色谱理论基础
仪器分析化学 第一章 色谱基本理论

n理5.54 (Yt1R /2)216 (tYR)2
n有效
5.54( tR' Y1/ 2
)2
16(tR' Y
)2
H有效
L n有效
(二) 塔板数和塔板高度
组分在固定相中的浓度 K 组分在流动相中的浓度
一定温度下,组分的分配系数K越大,出峰越慢; 试样一定时,K主要取决于固定相性质; 选择适宜的固定相可改善分离效果; 试样中的各组分具有不同的K值是分离的基础; 某组分的K = 0时,即不被固定相保留,最先流出。 同一条件下,若两组分的K值相等,则色谱峰重合, 差别越大,色谱峰的距离越大
三. 速率理论-影响柱效的因素
(一). 范.弟姆特(Van Deemter)方程式- 气相色谱速率理论
H = A + B/u + C·u
H:理论塔板高度, u:载气的线速度(cm/s)
减小A、B、C三项可提高柱效; 存在着最佳流速; A、B、C三项各与哪些因素有关?
A─涡流扩散项(eddy diffusion)
(四) 分配比与保留时间的关系
tR = tM(1+k) tR’=ktM
(五) 分配比、分配系数与选择性因子的关系
a = t´R(2)/ t´R(1)= k2 /k1= K2 /K1
讨论:如何使A、B组分完全分离
浓
度
A
B
A
B
组分A、B在沿柱移动时不同位置的浓度轮廓
1.两组分的分配系数必须有差异 2.区域宽度的扩展速度应小于区域分离的速度 3.在保证快速分离的前提下,提供足够长的色谱柱
分离科学-色谱基础理论

Cs −∆ µ ∆ µ ∆ G K= = ex p( ) ln K = − =− Cm R T R (1-5) T T R
0
0
0
∆G = ∆H −T∆S
0 0
0
−∆ H ∆ S ln K = + R T R
00Βιβλιοθήκη 相互作用力差 焓变) 别(焓变) 自由度的变 熵变) 化(熵变)
(1-6)
官能基团 分子大小和 空间排列
峰形预测 重叠峰定量解析 选择最佳分离方法
线性理想色谱。溶质的迁移决定于分配系数, ( 1) 线性理想色谱 。 溶质的迁移决定于分配系数, 迁移过程中谱带形状不变
Cs 1 2 Cs 1 2 Cm Cm
( 2 ) 非线性理想色谱。 谱带不对称, 呈鲜明的前 非线性理想色谱 。 谱带不对称 , 升或者拖尾
µs = µ +R lnαs T
0 s
µm = µ +R lnαm T
0 m
µ + R lnαs = µ + R lnαm T T
0 s 0 m
色谱体系中溶质量很小,一般做稀溶液处理: 色谱体系中溶质量很小,一般做稀溶液处理:
Cs 0 0 R ln T( ) = −(µs −µm) Cm
分配系数K 分配系数K
(5)假定流动相不是采取连续的方式前进,而是 跳跃式前进。设q和 p分别是柱的横截面积和在柱 横截面积中流动相所占据的截面积分数,那么一个 塔板上流动相所占据的空间体积为Hqp。当通过色 谱柱的流动相体积为V时,相当于流动相在整个柱 内每个塔板上跳动的次数为r=V/Hqp。 (6)全部样品开始都集中在第一块塔板上。 (7)分配系数不随组分浓度变化,即分配等温线 是线性的。
色谱理论基础

无关。k值大小可直接从色谱图上测量。有关计算式如下:
k tr t0 Vr V0
t0
V0
恒流速 t0 的测定
基本保留方程 分离因子
tr = t0 (1+k) Vr = F tr
Vr V0 (1 k) V0 KVs
t r2 K2 k2
t r1 K1 k1
色谱分离的特征之一是组分在色谱柱上有不同程度上 的滞留。由于色谱固定相面积很大、液膜很薄, 组分通 过色谱柱时, 它们在两相间的分配被认为是达到平衡的。 优先分配在固定相的组分在柱上的保留时间最长, 而分 配系数小的组分保留时间短。换句话说,溶质的保留行 为是其平衡分配性质的函数。组分之间平衡分配性质的 差异给色谱分离提供了可能性。
G为负值, 则柱温与分配系数成反比。一般温度上升,
K值下降, 这导致组分移动速度增加, 保留值下降。
对任何色谱过程, 分配系数对温度的变化率为:
d ln K H
dTc RTc
在气相色谱中, 组分从气相转移到液相, 其H值大,
常用控制柱温来调节分离;而在液相色谱中, 组分从
液相转移另一液相(固定相), 其H值要小得多。所
以液相色谱对温度变化不太敏感, 一般在室温下操作。
对于气相色谱分析, 柱温上升20℃,K下降一半,
低温有利于分离,高温有利于分析速度。 同样,柱温的稳定性严重影响GC的保留值,商品
仪器的柱温控制精度为±0.2℃。
问题:在色谱分析中,温度除了对分离结果 有影响外,还有其它影响吗?
补充材料
GC中的温度控制
中, uX = u,即X谱带的迁移速度与流动相分子通过色 谱柱的速度一样。
色谱理论基础

09:14:25
色谱柱长:L, 虚拟的塔板间距离:H,色谱柱的理论塔 板数:n,则三者的关系为:
n=L/H 色谱峰的方差 与柱长或保留时间的关系为:
H
2 L
L
t2 L
t
2 R
理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
09:14:25
d2 f
d2 f
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的主 要因素,流速,柱效。 载气流速低时: 分子扩散项成为影响柱效的 主要因素,流速,柱效 。 H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影 响使得存在着一个最佳流速值,即速率方程式中塔板高度 对流速的一阶导数有一极小值。 以塔板高度H对应载气流速u作图,曲线最低点的流速 即为最佳流速。
区域宽度──色谱过程的动力学因素。
色谱分离中的四种情况如图所示:
09:14:25
讨论:
色谱分离中的四种情况:
① 柱效较高,△K(分配系数)较大,完全分离。 ② △K不是很大,柱效较高,峰较窄,基本分离。 ③柱效较低,△K较大,但分离的不好。 ④ △K小,柱效低,分离效果更差。
09:14:25
分离度的表达式:
09:14:25
例题2:
在一定条件下,两个组分的保留时间分别为12.2s和 12.8s,计算分离度(柱长 1m,n=3600)。要达到完全 分离,即R=1.5,所需要的柱长。 解: t 4 12.2
Wb1 4
R1
3600 t R 2 4 12.8 Wb 2 4 0.8533 n 3600
第二章色谱基础理论(本)

基础理论
46
基础理论
47
范氏方程说明:
▪ u一定时,A,B,C越小,H越小,柱效越
高,色谱峰越窄;颗粒越小,H越小,柱 效越高。
▪ U很小时,B/U项占主导,CU项可忽略 ▪ U很大时,CU项占主导,B/U项可忽略
基础理论
48
综合考虑: U实际稍高于Uopt 因为: 1.右侧曲线斜率小,U稍变化不会引起
拖尾因子(fs) x = h/20
fs =(B+A)/2A
fs = 0.95-1.05 正常峰
fs <0.95
前延峰
fs >1.05
拖尾峰
即使不进样也会出现的峰
20% - 100% MeOH
60
没有进样
15
30
问题:流动相脏
15
0
3
7
15
17
基础理论
13
二、定 性 参 数
W
(t tR )2
e 2 2
V 2
---呈正态分布 t=tR时,C=Cmax
基础理论
31
Cmax的影响因素:
进样量W愈大,则Cmax愈大,W与Cmax 成正比。 色谱柱内径愈小,填充愈紧密,Cmax/W比值愈
大。即柱愈细填充愈紧密,柱效N越高。 色谱柱愈短,Cmax值愈大。 先出柱的组分k’小,所以Cmax/W大。提高柱温 (GC),增加强洗脱剂的浓度(HPLC),可使
总结
●热力学:保留值的差 别要足够大 Sig
●动力学:色谱峰要
足够窄
Sig
基础理论
time time time 51
第四节 分子间作用力
基础理论
52
一、定向力
第2节 色谱理论基础

色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为: n=L/H 理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 ) = 16( ) n = 5.54( Y1/ 2 Wb
09:49:37
2.有效塔板数和有效塔板高度
• • • 单位柱长的塔板数越多,表明柱效越高。 用不同物质计算可得到不同的理论塔板数。 组分在 tM 时间内不参与柱内分配。需引入有
09:49:372Βιβλιοθήκη 5 (tm)45 49
mm
解:(1)
2 (t −t )
R1 2
R=
R2 1
Y +Y
=
( 49 − 45 ) 5
= 0 .8
n
eff
= 16(
t
' R
2
2 ) = 16 × (
49 − 5 5
2 ) ≈ 1239
Y
2
09:49:37
1 Sample 0 (2)
neff
2
5 (tm)
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论
09:49:37
例题2:
有一根1m长的色谱柱,分离1和2两个组分,得到如下图所 示的色谱图。横坐标为记录笔的走纸距离(mm),假设1和2 的峰底宽度相等,为5mm。 求 (i)1和2组分之间的分离度(R)及有效塔板数(neff) (ii)若欲得到Rs=1.2的分离度,有效塔板数应为多少? (iii)若想达到完全分离,色谱柱要加到多长? 1 Sample 0
色谱基础

图4-7 某组分的色谱图
12
(1)色谱术语 :保留时间、调整保留时间、 保留体积、调整保留体积
• 保留时间(retention time):从进样到组分峰顶点之间测得的时 间,用tR表示。 • 调整保留时间(adjusted retention time):组分的保留时间扣除 死时间后的时间。 • 保留体积(retention volume):从进样开始到监测器中样品浓 度最大时,流动相流经色谱柱的体积。 • 调整保留体积(adjusted retention volume):保留体积扣除死体 积后的体积。
即相对保留因子可以用来表示固定相的选择性,因 此也称为选择性系数(用α表示) ,可以用来衡量固
定相是否选择合适。
15
(1)色谱术语 :相对保留因子(也称选择性系数)
采用相对保留因子可以消除一些仪器操作条件的 影响。只要柱温,固定相和流动相的性质保持不 变,即使柱长、柱径、填充情况及流动相的流速 有所变化,由于相对保留值在较短的时间间隔内 进行测定,实验条件队保留值的影响在分子、分 母中都存在,其比值仍基本保持不变,因此她是 气相色谱中广泛使用的定性数据。
色谱理论研究物质在色谱过程中的运动规律,如解释色谱流 出曲线的形状,色谱峰变宽的机理,从而为色谱分离条件的 选择提供理论指导。
基本 理论
塔板理论 速率理论
分离度
A、B两组分分离所要满足的条件: 1.两组分的分配系数有差异 2.区域扩宽的速率小于区域分离的速率 3.有足够长的色谱柱
19
§4-2
色谱理论简介
色谱 图
图4-4 某组分的色谱图
10
(1)色谱术语:基线与基线漂移
• 基线:在色谱操作条件下,仅有流动相通过监测器时,由 记录仪得到的信号-时间曲线。 • 基线漂移:基线随时间定向缓慢地变化。
色谱基本概念和理论

Ⅱ 基本概念和理论一、基本概念和术语1.色谱图和峰参数⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。
一般应平行于时间轴。
⊕噪音(noise)――基线信号的波动。
通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。
⊕漂移(drift)基线随时间的缓缓变化。
主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。
⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。
流出曲线上的突起部分。
正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。
不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。
⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。
也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。
T<0.95为前延峰,T>1.05为拖尾峰。
⊕峰底――基线上峰的起点至终点的距离。
⊕峰高(Peak height,h)――峰的最高点至峰底的距离。
⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。
W=4σ。
⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。
W h/2=2.355σ。
⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。
正常峰宽的拐点在峰高的0.607倍处。
标准偏差的大小说明组分在流出色谱柱过程中的分散程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23:45:30
例题2:
在一定条件下,两个组分的保留时间分别为 12.2s和12.8s ,计算分离度。要达到完全分离,即R=1.5,所需要的柱长。
解:
t R1 4 12.2 Wb 1 4 0.8133 n 3600 t R 2 4 12.8 Wb 2 4 0.8533 n 3600
23:45:30
一、塔板理论-柱分离效能指标
1.塔板理论(plate theory)
半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续 的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程); 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅 速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 (动画)
2 (12.8 12.2) 分离度: R 0.72 0.8533 0.8133 2 2 R2 1.5 L2 R L1 0.72 1 4.34 m 1 塔板数增加一倍,分离度增加多少?
23:45:30
请选择内容:
(4) 各种因素相互制约,如载气流速增大,分子扩散项的影 响减小,使柱效提高,但同时传质阻力项的影响增大,又使 柱效下降;柱温升高,有利于传质,但又加剧了分子扩散的 影响,选择最佳条件,才能使柱效达到最高。
23:45:30
三、 分离度
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
(t 'R ( 2 ) t 'R (1) 1) t 'R (1) Wb
( r21 1) n有效 Wb r21 16
t 'R ( 2 )
n有效
r21 2 16 R ( ) r21 1
2
r21 2 L 16 R ( ) H 有效 r21 1
23:45:30
ห้องสมุดไป่ตู้ 讨论:
(1)分离度与柱效
分离度与柱效的平方根成正比, r21 一定时,增加柱效
,可提高分离度,但组分保留时间增加且峰扩展,分析时间 长。
(2)分离度与r21
增大r21是提高分离度的最有效方法,计算可知,在相同 分离度下,当r21增加一倍,需要的n有效 减小10000倍。 增大r21的最有效方法是选择合适的固定液。
H 有效
23:45:30
L n有效
3.塔板理论的特点和不足
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越 小),被测组分在柱内被分配的次数越多,柱效能则越高,所 得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。 (3) 柱效不能表示被分离组分的实际分离效果,当两组 分的分配系数K相同时,无论该色谱柱的塔板数多大,都无法 分离。 (4) 塔板理论无法解释同一色谱柱在不同的载气流速下 柱效不同的实验结果,也无法指出影响柱效的因素及提高柱 效的途径。
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。 • 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
tR 2 tR 2 n理 5.54( ) 16( ) Y1 / 2 Wb
' ' tR t n有效 5.54( ) 2 16( R ) 2 Y1 / 2 Wb
(动画)
固定相颗粒越小 dp↓ ,填充的越均匀, A↓,H↓ ,柱效 n ↑ 。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱 峰较窄。
23:45:30
B/u —分子扩散项
B = 2 νDg ν :弯曲因子,填充柱色谱,ν <1。
(动画)
Dg:试样组分分子在气相中的扩散系数(cm2· s-1) (1) 存在着浓度差,产生纵向扩散; (2) 扩散导致色谱峰变宽,H↑(n↓),分离变差; (3) 分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑; (4) 扩散系数:Dg ∝(M载气)-1/2 ; M载气↑,B值↓。
结束
23:45:30
23:45:30
色谱柱长:L, 虚拟的塔板间距离:H,
色谱柱的理论塔板数:n,
则三者的关系为: n=L/H
理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
保留时间包含死时间,在死时间内不参与分配!
23:45:30
2.有效塔板数和有效塔板高度
23:45:30
d2 f
2 df
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的 主要因素,流速,柱效。 载气流速低时: 分子扩散项成为影响柱效 的主要因素,流速,柱效 。 H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影 响使得存在着一个最佳流速值,即速率方程式中塔板高度对 流速的一阶导数有一极小值。 以塔板高度H对应载气流速u作图,曲线最低点的流速即 为最佳流速。
23:45:30
B· u —传质阻力项
C =(Cg + CL)
(动画)
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
0.01k Cg 2 (1 k ) Dg
2 k CL 2 3 (1 k ) DL
k为容量因子; Dg 、DL为扩散系数。 减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
第八章 色谱分析基础
fundamental of chromatograph analysis
一、塔板理论
plate theory
二、速率理论
rate theory
第二节 色谱理论基础
fundamental of chromatograph theory
三、分离度
resolution
23:45:30
④ △K小,柱效低,分离效果更差。
23:45:30
分离度的表达式:
R 2(t R ( 2 ) t R (1) ) Wb( 2 ) Wb(1) 2(t R ( 2 ) t R (1) ) 1.699(Y1/ 2( 2 ) Y1/ 2(1) )
R=0.8:两峰的分离程度可达89%; R=1:分离程度98%; R=1.5:达99.7%(相邻两峰完全分离的标准)。
23:45:30
3. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。 (2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
(3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论;
第一节 色谱法概述
generalization of chromatograph analysis
第二节 色谱理论基础
fundamental of chromatograph theory
第三节 色谱定性、定量方法
qualitative and quantitative analysis in chromatograph
23:45:30
二、 速率理论-影响柱效的因素
1. 速率方程(也称范.弟姆特方程式)
H = A + B/u + C· u
H:理论塔板高度, u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效;
存在着最佳流速;
A、B、C三项各与哪些因素有关?
23:45:30
A─涡流扩散项
A = 2λdp
dp:固定相的平均颗粒直径 λ:固定相的填充不均匀因子
23:45:30
例题1:
在一定条件下,两个组分的调整保留时间分别为 85秒和 100秒,要达到完全分离,即R=1.5 。计算需要多少块有效 塔板。若填充柱的塔板高度为0.1 cm,柱长是多少? 解: r21= 100 / 85 = 1.18 n有效 = 16R2 [r21 / (r21 —1) ]2 = 16×1.52 ×(1.18 / 0.18 ) 2 = 1547(块) L有效 = n有效· H有效 = 1547×0.1 = 155 cm 即柱长为1.55米时,两组分可以得到完全分离。
难分离物质对的分离度大小受色谱过程中两种因素的综
合影响:保留值之差──色谱过程的热力学因素; 区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
23:45:30
讨论:
色谱分离中的四种情况的讨论: ① 柱效较高,△K(分配系数)较大,完全分离; ② △K不是很大,柱效较高,峰较窄,基本上完全分离; ③柱效较低,,△K较大,但分离的不好;
23:45:30
令Wb(2)=Wb(1)=Wb(相邻两峰的峰底宽近似相等),引入相对 保留值和塔板数,可导出下式:
R
2(t R ( 2 ) t R (1) ) Wb( 2 ) Wb(1) ( r21 1) t 'R ( 2 ) t 'R (1)
2
t 'R ( 2 ) t 'R (1) Wb