低点时绳对小球的拉力大小N N mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 提出问题:通过以上各例题,总结应用机械能守恒定律解决问题的基本方法。
2.机械能守恒定律在多个物体组成系统中的应用对单个物体能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上讲,动能定理比机械能守恒定律应用更广泛更普遍。
故机械能守恒定律主要应用在多个物体组成的系统中。
例3:如图2-8-3所示,粗细均匀的U 形管内装有总长为4L 的水。
开始时阀门K 闭合,左右支管内水面高度差为L 。
打开阀门K 后,左右水面刚好相平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计)解答:由于不考虑摩擦阻力,故整个水柱的机械能守恒。
从初始状态到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管。
系统的重力势能减少,动能增加。
该过程中,整个水柱势能的减少量等效于高L /2的水柱降低L /2重力势能的减少。
不妨设水柱总质量为8m ,则28212v m L mg ⋅⋅=⋅,得8gL v = 例4:如图2-8-4所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。
AO 、BO 的长分别为2L 和L 。
开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。
让该系统由静止开始自由转动,求:当A 到达最低点时,A 小球的速度大小v ? 解答:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。
过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。
222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v =例5:如图22所示,将楔木块放在光滑水平面上靠墙边处并用手固定,然后在木块和墙面之间放入一个小球,球的下缘离地面高度为H ,木块的倾角为θ,球和木块质量相等,一切接触面均光滑,放手让小球和木块同时由静止开始运动,求球着地时球和木块的速度。
解答:此题的关键是要找到球着地时小球和木块的速度的关系。
因为小球和木块总是相互接触的,所以小球的速度V 1和木块 的速度V 2在垂直于接触面的方向上的投影相等,即:V 1Cos θ=V 2Sin θ由机械能守恒定律可得:mgH=mv 12/2+mv 22/2由上述二式可求得:V 1=gH 2.sin θ, V 2=gH 2.cos θ.【同步检测】1、如图2-8-14所示,两质量相同的小球A 、B ,分别用线悬线在等高的O 1、O 2点,A 球的悬线比B 比球的悬线长,把两球的悬线均拉到水平后将小球无初速释放,则经过最低点时(悬点为零势能)( )A.A 球的速度大于B 球的速度 B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能2.如图2-8-15所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是( )A .h 增大,s 可能增大B .h 增大,s 可能减小C .A 减小,s 可能增大D .A 减小,s 可能减小2-8-32-8-42-8-15图222-8-18 3.用平行斜面向下的拉力将物体沿斜面拉下,拉力的大小等于摩擦力,则( )A .物体做匀速运动B .合外力对物体做功为零C .物体的机械能守恒D .物体的机械能减小4.如图2-8-16所示,用长为L 的绳子一端系着一个质量为m 的小球,另一端固定在O 点,拉小球至A 点,此时绳子偏离竖直方向为θ角,空气阻力不计,松手后小球经过最低点的速率为( )A . 2glcos θB . 2gl (1—sin θ)C . 2gl(1—cos θ) D . 2gl5.细绳的一端固定,另一端系一质量为m的小球,小球绕绳的固定点在竖直面内做圆周运动,细绳在小球的最低点和最高点的张力之差 为( )A .mg B .2mg C .4mg D .6mg6.如图2-8-17下列关于能量的叙述中正确的是( )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和不断增加D .重力势能、弹性势能和动能之和总保持不变7.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有( )A .人对小球做的功是2mv 21 B .人对小球做的功是mgh mv 212- C .小球落地时的机械能是2mv 21 D .小球落地时的机械能是mgh mv 212-8.在下面列举的各例中,若不考虑阻力作用,则物体机械能发生变化的是( )A.用细杆栓着一个物体,以杆的另一端为固定轴,使物体在光滑水平面上做匀速率圆周运动 B.细杆栓着一个物体,以杆的另一端为固定轴,使物体在竖直平面内做匀速率圆周运动 C.物体沿光滑的曲面自由下滑D.用一沿固定斜面向上、大小等于物体所受摩擦力的拉力作用在物体上,使物体沿斜面向上运动9.如图2-8-18所示,长为L 1的橡皮条与长为L 2的细绳的一端都固定在O 点,另一端分别系两球A 和B ,A 和B 的质量相等,现将两绳都拉至水平位置,由静止释放放,摆至最低点时,橡皮条和细绳长度恰好相等,若不计橡皮条和细绳的质量,两球经最低点速度相比 ( )A .A 球大B .B 球大C .两球一样大D .条件不足,无法比较10.一根全长为L 、粗细均匀的铁链,对称地挂在轻小光滑的定滑轮上,如图2-8-19所示,当受到轻微扰动,铁链开始滑动,当铁链脱离滑轮瞬间铁链速度大小为 11.从地面以40m/s 的初速度竖直上抛一物体,不计空气阻力,经过T 时间小球的重力势能是动能的3倍,则T= ,这时小球离地高度为 。
12.如图2-8-20所示,光滑圆柱O 被固定在水平平台上,质量为m 的小球用轻绳跨过柱体与质量为M(M>m)的小球相连,开始时,m 与平台接触,两边绳伸直,然后两球从静止开始运动,M 下降,m 上升,当上升到圆柱的最高点时,绳子突然断了,发现m 恰好做平抛运动,则M 是m 的多少倍?2-8-16 2-8-192-8-17 2-8-2013.如图2-8-21,光滑圆管形轨道AB 部分平直,BC 部分是处于竖直平面内半径为R 的半圆,圆管截面半径r<<R ,有一质量m ,半径比r 略小的光滑小球以水平初速v 0射入圆管,(1)若要小球能从C 端出来,初速度v 0多大? (2)在小球从C 端出来的瞬间,对管壁的压力有哪几种典型情况,初速v 0各应满足什么条件?14.如图2-8-22所示,质量为m 的小球由长为L 的细绳(质量不计)固定在O 点,今将小球水平拉至A 点静止释放,在O 点正下方何处钉一铁钉O /方能使小球绕O /点在竖直平面内做圆周运动(设细绳碰钉子时无能量损)15.如图2-8-23所示,半径为r ,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O ,在盘的最右边缘固定有一个质量为m 的小球A ,在O 点的正下方离O 点r/2处固定一个质量也为m 的小球B .放开盘让其自由转动,问:(1)当A 球转到最低点时,两小球的重力势能之和减少了多少? (2)A 球转到最低点时的线速度是多少?(3)在转动过程中半径OA 向左偏离竖直方向的最大角度是多少?16.质量均为m 的物体A 和B 分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B 拉到斜面底端,这时物体A 离地面的高度为0.8米,如图2-8-24所示。
若所有摩擦力均不计,从静止开始放手,让它们运动起来。
试求:(1)物体A 着地前一瞬的速度;(2)物体A 着地后,物体B 沿斜面上滑的最大距离。
2-8-222-8-232-8-24 2-8-2117.如图2-8-25所示,重物A、B、C质量相等,A、B用细绳绕过轻小滑轮相连接,开始时A、B静止,滑轮间细绳长0.6m,现将C物体轻轻挂在MN绳的中点,求:(1)C下落多大高度时速度最大?(2)C下落的最大距离多大?18.如图2-8-26所示,跨过同一高度处的光滑滑轮的细线连接着质量相同的物体A和B.A套在光滑的水平杆上,定滑轮离水平杆高度为h=0.2 m.开始让连A的细线与水平杆夹角θ=53°,由静止释放,在以后的过程中A所能获得的最大速度为_____.(sin53°=0.8,cos53°=0.6)机械能守恒定律练习题答案1.ABD2.ABCD3.C4.C5.D6. CD7.BC8.B9.B 10.11. 2s或6s、60m 12. 5/(π+1)13.v ;N=0 v O=gR5、N>0 v O>gR5、N<0v O<gR514. 3L/5 15. mgr/2 、、37°16. 2m/s、1.6m 17.、0.4m 18.1m/s2-8-252-8-26。