最新数学选修1-1练习题2817
选修1-1综合练习题含答案

选修1—1 综合练习题一、选择题(本大题共10小题,每小题5分,满分50分。
)1、命题“任意的42,210x R x x ∈-+<”的否定是( )A 、不存在42,210x R x x ∈-+< B 、存在42,210x R x x ∈-+< C 、存在42,210x R x x ∈-+≥D 、对任意的42,210x R x x ∈-+≥2、命题“若p 则q ”的逆命题是( )A 、若q 则pB 、若则q ⌝C 、若q ⌝则p ⌝D 、若p 则q ⌝3、曲线32153y x x =-+在1x =处的切线的倾斜角是( )A 、6πB 、3πC 、4πD 、34π4、以双曲线221412x y -=-的焦点为顶点,顶点为焦点的椭圆方程为( )A 、2211612x y +=B 、2211216x y +=C 、221164x y += D 、221416x y += 5、已知函数33y x x c =-+的图像与x 轴恰有两个公共点,则c =( )A 、-2或2B 、-9或3C 、-1或1D 、-3或16、设函数()xf x xe =,则( )A 、1x =为()f x 的极大值点B 、1x =为()f x 的极小值点C 、1x =-为()f x 的极大值点D 、1x =-为()f x 的极小值点7、设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( )ABC 、2D 、38、已知0a <,函数312()ln f x ax x a=+,且(1)f '的最小值是-12,则实数a 的值为( )A 、2B 、-2C 、4D 、-49、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0,则220a b +≠ D 、一个命题的否命题为真,则它的逆命题一定为真10、若抛物线22y x =上两点A (11,x y )、B (22,x y )关于直线y x b =+对称,且121y y =-,则实数b 值为( )A 、52-B 、52C 、12D 、12-二、填空题(本大题共4小题,每小题5分,共20分)11、若抛物线22y px =的焦点坐标为(1,0),则p = ;准线方程为 。
高中数学选修1-1考试题及答案

高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。
)1.抛物线24yx 的焦点坐标是A .(0,1)B .(1,0)C .1(0,)16D .1(,0)162.设,aR 则1a是11a的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220ab,则,a b 都为零”的逆否命题是A .若220a b ,则,a b 都不为零B .若220ab,则,a b 不都为零C .若,a b 都不为零,则220abD .若,a b 不都为零,则22a b4.曲线32153yxx在1x 处的切线的倾斜角为A .34B .3C .4D .65.一动圆P 与圆22:(1)1A x y外切,而与圆22:(1)64B x y内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支6.函数()ln f x x x 的单调递增区间是A .(,1)B .(0,1)C .(0,)D .(1,)21世纪教育网7.已知1F 、2F 分别是椭圆22143xy的左、右焦点,点M 在椭圆上且2MF x轴,则1||MF 等于21世纪教育网A .12B .32C .52D .38.函数2()xf x x e 在[1,3]上的最大值为A .1B .1eC .24eD .39e9. 设双曲线12222by ax 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为().A.45 B. 5C.25 D.510. 设斜率为2的直线l 过抛物线2(0)yax a的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24yx B.28yx C.24yx D.28y x11. 已知直线1:4360l x y 和直线2:1l x,抛物线24y x 上一动点P 到直线1l 和直线2l 的距离之和的最小值是A.2B.3C. 4D. 112. 已知函数()f x 在R 上可导,且2'()2(2)f x xxf ,则(1)f 与(1)f 的大小(1)(1)(1)(1)(1)(1).Af f Bf f Cf f D不确定二、填空题(本大题有4小题,每小题5分,共20分,请将答案写在答题卷上)13.已知命题:,sin 1p x R x ,则p 为________。
(完整)高中数学选修1-1测试题与答案,推荐文档

D. 1
(
)
D. y 2
D. y 9 x 4
5
A.
B. 5
15
C.
D.10
2
2
13.若抛物线 y2 8x 上一点 P 到其焦点的距离为 9 ,则点 P 的坐标为( )。
A. (7, 14) B. (14, 14) C. (7, 2 14) D. (7, 2 14) 14.函数 y = x3 + x 的递增区间是( )
(1) 求 a 、 b 的值;(2)求 f (x) 的单调区间.
18(本小题满分 10 分) 求下列各曲线的标准方程
2
(1)实轴长为 12,离心率为 ,焦点在 x 轴上的椭圆;
3
(2)抛物线的焦点是双曲线16x 2 9 y 2 144 的左顶点.
19.设 F1, F2 是双曲线
x2 9
y2 16
P(3, 7 ) 在双曲线 C 上.
(1)求双曲线 C 的方程; (2)记 O 为坐标原点,过点 Q (0,2)的直线 l 与双曲线 C 相交于不同的两点 E、F,若△
OEF 的面积为 2 2, 求直线 l 的方程.
参考答案
一.选择题(本大题共 12 小题,每小题 3 分,共 36 分)
1-6 BBCDBD 7-12 ACABCB
1 的两个焦点,点 P 在双曲线上,且 F1PF2
600 ,
求△ F1PF2 的面积。
20.已知函数 y ax3 bx 2 ,当 x 1 时,有极大值 3 ; (1)求 a, b 的值;(2)求函数 y 的极小值。
21.已知函数 f (x) x3 ax2 bx c 在 x 2 与 x 1 时都取得极值 3
A. (0,)
(完整word版)高中数学选修1-1综合测试题及答案(word文档良心出品)

、选择题1. 若p 、q 是两个简单命题,“ p 或q ”的否定是真命题,则必有( )A.p 真q 真B.p 假q 假C.p 真q 假D.p 假q 真 2. “ COS2a 二—三”是“ a =k n +—,k € Z ”的()212A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条 件3. 设 f (x) = sin x cosx ,那么()A. f (x)二 cosx 「sin x B . f (x) = cosx sin x C . f (x)二-cosx sin xD. f (x)二-cosx 「sin x4. 曲线f(x)=x 3+x — 2在点P o 处的切线平行于直线y=4x — 1,则点P 。
的坐标为( )A.(1,0)B.(2,8)C.(1,0)和(—1, — 4)D.(2,8 )和(—1, — 4)5•平面内有一长度为2的线段AB 和一动点P,若满足|PA|+|PB|=6则|PA 的取值范围是 A. [ 1,4] B. [ 1,6]C. [2,6]D. [2,4]6.已知2x+y=0是双曲线x 2—入y 2=1的一条渐近线,则双曲线的离心率为( )选修1-1模拟测试题A.、2B.、3C. .5D.27.抛物线y 2=2px的准线与对称轴相交于点 则/ PSQ 的大小S,PQ 为过抛物线的焦点F 且垂直于对称轴的弦,2 2 2 2C. 略 一16y r=1的左支(y 工0)D. 警 一16占=1的右支(y 工0)a 3aa 3a2T[11设a>O,f(x)=ax +bx+c,曲线y=f(x)在点P(x o ,f(x o ))处切线的倾斜角的取值范围为]0,— ],则P 4 到曲线y=f(x)对称轴距离的取值范围为( ) 11 b b _ 1A. [0, — ]B. [0, — ]C. [0,1—|]D. [0,|- -|]a2a2a2a2 212. 已知双曲线 笃—爲=1(a>0,b>0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上 且 a b|PF 1|=4|Pb|则此双曲线的离心率e 的最大值为( )5 47A.B.—C.2D.—333二、填空题13. 对命题 p : V X €R,X 7+7X >0,则 是 ______________ . 14. 函数f(x)=x+ •. 1 - x 的单调减区间为2 115抛物线y=1x关于直线x -y =0对称的抛物线的焦点坐标是22916椭圆—+ ^=1上有3个不同的点A(X 1,y 1)、B(4, —)、C(X 3,y 3),它们与点F(4,0)的距离成等25 9 4 差数列,则X 1+X 3= ______ . 三、解答题17. 已知函数f(x)=4x 3+ax 2+bx+5的图象在x=1处的切线方程为y= — 12x,且f(1)= — 12. (1)求函数f(x)的解析式;(2)求函数f(x)在[—3,1]上的最值.TtA.- 38.已知命题p: 条件的x 为(JIB.-2“|x — 2|>D.与p的大C.3 ,命题“ q:x € Z ”,如果“ p 且q ”与“非q ”同时为假命题,B.{x| — K x < 3,x Z} C.{ — 1,0,1,2,3}A.{x|x > 3 或 x < — 1,x - Z} 9.函数f(x)=x 3+ax — 2在区间(1,+g )内是增函数,则实数a 的取值范围是( D.{1,2,3}B. [— 3,+g]C.(— 3,+g )D.( — g ,— 3)aa1A. [ 3,+7点A 的轨迹方程是(A. 16x 2 T~ a16y 23a 2=1(y 工 0)2 2 B 16y , 16y B.2+小 2a 3a=1(x 工 0)18. 设P:关于x的不等式a x>1的解集是{x|x<0}.Q:函数y=lg(ax2—x+a)的定义域为R.如果P和Q有且仅有一个正确,求a的取值范围.219. 已知x € R,求证:cosx> 1 ——.220. 某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为P元,则销售量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8300 -170P-P2.问该商品零售价定为多少时毛利润L最大,并求出最大毛利润(毛利润=销售收入-进货支出).21. 已知a€ R,求函数f(x)=x2e ax的单调区间.22. 已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0, 2)为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线y=x 对称. ⑴求双曲线C 的方程;⑵若Q 是双曲线C 上的任一点,F i 、F 2为双曲线C 的左、右两个焦点,从F i 引/ F 1QF 2的平分 线的垂线,垂足为N,试求点N 的轨迹方程. 1. B p 或q”的否定是“一p 且一i q ”, 一1 P 、一2 q 是真命题,p 、q 都是假命题.=2,•入=4.A e=J :2「1 3 = 67. B 由|SF|=|PF|=|QF 知△ PSQ 为直角三角形. 8. D “p 且q ”与“非q ”同时为假命题则p 假q 真.9. B f ' (x)=3x 2+a,令 3x 2+a>0,A a>— 3x 2 :x € (1,+^)〕.A a > — 3.110. D 由正弦定理知c — b=-a,再由双曲线的定义知为双曲线的右支(c>b).211.B T f ' (x)=2ax+b, A k=2ax o +b €[ 0,1],A d=|X0 --- | = 12ax 0 + b | = k1 A 0< d<2a 2a 2a 2a102c12.A e==IF 1F 2IIPF 1 | ■ | PF 2 」=3a =5 2a |PR| -|PF 2|IPF 1I - |PF 2I 2a 3 13. -,x R,x 77x ^0 ; 14. [-,1]; 15.1(0, ); 16. 8.41613.这是一个全称命题,其否定是存在性命题14.定义域为{x|x < 1},f ' (x)=1+— =厶1 x 1<o, $1 _x < 1, 得 x> -.2』1 -x 2^1-x 242 111 316 16参考答案:2.A 由“a =k n + —“C0S2a =COS 53” 6,又“ COS2 a =—工3 ” 二 “a=k3. 5.D6.C“C0S2a =- —”是“ a2(x o )=3x o +1=4,二 x o = ± 1.•••|PA|+|PB|=6>2「P 点的轨迹为一椭圆,二 3- 1W |PA|W 3+1.x 2-入y2=1的渐近线方程为y=±护,4 4 9 416. t |AF|=a — ex i =5- x i ,|BF|=5—X 4=—CF|=5— X 3,55 5 59 4 4 由题知 2|BF|=|AF|+|CF|,「.2X 9 =5— 4x i +5— 4X 3.二x i + X 3=8.55517. 解:(1) ■/ f ' (x)=12x +2ax+b,而 y=f(x)在 x=1 处的切线方程为 y= — 12x,23 (2)v f ' (x)=12x 4— 6x — 18=6(x+1)(2x — 3), 令 f ' (x)=0,解得临界点为 X 1= — 1,X 2=. 2那么f(x)的增减性及极值如下•••临界点 X 1=— 1 属于[—3,1],且 f( — 1)=16,又 f( — 3)= — 76,f(1)= — 12, •••函数f(x)在[—3,1]上的最大值为16,最小值为一76.18. 解:使 P 正确的a 的取值范围是0<a<1,而Q 正确=ax 2 — x+a 对一切实数x 恒大于0. 2a a 0 1当a=0时,ax — x+a= — x 不能对一切实数恒大于 0,故Q 正确u 」 2 二a>—.A = 1 - 4 a 2 < 0 21 若P 正确而Q 不正确,则0<a < -;若Q 正确而P 不正确,则a > 1.21 故所求的a 的取值范围是(0, - ]U[ 1,+x ). 2x 219.证明:令 f(x)=cosx — 1+ ,则 f ' (x)=x — sinx ,当x>0时,由单位圆中的正弦线知必有 x>sinx, ••• f ' (x)>0,即f(x)在(0,+)上是增函数. 又••• f(0)=0,且f(x)连续,• f(x)在区间[0,+x ]内的最小值f(0)=0,4• f(x)为偶函数,即当x € (— X ,0)时,f (x) > 0仍成立,•对任意的x €R,都有cosx > 1——.220. 解:由题意知 L(P)二 Pb-20Q 二Q(P-20)= (8300 -170P -P 2)(P -20) - -P 3 -150P 2 11700P -166000 , L (P) - -3P 2 -300P 11700 .令 L(P) =0 ,得 P =30或 P = -130 (舍).X = —12=f (1)丿nf (1) = _12 12+2a+b = -12g+a+b+5 = —12a=— 3,b=— 18,故 f(x)=4x 3 — 3x 2— 18x+5.即f(x) > 0,得cosx— 1 + —> 0,即cosx> 1—— . v f( —x)=cos(—X) —1+(X)=f(x),2 2 2根据实际意义知,L(30)是最大值,即零售价定为每件30元时,有最大毛利润为23000元. 21. 解:函数 f(x)的导数 f ' (x)=2xe ax +ax 5e a x =(2x+ax 2)e ax . ① 当 a=0 时,若 x<0,则 f ' (x)<0,若 x>0,则 f ' (x)>0.所以当a=0时,函数f(x)在区间(一% ,0)内为减函数,在区间(0,+x )内为增函数.2 2 2 2② ----------------------------------------------------------------------------------------- 当 a>0 时,由 2x+ax >0,解得 x<— 或 x>0,由 2x+ax <0,解得 -------------------------------- <x<0,aa 所以当a>0时,函数f(x)在区间(一x , — 2)内为增函数,在区间(一 —,0)内为减函数,在区间(0,+x ) aa内为增函数.③ 当 a<0 时,由 2x+ax 2>0,解得 0<x< ——,由 2x+ax 2<0,解得 x<0 或 x> ——.aa2 2 所以当a<0时函数f(x)在区间(一x ,0)内为减函数,在区间(0, —-)内为增函数,在区间(一—,+aax )内为减函数.22. 解:(1)设双曲线C 的渐近线方程为y=kx,即kx — y=0,5 2•••双曲线C 的两条渐近线方程为y=± x ,故设双曲线C 的方程为 笃—告=1.a a又双曲线C 的一个焦点为(.2,0),二2a 2=2,ci 2=1.A 双曲线C 的方程为x 2— y 2=1. ⑵若Q 在双曲线的右支上,则延长QF 2到T,使|QT|=|QF 1|. 若Q 在双曲线的左支上,则在QF 2上取一点T,使 |QT|=|QF 1|.根据双曲线的定义|TF 2|=2所以点T 在以F2C- 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程 是(x — 2 )2+y 2=4(y 工 0).①由于点N 是线段F 1T 的中点,设N(x,y)、T(X T ,y T ),x _XT_ 血「_则r 2'即」X T =2X +、2代入①并整理得点N 的轨迹方程为x 2+y 2=1(y 工0).1、,_比M =2y.•••该直线与圆x 2+(y — . 2)2=1 相切,二 21 k2 =1, 即 卩 k=±1.15. y2= —x的焦点F( ,0),F关于x—y=0的对称点为(0,).。
高中数学选修1-1测试题与答案

高中数学选修1-1测试题与答案数学试题(选修1-1)一、选择题(本大题共12小题,每小题3分,共36分)1.“sinA=1/2”是“A=30”的()。
A。
充分而不必要条件B。
必要而不充分条件C。
充分必要条件D。
既不充分也不必要条件2.已知椭圆x^2/2516+y^2/916=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()。
A。
2B。
3C。
5D。
73.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()。
A。
x^2/2516+y^2/916=1B。
x^2/916+y^2/2516=1C。
x^2/xxxxxxxx+y^2/916=1D。
以上都不对4.命题“对任意的x∈R,x-x+1≤1/2”的否定是()。
A。
不存在B。
存在x∈R,x-x+1≤1/2C。
存在x∈R,x-x+1>3/2D。
对任意的x∈R,x-x+1>3/25.双曲线x^2/10-y^2/2=1的焦距为()。
A。
22B。
42C。
23D。
436.若抛物线y=2px的焦点与椭圆x^2/36+y^2/4=1的右焦点重合,则p的值为()。
A。
-2B。
2C。
-4D。
47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()。
A。
3/2B。
3/3C。
1/2D。
1/38.函数y=x^4-4x^2+3在区间[-2,3]上的最小值为()。
A。
7B。
6C。
12D。
39.设曲线y=ax^2在点(1,a)处的切线与直线2x-y-6=0平行,则a=()。
A。
1B。
1/2C。
-1/2D。
-110.抛物线y=-x^2/8的渐近线方程是()。
A。
x=3B。
y=2C。
y=-2D。
y=-x/411.双曲线x^2/49-y^2/39=1的渐近线方程是()。
A。
y=±x/7B。
y=±x/9C。
y=±3x/7D。
y=±3x/912.抛物线y=10x的焦点到准线的距离是()。
A。
5/15B。
数学选修1-1测试题

数学选修1-1测试题一、选择题(每题3分,共15分)1. 若函数\( f(x) = 3x^2 - 4x + 5 \),求\( f(2) \)的值。
A. 11B. 13C. 15D. 172. 已知等差数列\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
A. 27B. 29C. 31D. 333. 若\( \sin(\alpha + \beta) = \frac{3}{5} \),\( \cos(\alpha + \beta) = -\frac{4}{5} \),且\( \alpha \)在第二象限,求\( \sin(\alpha) \)。
A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \) D. \( -\frac{3}{5} \)4. 已知\( \log_{2}8 = 3 \),求\( \log_{2}32 \)。
A. 4B. 5C. 6D. 75. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题2分,共10分)6. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( a + b \)的值为______。
7. 已知\( \cos(\theta) = \frac{1}{3} \),求\( \sin(\theta) \)的值(考虑所有可能的情况)。
8. 若\( \log_{10}x = 2 \),则\( x \)的值为______。
9. 已知\( \frac{1}{2}x^2 - 3x + 2 = 0 \),求\( x \)的值。
10. 若\( \sin(\alpha) = \frac{1}{2} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。
三、解答题(每题5分,共20分)11. 解不等式:\( |x - 4| < 2 \)。
高中数学选修1-1测试题与答案

数学试题(选修1-1)一.选择题(本大题共12小题,每小题3分,共36分) 1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件2. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .73.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y xB .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤B .存在3210x R x x ∈-+,≤C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>, 5.双曲线121022=-y x 的焦距为( B ) A .22 B .24 C .32 D .346. 设x x x f ln )(=,若2)(0='x f ,则=0x ( )A . 2eB . eC . ln 22D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A B C .12 D .13 8..函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .09.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.抛物线x y 102=的焦点到准线的距离是( )A .25B .5C .215 D .10 13.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。
高中数学选修1-1考试题及答案

1高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。
) 1.抛物线24y x =的焦点坐标是 A .(0,1) B .(1,0) C .1(0,)16 D .1(,0)162.设,a R ∈则1a <是11a>的 A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220a b +=,则,a b 都为零”的逆否命题是 A .若220a b +≠,则,a b 都不为零 B .若220a b +≠,则,a b 不都为零 C .若,a b 都不为零,则220a b +≠ D .若,a b 不都为零,则220a b +≠4.曲线32153y x x =-+在1x =处的切线的倾斜角为A .34πB .3πC .4πD .6π5.一动圆P 与圆22:(1)1A x y ++=外切,而与圆22:(1)64B x y -+=内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支 6.函数()ln f x x x =-的单调递增区间是A .(,1)-∞B .(0,1)C .(0,)+∞D .(1,)+∞7.已知1F 、2F 分别是椭圆22143x y +=的左、右焦点,点M 在椭圆上且2MF x ⊥轴,则1||MF 等于2A .12B .32C .52D .38.函数2()x f x x e -=在[1,3]上的最大值为A .1B .1e -C .24e -D .39e -9. 设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45B 。
5 C. 25 D 。
510. 设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新数学选修1-1练习题
单选题(共5道)
1、下列命题中,其中假命题是()
A对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的可信程度越大
B用相关指数R2来刻画回归的效果时,R2的值越大,说明模型拟合的效果越好C两个随机变量相关性越强,则相关系数的绝对值越接近1
D三维柱形图中柱的高度表示的是各分类变量的频数
2、下列命题中,其中假命题是()
A对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的可信程度越大
B用相关指数R2来刻画回归的效果时,R2的值越大,说明模型拟合的效果越好C两个随机变量相关性越强,则相关系数的绝对值越接近1
D三维柱形图中柱的高度表示的是各分类变量的频数
3、若动圆与圆(x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是
[]
A椭圆
B双曲线
C双曲线的一支
D抛物线
4、过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()
A2
B4
C6
D8
5、已知f′(x)是f(x)的导函数且f′(x)的图象如图所示,则f(x)的图象只可能是()
A
B
C
D
简答题(共5道)
6、(本小题满分12分)
求与双曲线有公共渐近线,且过点的双曲线的标准方程。
7、求下列函数的导数:(1)y=3x3-4x(2)y=(2x-1)(3x+2)(3)y=x2(x3-4)
8、函数,数列和满足:,,函数的图像在点处的切线在轴上的截距为.
(1)求数列{}的通项公式;
(2)若数列的项中仅最小,求的取值范围;
(3)若函数,令函数数列满足:且,证明:
9、(本小题满分12分)
求与双曲线有公共渐近线,且过点的双曲线的标准方程。
10、(本小题满分12分)
求与双曲线有公共渐近线,且过点的双曲线的标准方程。
填空题(共5道)
11、设为双曲线的左右焦点,点P在双曲线的左支上,且
的最小值为,则双曲线的离心率的取值范围是.
12、设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式的解集为______.
13、已知函数则的值为.
14、设为双曲线的左右焦点,点P在双曲线的左支上,且
的最小值为,则双曲线的离心率的取值范围是.
15、设为双曲线的左右焦点,点P在双曲线的左支上,且
的最小值为,则双曲线的离心率的取值范围是.
-------------------------------------
1-答案:A
2-答案:A
3-答案:D
4-答案:D
5-答案:tc
解:由导函数f′(x)的图象可知,f′(x)在x∈[a,b]上恒大于零,由函数的导数与函数的单调性关系可以知道,函数f(x)在x∈[a,b]上单调递增,另一方面,由导函数f′(x)的图象可以看出,导函数在区间[a,b]的端点处取得最大值,从而原函数在区间[a,b]的端点处的变化率最大,原函数在区间[a,b]的端点附近的图象越陡,中间较平稳,结合选项可知选C.故选D.-------------------------------------
1-答案:设所求双曲线的方程为,将点代入得,所求双曲线的标准方程为略
2-答案:解:(1)∵y=3x3-4x∴y′=9x2-4.
(2)∵y=(2x-1)(3x+2)=6x2+x-2,∴y′=12x+1.
(3)∵y=x2
(x3-4)=x5-4x2,∴y′=5x4-8x.
解:(1)∵y=3x3-4x∴y′=9x2-4.
(2)∵y=(2x-1)(3x+2)=6x2+x-2,∴y′=12x+1.
(3)∵y=x2
(x3-4)=x5-4x2,∴y′=5x4-8x.
3-答案:解:(1)∵,得是以2为首项,1为公
差的等差数列,故(2) ∵,,在点处的切线方程为令得
∴仅当时取得最小值,∴的取值范围为(3) 所以
又因则显然
∵
4-答案:设所求双曲线的方程为,将点代入得,所求双曲线的标准方程为略
5-答案:设所求双曲线的方程为,将点代入得,所求双曲线的标准方程为略
-------------------------------------
1-答案:试题分析:∵双曲线(a>0,b>0)的左右焦点分
别为F1,F2,P为双曲线左支上的任意一点,∴|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,∴(当且仅当时取等号),所以
|PF2|=2a+|PF1|=4a,∵|PF2|-|PF1|=2a<2c,|PF1|+|PF2|=6a≥2c,所以e∈(1,3]。
点评:本题把双曲线的定义和基本不等式相结合,考查知识点的灵活应用。
解题时要认真审题,注意基本不等式的合理运用。
2-答案:{x|1≤x<2}
解:∵f(x)+xf′(x)>0,∴(x•f(x))′>0,故函数y=x•f(x)在R上是增函数.∴•=•f(),∴
>,即.解得1≤x<2,故答案为{x|1≤x<2}.
3-答案:-1试题分析:由函数再求导可得,所以
,所以.所以.所以
.
4-答案:试题分析:∵双曲线(a>0,b>0)的左右焦点分别为F1,F2,P为双曲线左支上的任意一点,∴|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,∴(当且仅当时取等号),所以
|PF2|=2a+|PF1|=4a,∵|PF2|-|PF1|=2a<2c,|PF1|+|PF2|=6a≥2c,所以e∈(1,3]。
点评:本题把双曲线的定义和基本不等式相结合,考查知识点的灵活应用。
解题时要认真审题,注意基本不等式的合理运用。
5-答案:试题分析:∵双曲线(a>0,b>0)的左右焦点分
别为F1,F2,P为双曲线左支上的任意一点,∴|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,∴(当且仅当时取等号),所以
|PF2|=2a+|PF1|=4a,∵|PF2|-|PF1|=2a<2c,|PF1|+|PF2|=6a≥2c,所以e∈(1,3]。
点评:本题把双曲线的定义和基本不等式相结合,考查知识点的灵活应用。
解题时要认真审题,注意基本不等式的合理运用。