2021年高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课时达标训练 新人教A版

合集下载

人教版数学高二-《回归分析的基本思想及其初步应用》 精品课件 人教

人教版数学高二-《回归分析的基本思想及其初步应用》 精品课件 人教

什么是回归分析?
(内容)
1. 从一组样本数据出发,确定变量之间的数学关 系式
2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪些 变量的影响显著,哪些不显著
3. 利用所求的关系式,根据一个或几个变量的取 值来预测或控制另一个特定变量的取值,并给 出这种预测或控制的精确程度
2021/5/12
郑平正 制作
11
思考: 产生随机误差项e的原因是什么?
随机误差e的来源(可以推广到一般):
1、用线性回归模型近似真实模型所引起的误差;
2、忽略了其它因素的影响:影响身高 y 的因素不 只是体重 x,可能还包括遗传基因、饮食习惯、 生长环境等因素;
3、身高 y 的观测误差。
以上三项误差越小,说明我们的回归模型的拟合 效果越好。
r∈[0.75,1]—正相关很强; r∈[-0.75,-0.3]--负相关一般; r∈[0.3, 0.75]—正相关一般; r∈[-0.25, 0.25]--相关性较弱;
例2:一只红铃虫的产卵数y与温度x有关,现收集 了7组观测数据,试建立y与x之间的回归方程
温度x 21 23 25 27 29 32 35 产卵数y 7 11 21 24 66 115 325
解:1)作散点图; 350 300
250
200
产卵数
150
100
50
0
20
22
24
26
28
30
32
34
36
从散点图中可以看出产卵数和温度之间 温度 的关系并不能
在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的 线性相关性越强)。

高中数学选修2-3公开课教案3.1回归分析的基本思想及其初步应用

高中数学选修2-3公开课教案3.1回归分析的基本思想及其初步应用

第三章、统计案例3.1回归分析的基本思想及其初步应用(共计4课时) 授课类型:新授课一、教学内容与教学对象分析学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

二、学习目标1、知识与技能通过本节的学习,了解回归分析的基本思想,会对两个变量进行回归分析,明确建立回归模型的基本步骤,并对具体问题进行回归分析,解决实际应用问题。

2、过程与方法 本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R 的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤。

3、情感、态度与价值观 通过本节课的学习,首先让显示了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心。

加强与现实生活的联系,以科学的态度评价两个变量的相关系。

教学中适当地增加学生合作与交流的机会,多从实际生活中找出例子,使学生在学习的同时。

体会与他人合作的重要性,理解处理问题的方法与结论的联系,形成实事求是的严谨的治学态度和锲而不舍的求学精神。

培养学生运用所学知识,解决实际问题的能力。

三、教学重点、难点教学重点:熟练掌握回归分析的步骤;各相关指数、建立回归模型的步骤;通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法。

教学难点:求回归系数 a , b ;相关指数的计算、残差分析;了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较。

高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用(第3课时)教案 新人教A版选修23

高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用(第3课时)教案 新人教A版选修23

3.1 回归分析的基本思想及其初步应用第三课时教学目标知识与技能能根据散点分布特点,建立不同的回归模型;知道有些非线性模型通过变换可以转化为线性回归模型;通过散点图及相关指数比较不同模型的拟合效果.过程与方法通过将非线性模型转化为线性回归模型,使学生体会“转化”的思想;让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观通过案例的解决,开阔学生的思路,培养学生的探索精神和转化能力,并通过合作学习,培养学生的团队合作意识.重点难点教学重点:通过探究使学生体会有些非线性模型运用等量变换、对数变换可以转化为线性回归模型;教学难点:如何启发学生“对变量作适当的变换(等量变换、对数变换)”,变非线性为线性,建立线性回归模型.教学过程引入背景材料我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,在棉花的种植过程中,病虫害的防治是棉农的一项重要任务,如果处置不当就会造成棉花的减产.其中红铃虫就是危害棉花生长的一种常见害虫,在1953年,我国18省曾发生红铃虫大灾害,受灾面积300万公顷,损失皮棉约二十万吨.如图就是红铃虫的有关图片:红铃虫喜高温高湿,适宜各虫态发育的温度为25~32 ℃,相对湿度为80%~100%,低于20 ℃和高于35 ℃卵不能孵化,相对湿度60%以下成虫不产卵.冬季月平均气温低于-4.8 ℃时,红铃虫就不能越冬而被冻死.为采取有效防治方法,有必要研究红铃虫的产卵数和温度之间的关系.现收集了红铃虫的产卵数y和温度x之间的7组观测数据列于下表:(1)试建立y与x之间的回归方程;并预测温度为28 ℃时产卵的数目.(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?学生活动:类比前面所学过的建立线性回归模型的步骤,动手实施.活动结果:(1)画散点图:通过计算器求得线性回归方程:y ^=19.87x -463.73.当x =28 ℃时,y ^=19.87×28-463.73≈93,即温度为28 ℃时,产卵数大约为93. (2)进行回归分析计算得: R 2≈0.746 4,即这个线性回归模型中温度解释了74.64%产卵数的变化.设计目的:通过背景材料,加深学生对问题的理解,并明白“为什么要学”.体会问题产生于生活,并通过问题的解决复习建立回归模型的基本步骤.探究新知提出问题:结合数据可以发现,随着自变量的增加,因变量也随之增加,气温为28 ℃时,估计产卵数应该低于66个,但是从推算的结果来看93个比66个却多了27个,是什么原因造成的呢?学生活动:分组合作讨论交流.学情预测:由于我们所建立的线性回归模型的相关指数约等于0.746 4,即解释变量仅能解释预报变量大约74.64%的变化,所占比例偏小.这样根据我们建立的模型进行预报,会存在较大的误差.我们还可以从残差图上分析一下我们所建立的回归模型的拟合效果:画出残差图根据残差图可以发现,残差点分布的带状区域较宽,并不集中,这表明我们所建立的回归模型拟合效果并不理想.之所以造成预报值偏差太大的原因是所选模型并不理想.实际上根据散点图也可以发现,样本点并没有很好地集中在一条直线附近,故变量之间不会存在很强的线性相关性.设计目的:引导学生对结果进行分析,从而发现存在的问题,激发好奇心、求知欲.同时培养学生对问题的洞悉能力,增强对结果的敏感自检能力.理解新知提出问题:如何选择合适的回归模型进行预测呢?学生活动:学生讨论,教师合理引导学生观察图象特征,联想学过的基本函数.学情预测:方案一:建立二次函数模型y =bx 2+a. 方案二:建立指数函数模型y =c 1ac 2x.提出问题:如何求出所建立的回归模型的系数呢?我们不妨尝试解决方案一中的系数.学生活动:分组合作,教师引导学生观察y =bx 2+a 与y =bx +a 的关系.学情预测:通过比较,发现可利用t =x 2,将y =bx 2+a(二次函数)转化成y =bt +a(一次函数).求出x利用计算器计算出y 和t 的线性回归方程:y ^=0.367t -202.54,转换回y 和x 的模型:y ^=0.367x 2-202.54.当x =28 ℃时,y ^=0.367×282-202.54≈85,即温度为28 ℃时,产卵数大约为85. 计算相关指数R 2≈0.802,这个回归模型中温度解释了80.2%产卵数的变化.提出问题:提出问题“如果选用指数模型,是否也能转换成线性模型,如何转化?” 学生活动:独立思考也可相互讨论.教师可启发学生思考“幂指数中的自变量如何转化为自变量的一次幂?”可引导学生回忆对数的运算性质以及指对数关系.学情预测:可利用取对数的方法,即在y =c 1ac 2x 两边取对数,得log a y =c 2x +log a c 1. 提出问题:在上面的运算中,由于底数a 不确定,对于x 的值无法求出相应的log a y ,这时可取a =10时的情况,以便利用计算器进行计算,试求出回归模型.学生活动:合作协作,讨论解决.根据数据,可求得变量z 关于x 的回归方程:z ^=0.118x -1.665.转换回y 和x 的模型:y ^=100.118x -1.665.当x =28 ℃时,y ^≈44,即温度为28 ℃时,产卵数大约为44.计算相关指数R 2≈0.985,这个回归模型中温度解释了98.5%产卵数的变化. 提出问题:试选择合适的方法,比较方案一和方案二在数据拟合程度上的效果有什么不同?学生活动:独立思考也可相互讨论,教师加以适当的引导提示. 活动结果:无论从图形上直观观察,还是从数据上分析,指数函数模型都是更好的模型. 设计目的:引导学生进行不同模型的比较,体会“虽然任意两个变量的观测数据都可以用线性回归模型来拟合,但不能保证这种模型对数据的拟合效果最好,为更好地刻画两个变量之间的关系,要根据观测数据的特点来选择回归模型”.提出问题:由上面的分析可以看出,回归模型不一定是线性回归模型,对于非线性回归模型,我们的处理方法是什么?学生活动:独立思考,回顾上面的解决过程.学情预测:选用非线性回归模型时,一般思路是转化成线性回归模型,往往要用“等量变换、对数变换”等方法.设计目的:让学生整理建立非线性回归模型的思路. 运用新知例1试建立y 与x 之间的回归方程.思路分析:先画出散点图,根据散点图确定回归模型的类型,然后求y 与x 之间的回归方程.解:根据上表中的数据,作出散点图由图可以看出,样本点分布在某指数函数曲线y =c 1ec 2x 的周围,于是令z =lny ,则上表变换后如下:作出散点图从图中可以看出,变换后的样本点分布在某条直线附近,因此可用线性回归模型来拟合.由表中数据可得,z 与x 之间的线性回归方程为z ^=0.69x +1.112,则y 与x 之间的回归方程为y ^=e0.69x +1.112.【变练演编】例2混凝土的抗压强度X 较易测定,其抗弯强度Y 不易测定,已知X 与Y 由关系式Y =AX b试求Y 对X 的回归方程.思路分析:题目中已经给出回归模型为Y =AX b类型,故只要通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤即可.解:对Y =AX b两边取自然对数得:lnY =blnX +lnA ,做变换y =lnY ,x =lnX ,a =lnA ,根据公式可求得y ^=0.64x +0.017 2,则Y ^=e0.64lnx +0.017 2=1.02X0.64.变式1:若X 与Y 的关系由关系式Y ^=β^X b+α^表示,试根据给出的数据求Y 对X 的回归方程.活动设计:学生分组讨论,尝试解决.活动成果:Y ^=0.086X +13.005.变式2:试选择合适的方法比较上述两种回归模型,相对于给出的数据哪一个的拟合效果更好?活动成果:计算残差平方和与相关指数,对于模型Y =AX b ,残差平方和Q ^(1)=9.819,相关指数R 21=0.930 4;对于模型Y ^=β^X b+α^,残差平方和Q ^(2)=12.306,相关指数R 22=0.908,故模型Y =AX b的拟合效果较好.设计意图:熟悉判断回归模型拟合效果的方法. 【达标检测】1.变量x ,y 的散点图如图所示,那么x ,y 之间的样本相关系数r 最接近的值为( )A .1B .-0.5C .0D .0.52.变量x 与y 之间的回归方程表示( ) A .x 与y 之间的函数关系 B .x 与y 之间的不确定性关系 C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 3.非线性回归分析的解题思路是__________.答案:1.C 2.D 3.通过变量置换转化为线性回归分析 课堂小结1.数学知识:建立回归模型及残差图分析的基本步骤;非线性模型向线性模型的转换方法;不同模型拟合效果的比较方法:相关指数和残差的分析.2.数学思想:数形结合的思想,化归思想及整体思想. 3.数学方法:数形结合法,转化法,换元法. 补充练习 【基础练习】1.相关指数R 2,残差平方和与模型拟合效果之间的关系是( )A .R 2的值越大,残差的平方和越大,拟合效果越好B .R 2的值越小,残差的平方和越大,拟合效果越好C .R 2的值越大,残差的平方和越小,拟合效果越好 D .以上说法都不正确2.如果散点图的所有点都在一条直线上,则残差均为____________________,残差平方和为__________,相关指数为______________.答案:1.C 2.0 0 1 【拓展练习】3.某种书每册的成本费Y 元与印刷册数x(千册)有关,经统计得到数据如下:检验每册书的成本费Y 元与印刷册数的倒数1x 之间是否有线性相关关系,如有,求出Y对1x的回归方程. 解:把1x 置换为z ,则z =1x ,从而z 与Y 的数据为:根据数据可得r≈0.999 8>0.75,故z 与Y 具有很强的线性相关关系. 所以b ^≈8.976,a ^≈1.120,从而y ^=8.976z +1.120.又z =1x ,所以y ^ =8.976x+1.120.设计说明本课时内容教材中只安排了一道关于“红铃虫”的例题,但是它却代表了一种“回归分析”的类型.如何利用这道例题使学生掌握这类问题的解决方法呢?为此,本课时设计了“引导发现、合作探究”的教学方法.首先展示“红铃虫”的背景资料来激发学生的学习兴趣;鼓励学生用已有知识解决问题,引导学生检查结果从而发现新问题;通过分组合作来对不同方案进行探索;使学生在合作探索的过程中体会“选择模型——将非线性转化成线性”的方法,体会“化未知为已知、用已知探索未知”思想,同时认识不同模型的效果.培养学生观察、类比联想以及分析问题的能力.在教学过程中让学生自主探索、动手实践,养成独立思考、积极探索的习惯.在“选模型”这个环节中,注意引导学生将散点分布和已学函数图象进行比较,从而发现二次函数和指数函数模型.在“转化”这个环节中,通过引导学生观察所选模型,联系已学知识选择“等量变换或对数变换”,从而找到转化的途径.在运算过程中,如求“相关指数”引导学生使用转化后的数据,利用计算器求其相关系数即为相关指数,使学生体会使用计算器处理数据的方法和技能.备课资料1.回归分析与相关分析的区别(1)相关分析中,变量x、变量y处于平等的地位;回归分析中,变量y称为预报变量,处在被解释的地位,x称为解释变量,用于预测因变量的变化.(2)相关分析中所涉及的变量x和y都是随机变量;回归分析中,预报变量y是随机变量,解释变量x可以是随机变量,也可以是非随机的确定变量.(3)相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制.2。

回归分析的基本思想及其初步应用分解

回归分析的基本思想及其初步应用分解
真实值a,b,y
是真实值 与估计值 的差!
yˆi 0.849xi 85.712, ei yi yi ,
如e3 y3 y3 50 47.581 2.419
相关关系的测度
(相关系数取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5
0
+0.5 +1.0
r
负相关程度增加 正相关程度增加
编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。
残差图的制作及作用。
•几点坐说标明纵:轴为残差变量,横轴可以有不同的选择; 的错第•误一。个若如样果模本数点据型和采选第集6有择个错样的误本,点正就的确予残以差,纠比残正较,大差然,图后需再要中重确新的认利在点用采线应集性过该回程归中分模是布型否拟有在合人以数为 据;如果横数据轴采集为没心有错的误带,则形需区要寻域找;其他的原因。 样的另•带外状,对区残域差于的点宽远比度较离越均窄横匀,地轴说落明的在模水点型平拟,的合带要精状度区特越域别高中,,注回说归意明方选。程用的的预模报型精计度较越合高适。,这
例1 从某大学中随机选取8名女大学生,其身高和 体重数据如下表所示:
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59
求根据女大学生的身高预报她的体重的回归方程, 并预报一名身高为172cm的女大学生的体重.
(3)对回归模型进行统计检验; (4)利用回归模型,根据自变量去估计、预测、预 报因变量。
最小二乘法求线性回归直线方程:yˆ = bˆ x + aˆ
(x,y)称为样本点的中心。

2021学年高中数学第三章统计案例3.1回归分析的基本思想及其初步应用习题新人教A版选修2_3

2021学年高中数学第三章统计案例3.1回归分析的基本思想及其初步应用习题新人教A版选修2_3

第三章 3.1 回归分析的根本思想及其初步应用A 级 根底稳固一、选择题1.(2021·深圳一模)其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集到了一局部不同年份的该酒品,并测定了其芳香度(如表).年份x 0 1 4 5 6 8 芳香度y由最小二乘法得到回归方程y ^x +1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为( A )[解析] 由表中数据:x =16(0+1+4+5+6+8)=4,回归方程y ^x +1.13,∴y ^=1.03×4+1.13=5.26,∴y =16(1.3+1.8+5.6+?+7.4+9.3)=5.26,解得:?=6.1. 应选A .2.由变量x 与y 相对应的一组数据(1,y 1)、(5,y 2)、(7,y 3)、(13,y 4)、(19,y 5)得到的线性回归方程为y ^=2x +45,那么y -=( D )A .135B .90C .67D .63[解析] ∵x -=15(1+5+7+13+19)=9,y -=2x -+45,∴y -=2×9+45=63,应选D . 3.观测两个相关变量,得到如下数据:x -1 -2 -3 -4 -5 5 4 3 2 1 y-25A .y ^x -1 B .y ^=x C .y ^=2x +0.3 D .y ^=x +1[解析] 因为x -=0, y -=,10)=0,根据回归直线方程必经过样本中心点(x -,y -)可知,回归直线方程过点(0,0),所以选B .4.一位母亲记录了儿子3~9岁的身高,数据(略),由此建立的身高与年龄的回归模型为y ^x +73.93,用这个模型预测这个孩子10岁时的身高,那么正确的表达是( C )A .身高一定是B .身高在以上C .身高在左右D .身高在以下[解析] 将x 的值代入回归方程y ^x +73.93时,得到的y ^值是年龄为x 时,身高的估计值,应选C .5.(2021·西宁模拟)为了规定工时定额,需要确定加工零件所花费的时间,为此进展了5次试验,得到5组数据(x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4)(x 5,y 5).根据收集到的数据可知x =20,由最小二乘法求得回归直线方程为y ^x +48,那么5i =1y i =( D )A .60B .120C .150D .300[解析] 由题意,x =20,回归直线方程为y ^x +48,∴y ^=0.6×20+48=60.那么 i =15y i =60×5=300.应选D .6.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^x -85.71,那么以下结论中不正确的选项是.......( D ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x -,y -)C .假设该大学某女生身高增加1cm ,那么其体重约增加gD .假设该大学某女生身高为170cm ,那么可断定其体重必为 [解析] 此题考察线性回归方程.D 项中身高为170cm 时,体重“约为〞58.79,而不是“确定〞,回归方程只能作出“估计〞,而非确定“线性〞关系.二、填空题7.以下五个命题,正确命题的序号为__③④⑤__. ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进展研究.[解析] 变量的相关关系是变量之间的一种近似关系,并不是所有的变量都有相关关系,而有些变量之间是确定的函数关系.例如,②中圆的周长与该圆的半径就是一种确定的函数关系;另外,线性回归直线是描述这种关系的有效方法;如果两个变量对应的数据点与所求出的直线偏离较大,那么,这条回归直线的方程就是毫无意义的.8.(2021·兰州模拟)变量 x ,y 具有线性相关关系,它们之间的一组数据如下表所示,假设y 关于 x 的线性回归方程为y ^x -1,那么m =____.x 1 2 3 4 ym4[解析] 由题意,x =2.5,代入线性回归方程为y ^x -1,可得y =2.25, ∴0.1+1.8+m +4=4×2.25, ∴m =3.1. 故答案为3.1.9.以下是某地区的降雨量与年平均气温的一组数据: 年平均气温(℃)年降雨量(mm) 542507813574701432464根据这组数据可以推断,该地区的降雨量与年平均气温__不具有__相关关系.(填“具有〞或“不具有〞)[解析] 画出散点图,观察可知,降雨量与年平均气温没有相关关系.三、解答题10.为了迎接2021年俄罗斯世界杯,某协会组织了一次“迎2021世界杯,手工制作助威旗〞活动,将俄罗斯世界杯的标志以手工刺绣的方式刺绣到红色的三角形的旗子上面,来为世界杯加油.在10次制作中测得的数据如下: 助威旗数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间Y (小时)626875818995102108115122试问:(1)x 与Y 是否具有线性相关关系?(2)如果x 与Y 具有线性相关关系,求出Y 对x 的回归直线方程,并根据回归直线方程,预测加工2021个助威旗需多少天(准确到1)?注:每天工作8小时.(参考数据:x =55,y =91.7,∑i =110x 2i =38500,∑i =110y 2i =87 777,∑i =110x i y i =55950,38500-10×552-8250,38500-10×552≈91,错误!≈61)[解析] (1)作散点图如下图从图中可以看出,各点都散布在一条直线附近,即它们线性相关. (2)由所给数据求得b =∑i =110x i y i -10xy∑i =110x 2i -10x 2=,38500-10×552)∴a =y -b x =91.7-0.668×55∴Y 对x 的回归直线方程为 y ^x当x =2021时,y ^=54.96+0.668×2021=1397.64(小时)又1397.64÷8=174.705(天)∴加工2021个助威旗所需时间约为175天.B 级 素养提升1.(2021·保定一模)具有线性相关的变量x ,y ,设其样本点为A i (x i ,y i )(i =1,2,…,8),回归直线方程为y ^=12x +a ,假设OA 1→+OA 2→+…+OA 8→=(6,2),(O 为原点),那么a =( B )A .18B .-18C .14D .-14[解析] 计算x =18×(x 1+x 2+…+x 8)=68=34,y =18×(y 1+y 2+…+y 8)=28=14;回归直线方程为y ^=12x +a ,∴14=12×34+a , 解得a =-18.应选B .2.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,那么( C )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1[解析] ∵变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),∴X =10+11.3+11.8+12.5+135=11.72,Y =1+2+3+4+55=3,i =15(x i -x)(y i -y )=(10-11.72)×(1-3)+(11.3-11.72)×(2-3)+(11.8-11.72)×(3-3)+(12.5-11.72)×(4-3)+(13-11.72)×(5-3)=7.2,∑i =15 x i -x2∑i =15 y i -y2=19.172,∴这组数据的相关系数是r 1=,19.172)=0.3755,变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),U =15(10+11.3+11.8+12.5+13)=11.72, V =5+4+3+2+15=3,∑i =15(U i -U)(V i -V )=(10-11.72)×(5-3)+(11.3-11.72)×(4-3)+(11.8-11.72)×(3-3)+(12.5-11.72)×(2-3)+(13-11.72)×(1-3)=-7.2,∑i =15U i -U2·∑i =15V i -V2=19.172.∴这组数据的相关系数是r 2=-0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,应选C . 二、填空题3.(2021·张店区校级模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…(x 6,y 6)的散点图中,假设所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-1附近波动.经计算∑i =16x i =11,∑i =16y i =13,∑i =16x 2i =21,那么实数b 的值为__1921__.[解析] 根据题意,把对应点的坐标代入曲线y =bx 2-1,y 1=bx 11-1,y 2=bx 22-1,…y 6=bx 26-1,∴y 1+y 2+…+y 6=b (x 21+x 22+…+x 26)-6, ∴13=b ×21-6,∴b =1921,故答案为1921.4.某品牌服装专卖店为了解保暖衬衣的销售量y (件)与平均气温x (℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:时间 二月上旬二月中旬二月下旬 三月上旬 旬平均气温x (℃)381217旬销售量y (件) 55 m 33 24由表中数据算出线性回归方程y ^=bx +a 中的b =-2,样本中心点为(10,38). (1)表中数据m =__40__;(2)气象部门预测三月中旬的平均气温约为22℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量约为__14件__.[解析] (1)由y =38,得m =40. (2)由a =y -b x 得a =58, 故y ^=-2x +58, 当x =22时,y ^=14,故三月中旬的销售量约为14件. 三、解答题5.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:房屋面积(m 2) 115 110 80 135 105 销售价格(万元)22(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150m 2时的销售价格. [解析] (1)数据对应的散点图如以下图所示:(2)x =15∑5 i =1x i =109,l xx =∑5i =1 (x i -x )2=1570, y =23.2,l xy =∑5i =1 (x i -x )(y i -y )=308.设所求回归直线方程为y ^=b ^x +a ^,那么b ^=l xy l xx =3081570≈0.1962,a ^=y -b ^x =1.8166.故所求回归直线方程为y ^x +1.8166.(3)据(2),当x =150m 2时,销售价格的估计值为y ^=0.1962×150+1.8166=31.2466(万元).6.(2021·全国卷Ⅱ理,18)以下图是某地区2000年至2021年环境根底设施投资额y (单位:亿元)的折线图.为了预测该地区2021年的环境根底设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2021年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^t ;根据2021年至2021年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^t .(1)分别利用这两个模型,求该地区2021年的环境根底设施投资额的预测值. (2)你认为用哪个模型得到的预测值更可靠?并说明理由.[解析] (1)利用模型①,可得该地区2021年的环境根底设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,可得该地区2021年的环境根底设施投资额的预测值为y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i)从折线图可以看出,2000年至2021年的数据对应的点没有随机散布在直线yt 上下,这说明利用2000年至2021年的数据建立的线性模型①不能很好地描述环境根底设施投资额的变化趋势.2021年相对2021年的环境根底设施投资额有明显增加,2021年至2021年的数据对应的点位于一条直线的附近,这说明从2021年开场环境根底设施投资额的变化规律呈线性增长趋势,利用2021年至2021年的数据建立的线性模型y ^t 可以较好地描述2021年以后的环境根底设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2021年的环境根底设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比拟合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分)C 级 能力拔高炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:x /0.01% 104 180 190 177 147 134 150 191 204 121 y /min100200210185155135170205235125(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗? (2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?[解析] (1)x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图.从图中可以看出,各点分布在一条直线附近,所以它们线性相关. (2)列出下表,并用科学计算器进展计算:i 1 2 3 4 5 6 7 8 9 10 x i 104 180 190 177 147 134 150 191 204 121 y i 100 200 210 185 155 135 170 205 235 125 x i y i10 40036 00039 90032 74522 78518 09025 50039 15547 94015 125x =159.8,y =172,∑i =110x 2i=265 448,∑i =110y 2i=312 350,∑i =110x i y i =287 640设所求的回归直线方程为=x +,=∑i =110x i y i -10x·y∑i =110x 2i -10x 2≈1.267,=y -x ≈-30.47,即所求的回归直线方程为=1.267x -30.47.(3)当x =160时,=1.267×160-30.47≈172(min ),即大约冶炼172 min .。

25-3.1回归分析的基本思想及其初步应用(1)

25-3.1回归分析的基本思想及其初步应用(1)

3.1回归分析的基本思想及其应用教材分析本节内容是数学选修2-3 第三章 统计案例 的起始课,是在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容《教师用书》共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第二课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用. 本节课是第一课时的内容.本节课的重点是回归分析的基本方法、随机误差e 的认识、残差,难点是回归分析的基本方法.课时分配本节内容用1课时的时间完成,主要介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果.教学目标重点: 回归分析的基本方法、随机误差e 的认识、残差. 难点:回归分析的基本方法.知识点:回归分析的基本方法、随机误差e 、残差.能力点:如何探寻回归分析的基本方法,数形结合的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何运用最小二乘法求回归直线方程.考试点:求解线性回归方程,从残差的角度讨论回归模型的拟合效果. 易错易混点:随机误差e 与残差之间的区别与联系.拓展点:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课对于一组具有线性相关关系的数据112233(,),(,),(,),,(,).n n x y x y x y x y 其回归直线方程的截距和斜率的最小二乘法估计公式分别为:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑11n i i x x n ==∑ 11ni i y y n ==∑ (,)x y 称为样本点的中心. 如何推导这两个计算公式?【设计意图】由学生所熟悉的最小二乘法引入新课,消除了学生对新知的恐惧感,引出最小二乘法的中的系数,a b ∧∧的计算公式的推导过程.二、探究新知从已经学过的知识,截距a 和斜率b 分别是使21(,)()niii Q y x αββα==--∑取最小值时,αβ的值,由于212212211(,)[((]{[(2[([(][(]}[(2[([(](ni i i ni i i i i nni i i i i i Q y x y x y x y x y x y x y x y x y x y x y x y x y x y x n y x αββββαβββββαβαβββββαβα=====-----=---+---⋅--+--=---+---⋅--+--∑∑∑∑)+))])])))])]))因为1111[((([(([(]([(]0,nniiiii i n ni i i i y x y x y x y x y x y x y x y x n y x y x ny n x n y x βββαβαβββαβββαββ====-----=-----=-----=-----=∑∑∑∑)])))]))))所以2212222111222221122111[([(]()2()()()(()()[()()](()[]()()()ni i i n n ni i ii i i i nniii i ni i i i nni i iii i Q y x y x n y x x x x x y y y y n y x x x y y x x y y n y x x x y y x x x x αββββαβββαβαβ==========---+--=----+-+------=--+---+---∑∑∑∑∑∑∑∑∑(,))])))1n=∑在上式中,后两项和,αβ无关,而前两项为非负数,因此要使Q 取得最小值,当且仅当前两项的值均为0.,既有121()()()niii nii x x y y x x β==--=-∑∑y x αβ=-通过上式推导,可以训练学生的计算能力,观察分析能力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出.所以:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑这正是我们所要推导的公式.三、理解新知准确理解最小二乘法中系数,a b ∧∧的计算公式,以及回归方程的求解过程. 【设计意图】为准确地运用新知,作必要的铺垫.四、运用新知例1、 从某大学中随机选取8名女大学生,其身高和体重的数据如图所示:(1) 画出以身高为自变量x,体重为因变量y 的散点图;(2) 求根据女大学生的身高预报体重的回归方程;(3) 求预报一名身高为172cm 的女大学生的体重. 解:(1)由于问题中要求根据身高预报体重,因此选取身高为自变量x ,体重为因变量y 作散点图:(2)0.849,85.712:0.84985.712.b a y x ==-∴=-回归方程(3)对于身高172cm 的女大学生,由回归方程可以预报体重为:0.84917285.71260.316()y kg =⨯-=ˆ0.849b=是斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加0.849 个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱?【设计意图】通过具体例子让学生感受回归分析思想的应用.最后的问题为接下来引入残差做了铺垫.在必修 3 中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为()()niix x y y r --=∑当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r 的绝对值大于0. 75 时认为两个变量有很强的线性相关关系.165在本例中,可以计算出r =0. 798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.显然,身高172cm 的女大学生的体重不一定是60. 316 kg ,但一般可以认为她的体重接近于60 . 316 kg .图3 . 1- 2 中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示:y bx a e =++, ( 3 )这里a 和b 为模型的未知参数,e 是y 与y bx a =+之间的误差.通常e 为随机变量,称为随机误差,它的均值 E (e )=0,方差D (e )=2()D e σ=>0 .这样线性回归模型的完整表达式为:2,()0,().y bx a e E e D e σ=++⎧⎨==⎩ (4) 在线性回归模型(4)中,随机误差e 的方差越小,通过回归直线y bx a =+ (5)预报真实值y 的精度越高.随机误差是引起预报值y 与真实值y 之间的误差的原因之一,大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中a 和b 为截距和斜率的估计值,它们与真实值a 和b 之间也存在误差,这种误差是引起预报值y 与真实值y 之间误差的另一个原因.【设计意图】引入随机误差e 后,将回归方程推广到回归模型. 思考:产生随机误差项e 的原因是什么?一个人的体重值除了受身高的影响外,还受许多其他因素的影响.例如饮食习惯、是否喜欢运动、度量误差等.事实上,我们无法知道身高和体重之间的确切关系是什么,这里只是利用线性回归方程来近似这种关系.这种近似以及上面提到的影响因素都是产生随机误差 e 的原因.因为随机误差是随机变量,所以可以通过这个随机变量的数字特征来刻画它的一些总体特征.均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差2σ来衡量随机误差的大小.为了衡量预报的精度,需要估计护的值.一个自然的想法是通过样本方差来估计总体方差.如何得到随机变量e 的样本呢?由于模型(3)或(4)中的e 隐含在预报变量y 中,我们无法精确地把它从y 中分离出来,因此也就无法得到随机变量e 的样本.解决问题的途径是通过样本的估计值来估计2σ.根据截距和斜率的估计公式(1)和(2 ) , 可以建立回归方程y bx a =+,因此y 是(5)中y 的估计量.由于随机误差e y y =-,所以e y y =-是e 的估计量.对于样本点(11,x y ) , (22,x y ) ,…, (,n n x y ) 而言,相应于它们的随机误差为,1,2,,i i i i i e y y y bx a i n =-=--=,其估计值为,1,2,,i i i i i e y y y b x a i n ∧∧∧∧=-=--=,i e ∧称为相应于点(,)i i x y 的残差(residual ).类比样本方差估计总体方差的思想,可以用22111(,)(2)22n i i e Q a b n n n σ∧∧∧∧===>--∑ 作为2σ的估计量, 其中a 和b 由公式(1) (2)给出,Q (a ,b )称为残差平方和(residual sum of squares ).可以用2σ∧衡量回归方程的预报精度.通常,2σ∧越小,预报精度越高.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差12,,,n e e e ∧∧∧来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析. 【设计意图】引入残差的概念,使学生会运用残差分析的思想分析模型的拟合效果. 表3- 2 列出了女大学生身高和体重的原始数据以及相应的残差数据.e -6.373 的估计值等,这样作出的图形称为残差图.【设计意图】通过例1的具体数据让学生感受残差分析的应用. 【变式练习】观察两相关变量得如下数据:求两个变量的回归方程. 解:10102110,0,110,110,i i i i i x y x x y ======∑∑10110221101101001,000.11010010i ii i i x y x yb a y b x b x x∧∧∧∧==--⨯∴====-=-⋅=-⨯-∑∑ 所以所求回归直线方程为y x =【设计意图】让学生自己动手解决求回归方程的问题,加深对回归分析思想的印象.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.回归直线方程,随机误差及残差.2.思想:回归分析的思想、数形结合的思想、残差分析的思想.教师总结: 公式的证明过程用到了前面两章学过的知识,提醒学生: 在学习新知时,也要经常复习前面学过的内容,“温故而知新”.在应用中增强对知识(如本节的随机误差和残差)的理解,及时查缺补漏,从而更好地运用知识,解题要有目的性,加强对数学知识、思想方法的认识与自觉运用. 【设计意图】 加强对学生学习方法的指导,做到“授人以渔”.六、布置作业1.阅读教材P80—84;2.书面作业 P89 习题3.1 1.(1)、(2)、(4).3.课外思考:如何运用回归分析的思想对未知量进行预报轨迹呢?【设计意图】设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用回归分析的思想,解决简单的数学问题;课外思考的安排,是让学生理解回归分析的思想,从而让学生深刻地体会随机误差,残差分析的思想,培养学生回归分析的基本思想,起到承上启下的作用.七、教后反思1.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在公式的证明思路的探寻上下足功夫.2.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析.八、板书设计1i nb ==∑bx。

高中数学第3章统计案例3.1回归分析的基本思想及其初步应用课件新人教A版选修2-3

高中数学第3章统计案例3.1回归分析的基本思想及其初步应用课件新人教A版选修2-3




1
3
3.1 回归分析的基本思想及其初步应用
学阶 段业 分Fra bibliotek层2测

1.通过对典型案例的探究,了解回归分析的基本思想、方法及其初步应用. 2.会求回归直线方程,并用回归直线方程进行预报.(重点) 3.了解最小二乘法的思想方法,理解回归方程与一般函数的区别与联系.(难 点)
[ 基础·初探]
教材整理 1 回归直线方程 阅读教材 P80~P82 探究上面倒数第一行,完成下列问题. 1.回归分析
作残差图如图所示:
由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比 较合适.
非线性回归分析
[探究共研型]
探究 1 如果两个相关变量 x,y 满足回归方程 y=c1x2+c2,那么 x,y 具有 线性相关关系吗?如何把它化归为线性回归方程问题?
【提示】 x,y 不具有线性相关关系,但是若令 z=x2,则 y=c1x2+c2 可变 换为 y=c1z+c2,即化归为线性回归方程问题.
回归分析是对具有___相__关__关__系_____的两个变量进行统计分析的一种常用方
法.
教材整理 2 线性回归分析
阅读教材 P82 探究~P89,完成下列问题. 1.线性回归模型 (1)表达式Ey=e_=_b_x_+_0___a_,+__De__e,=_σ_2__.
(2)基本概念:
①a 和 b 为模型的未知参数. ②e 是 y 与 bx+a 之间的误差.通常 e 为随机变量,称为__随__机__误__差___. ③x 称为__解__释__变__量__,y 称为___预__报__变__量____.
(2016·临沂高二检测)下表提供了某厂节能降耗技术改造后生产甲 产品过程中记录的产量 x(吨)与相应的生产能耗 y(吨标准煤)的几组对照数据:

3.1回归分析的基本思想及其初步应用

3.1回归分析的基本思想及其初步应用
的关系(如是否存在线性关系等).
(3)由经验确定回归方程的类型(如我们观察到数据呈 线性关系,则选用线性回归方程). ( 4)按 一 定 规 则 ( 如 最 小 二 乘 法 )估 计 回 归 方 程 中 的 参 数 .
(5)得出结果后分析残差图是否有异常(如个别数据对 应残差过大,残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
对于一组具有线性相关关系的数据
x1, y1 ,x2, y2 ,,xn , yn ,
我们知道其回归直线y = bx + a的斜率和截距 的最小二乘估计分别为
n
xi x yi y
bˆ i1 n
,
1
aˆ y bˆx,
2
xi x 2
i 1
这正是我们所要推导的公式.
下面我们通过案例 ,进一步学习回归分析的基本 思想及其应用.
例1 从某大学中随机选取8名女大学生,其身高和体 重数据如表 3-1所示.
表 3-1 编号 1 2 3 4 5 6 7 8
身 高 / cm 165 165 157 170 175 165 155 170 体 重 /kg 48 57 50 54 64 61 43 59
4.不能期望回归方程得到的预报值就是预报变量的 精 确 值.事 实 上, 它 是 预 报 变 量 的 可 能 取 值 的 平 均 值. 一 般 地 ,建 立 回 归 模 型 的 基 本 步 骤 为 :
( 1)确 定 研 究 对 象 ,明 确 哪 个 变 量 是 解 释 变 量 ,哪 个 变 量是预报变量. ( 2)画 出 解 释 变 量 和 预 报 变 量 的 散 点 图 ,观 察 它 们 之 间
第三章 统计案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学第三章统计案例 3.1 回归分析的基本思想及其初步应用课
时达标训练新人教A版选修2-3
1.某车间加工零件的数量x与加工时间y的统计数据如表:
现已求得上表数据的线性回归方程=x+中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A.84分钟
B.94分钟
C.102分钟
D.112分钟
【解析】选C.由表中数据得:=20,=30,又值为0.9,故=30-0.9×20=12,所以=0.9x+12.
将x=100代入线性回归方程,得=0.9×100+12=102(分钟).所以预测加工100个零件需要102分钟. 2.为了考察两个变量x和y之间的线性相关性.甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方程,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都为t,那么下列说法正确的是( )
A.l1与l2相交点(s,t)
B.l1与l2相交,相交点不一定是(s,t)
C.l1与l2必关于(s,t)对称
D.l1与l2必定重合
【解析】选A.线性回归方程=x+,而=-,即=t-s⇒t=s+,所以(s,t)在回归直线上,所以直线l1,l2一定有公共点(s,t).
3.甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R2分别如下表:
哪位同学建立的回归模型拟合效果最好? ( )
A.甲
B.乙
C.丙
D.丁
【解析】选A.相关指数R2越接近于1,表示回归模型的拟合效果越好.
4.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y=e bx+a的周围,令z=lny,求得线性回归方程为=0.25x-2.58,则该模型的回归方程为________.
【解析】因为=0.25x-2.58,z=lny,所以=e0.25x-2.58.
答案:=e0.25x-2.58
5.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加__________万元.
【解析】根据线性回归方程可得,年饮食支出增量Δy关于年收入Δx的表达式为Δy=0.254Δx,代入Δx=1得Δy=0.254.
答案:0.254
6.某种产品的广告支出x与销售额y(单位:百万元)之间有如下的对应关系
x24568
y3040605070
(1)假定y与x之间具有线性相关关系,求回归直线方程.
(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?【解析】(1)=×(2+4+5+6+8)=5,
=×(30+40+60+50+70)=50,
=22+42+52+62+82=145,
=302+402+602+502+702=13500,
x i y i=2×30+4×40+5×60+6×50+8×70=1380,
所以===6.5,
=-=50-6.5×5=17.5.
所以回归直线方程为=6.5x+17.5.
(2)由回归直线方程得≥60,即6.5x+17.5≥60,
所以x≥.所以广告支出应不少于百万元.。

相关文档
最新文档