高中数学选修练习题及答案A组
高中数学选修2-3答案

高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。
(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。
人教A版高中数学选修一第一章《空间向量与立体几何》提高训练题 (11)(含答案解析)

选修一第一章《空间向量与立体几何》提高训练题 (11)一、单选题1.如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,090BAC BCD ∠=∠=,AB AC =,112CD BC ==,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AD 成30°的角,则线段PA 长的取值范围是( )A .⎛ ⎝⎦B .(C .(]0,1D .⎛ ⎝⎦2.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB CD O =,且AB CD ⊥,3SO OB ==,14SE SB =,异面直线SC 与OE 所成角的正切值为( )A B C .1316D二、多选题3.在平行六面体1111ABCD A B C D -中,12AB AD AA ===,1160A AB DAB A AD ∠=∠=∠=︒,则下列说法正确的是( ) A .线段1AC 的长度为B .异面直线11BD B C ,夹角的余弦值为13C .对角面11BBD D 的面积为D.平行六面体1111ABCD A B C D -的体积为4.在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,下列说法正确的是( ) A .平面1PAC ⊥平面11AB D B .//DP 平面11AB DC .异面直线DP 与1AD 所成角的取值范围是0,3π⎛⎤⎥⎦⎝D .三棱锥11D APB -的体积不变5.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 运动,则( )A .三棱锥11P AC D -的体积为定值B .异面直线AP 与1A D 所成的角的取值范围为45,90⎡⎤⎣⎦C .直线1C P 与平面11ACD D .过P 作直线1//l AD ,则l DP ⊥6.如图1,在边长为2的正方形ABCD 中,E ,F ,G 分别为BC ,CD ,BE 的中点,沿AE 、AF 及EF 把这个正方形折成一个四面体,使得B 、C 、D 三点重合于S ,得到四面体S AEF -(如图2).下列结论正确的是( )A .四面体S AEF -B .顶点S 在面AEF 上的射影为AEF 的重心C .SA 与面AEFD .过点G 的平面截四面体S AEF -的外接球所得截面圆的面积的取值范围是13π,π42⎡⎤⎢⎥⎣⎦三、双空题7.边长为2的正方体1111ABCD A B C D -内(包含表面和棱上)有一点P ,M 、N 分别为11A B 、1DD 中点,且AP AM AN λμ=+(λ,R μ∈). (1)若111D P tDC =(t R ∈),则t =______. (2)若11A P k AC =(k ∈R ),则三棱锥11A PD C -体积为______.四、填空题8.如图,正三棱柱111ABC A B C -的高为4,底面边长为D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面α,使得AP α⊥且垂足为E ,则三棱锥P BCE -体积的最小值为__________.9.如图所示,在三棱柱中,已知ABCD 是边长为1的正方形,四边形AA B B ''是矩形,平面AA B B ''⊥平面ABCD .若1AA '=,则直线AB 到面DA C '的距离为___________.10.设P 为矩形ABCD 所在平面外的一点,直线PA ⊥平面ABCD ,3AB =,4BC =,1PA =,则点P 到直线BD 的距离为___________.11.如图,直三棱柱111ABC A B C -中,90BCA ∠=︒,12CA CB CC ===,M ,N 分别是11A B ,11A C 的中点,则BM 与AN 所成的角的余弦值为___________.12.已知正四面体A BCD -的外接球半径为3,MN 为其外接球的一条直径,P 为正四面体A BCD -表面上任意一点,则PM PN ⋅的最小值为___________.五、解答题13.如图,正方形ABCD 所在平面与等边ABE △所在平面互相垂直,设平面ABE 与平面CDE 相交于直线l .(1)求l 与AC 所成角的大小; (2)求二面角A CE D --的余弦值.14.如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AB AD ⊥,//AB CD ,24AB AD CD ===,平面PBC ⊥平面ABCD ,E 是PB 的中点,且12CE PB =.(1)求证:PC ⊥平面ABCD ;(2)若直线PA 与平面ABCD P AC E --的余弦值. 15.如图,在等腰梯形ABCD 中,//AB CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE PB ⊥;(2)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的正弦值.16.如图,正三棱锥P ABC -中,PA 与底面ABC .(1)证明:PA ⊥面PBC ;(2)设O 为ABC 的中心,延长AO 到点E 使得3AE AO =,求二面角A PC E --的平面角的大小. 17.如图所示,在四棱锥P -ABCD 中,底面ABCD 为等腰梯形,P A ⊥底面ABCD ,AD ⊥BC ,BC =2AD =2AB =2DC =2P A =2,对角线AC 与BD 交于O 点,连接PO .(1)求证:AC ⊥PB ;(2)过B 点作一直线l 平行于PC ,设Q 为直线l 上除B 外的任意点,设直线PQ 与平面P AC 所成角为θ,求sin θ的取值范围.18.如图,在七面体ABCDEF 中,四边形ABCD 是菱形,其中60BAD ∠=,,,BCE CEF CDF 为等边三角形,且AB BE ⊥,G 为CD 的中点.(1)证明:AB ⊥平面EFG ;(2)求平面CDF 与平面ABCD 所成的锐二面角的余弦值.19.如图所示,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,1AB AA =证明:1AC ⊥平面11BB D D .20.如图是矩形ABCD 和边AB 为直径的半圆组成的平面图形,将此图形沿AB 折叠,使平面ABCD 垂直于半圆所在的平面,若点E 是折后图形中半圆O 上异于,A B 的点.(1)证明:EA EC ⊥;(2)若22AB AD ==,且异面直线AE 和DC 所成的角为6π,求平面DCE 与平面AEB 所成的锐二面角的余弦值.21.如图,在平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,侧棱AA 1的长度为2,且⊥A 1AB =⊥A 1AD =120°.求:(1)AC 1的长;(2)直线BD 1与AC 所成角的余弦值.22.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,2PA PD ==,四边形ABCD 是边长为2的菱形,60A ∠=︒,E 是AD 的中点.(1)求证:BE ⊥平面PAD ;(2)求平面PAB 与平面PBC 所成角的余弦值.23.如图,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,//AB CD ,AB ⊥AD ,CD =PD =P A =AD =12AB =2.(1)求证:平面PBC ⊥平面P AB ; (2)求二面角D —PC —B 的正弦值.24.如图,已知在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,AB CD =,E 为棱PB上一点,AC 与BD 交于点O ,且AC BD ⊥,1AD =,3BC PC PB ===,PO =.(1)证明:AC DE ⊥;(2)是否存在点E ,使二面角B DC E --?若存在,求出E 点位置,若不存在,请说明理由.25.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,//PD QA ,M 为PC 中点,222PD QA AB ===.(1)证明://QM 平面ABCD ; (2)求二面角Q BP A --的余弦值.26.中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥P ABCD -,其中AC BD ⊥于O ,4OA OB OD ===,8OC =,PO ⊥平面ABCD .(1)求证:PD AC ⊥;(2)试验表明,当12PO OA =时,风筝表现最好,求此时直线PD 与平面PBC 所成角的正弦值.27.如图,在正方体''''ABCD A B C D -中,E 是BC 的中点,(1)过D B E ''、、三点作正方体的截面α; (2)半平面B BE '与平面α所成的二面角的大小;28.如图⊥所示,在边长为12的正方形'11'AA A A 中,点B ,C 在线段'AA 上,且3AB =,4BC =.作11//BB AA .分别交'11A A ,'1AA 于点1B ,P ;作11//CC AA ,分别交'11A A ,'1AA 于点1C ,Q .现将该正方形沿1BB ,1CC 折叠,使得'1'A A 与1AA 重合,构成如图⊥所示的三棱柱111ABC A B C -.(1)在三棱柱111ABC A B C -中,求证:⊥AP BC ; (2)求平面PAQ 与平面ABC 所成的锐二面角的余弦值.29.如图,在三棱锥P ABC -,平面PAC ⊥平面ABC ,D 为棱AC 的中点,M 为棱DP 的中点,N 为棱PC 上靠近点C 的三等分点,2PA PC AB BC ====,AB BC ⊥.(1)若点H 在线段BD 的延长线上,且DB DH =,问:在棱AP 上是否存在点E ,使得HE 与BN 垂直?请说明理由;(2)求平面BMN 与平面ABC 所成锐二面角的余弦值.30.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,点E 、F 分别是PC ,PD 上的动点,且PE FD PF EC ⋅=⋅.(1)求证:EF ⊥平面PAD ;(2)若13PE PC =,且PC 与底面ABCD 所成角的正弦值为35,求二面角C AE D --的余弦值. 31.如图,菱形ABCD 与正三角形DEF 所在平面互相垂直,60BCD ∠=︒,E ,G 分别是线段AB ,CF 的中点.(1)求证://BG 平面DEF ;(2)求直线BC 与平面DEG 所成角的正弦值.32.如图,在空间直角坐标系O xyz -中,A ,D ,B 分别在x ,y ,z 轴的正半轴上,C 在平面BOD 内.(1)若OE CD ⊥,证明:CD AE ⊥.(2)已知3OA OD ==,2OB =,C 的坐标为()0,2,4,求BC 与平面ACD 所成角的正弦值. 33.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,2PA AB ==,PD 的中点为F .(1)求证://PB 平面ACF .(2)请从下面三个条件中任选一个,补充在下面的横线上,并作答.⊥四棱锥P ABCD -,⊥FC 与平面ABCD 所成的角为6π,⊥BD =若___________,求二面角F AC D --的余弦值.34.某直四棱柱被平面AEFG 所截几何体如图所示,底面ABCD 为菱形,(1)若⊥BG GF ,求证:BG ⊥平面ACE ;(2)若1BE =,2AB =,60DAB ∠=︒,直线AF 与底面ABCD 所成角为30º,求直线GF 与平面ABF 所成角的正弦值.35.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AB BC ⊥,//AB CD ,3PD BC CD ===,4AB =.过点D 做四棱锥P ABCD -的截面DEFG ,分别交PA ,PB ,PC 于点E ,F ,G ,已知14AE AP =,13CG CP =.(1) 求直线CP 与平面DEFG 所成的角;(2) 求证:F 为线段PB 的中点.36.如图1所示,在菱形ABCD 中,AB AC ==AC 与BD 相交于点O ,现沿着对角线AC 折成一个四面体ABCD ,如图2所示.(1)在图2中,证明:AC BD ⊥;(2)若图2中BD =点P 是线段BD 的三等分点(靠近点D ),求二面角P AC D --的余弦值. 37.已知四棱锥E ABCD -中,三角形ADE 所在平面与正三角形ABE 所在平面垂直,四边形ABCD是菱形,2,AE BD ==(1)求证:平面ABCD ⊥平面ACE ;(2)求直线AD 与平面ACE 所成角的正弦值.38.已知P A 垂直于以AB 为直径的圆所在平面,C 为圆上异于A ,B 的任一点,2PA AB ==.(1)求证:平面PAC ⊥平面PBC ;(2)当12AC CB =时,求二面角C PB A --的余弦值.39.如图,在三棱柱111ABCA B C ﹣中,1BCC 为正三角形,AC BC ⊥,12AC AA ==,1AC =点P 为1BB 的中点.(1)证明:1CC ⊥平面11AC P ;(2)求平面1ABC 与平面11AC P 所成锐二面角的余弦值.40.如图,在三棱锥P ABC -中,D ,E ,F 分别为棱,,PC AC AB 的中点.已知PA AC ⊥,6PA =,(1)求证:平面BDE⊥平面ABC;--的平面角的余弦值;(2)求二面角A PC B-分为两个几何体,则他(3)延展平面DEF与棱PB交于H点,则四边形EFHD把三棱锥P ABCV V=_____.(此问仅写结果,不需写出过程)们的体积比:PAEFHD BCEFHD41.在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,ABC为正三角形,AB=AA1=2,E是BB1的中点.(1)求证:平面AEC1⊥平面AA1C1C;(2)求二面角B﹣AC1﹣E的余弦值.-中,平面ABE⊥平面BCDE,四边形BCDE是边长为4的正方形,42.如图,在四棱锥A BCDEM,N分别为AE,AC的中点.MN平面BCDE;(1)求证://43.如图所示,已知长方形ABCD 中,2AB AD ==M 为DC 的中点,将ADM △沿AM 折起,使得AD BM ⊥.(1)求证:平面ADM ⊥平面ABCM ;(2)若E 点满足23BE BD =,求二面角E AM D --的大小? 44.如图,四边形ABEF 为正方形,//AD BC ,AD ⊥DC ,AD =2DC =2BC ,(1)求证:点D 不在平面CEF 内;(2)若平面ABCD ⊥平面ABEF ,求二面角A ﹣CF ﹣D 的余弦值.45.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD =,E 为棱AB 的中点.(1)证明:AC PE ⊥;(2)若PA AD =,60BAD ∠=︒,求二面角E PC B --的余弦值.46.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A AC E --的正弦值.47.如图,在四棱锥РABCD -中,平面PAD ⊥平面ABCD ,PA PD =,//AD BC ,90ADC ∠=︒,112BC AD ==,CD =Q ,M 分别为AD ,PC 的中点,(1)求证:Q ,P ,C ,B 四点在同一球面上,并说明球心及半径;(2)画出平面PAB 与平面PDC 的交线(不需要写画法).(3)设平面PAB 与平面PDC 的交线为l ,直线l 与平面ABCD 求平面MQB 与平面PDC 所成的锐二面角的大小.48.如图,在直三棱柱111ABC A B C -中,122,,AC AA AB BC D ===为AC 的中点.(1)证明:1DC ⊥平面1A BD .(2)若1BD =,求二面角11B DB C --的余弦值.49.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ;(2)求二面角B QD A --的平面角的余弦值.50.四棱锥S ABCD -中,底面ABCD 为矩形SD ⊥底面,2ABCD DC SD ==,点M 是侧棱SC 的中点,AD =(1)求异面直线CD 与BM 所成角的大小;(2)求二面角S AM B --的正弦值.【答案与解析】1.C【解析】向量法. 以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,根据各点的坐标写出向量(1,1,1)AD =--,点(),0,0Q q ()01q ≤≤,对于点P 的设法,采用向量式AP AB λ=,而后利用异面直线所成的角的向量计算公式列方程求解.如图,以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则()()()()0,0,0,0,1,1,0,2,0,1,0,0C A B D ,设(),0,0Q q ()01q ≤≤,设()0,,AP AB λλλ==-()01λ<≤,则()(,0,0)(0,1,1)(0,,)(,1,1)PQ CQ CA AP q q λλλλ=-+=---=---,(1,1,1)AD =--,异面直线PQ 与AD 成30的角,||cos30||||PQ AD PQ AD q ⋅∴===⋅ 22182516q q λ∴+=-+,201,516[0,11]q q q ≤≤∴-+∈,即22182018211λλ⎧+≥⎨+≤⎩,解得λ≤≤01,0λλ<≤∴<≤可得||||2(0,1]PA AP λ==∈.故选:C.2.D【解析】以,,OD OB OS 为,,x y z 轴建立空间直角坐标系,用空间向量法求异面直线所成的角的余弦值,再得正弦值.由题意以,,OD OB OS 为,,x y z 轴建立空间直角坐标系,如图,(0,3,0)A -,(0,3,0)B ,(3,0,0)C -,(0,0,3)S , 又14SE SB =, 1139(0,0,3)(0,3,3)(0,,)4444OE OS SE OS SB =+=+=+-=. (3,0,3)SC =--,则274cos ,3OE SCOE SC OE SC -⋅<>===, 设异面直线SC 与OE 所成角为θ,则3cos cos ,10OE SC θ=<>=,θ为锐角,sin θ=sin tan cos θαθ== 故选:D .3.AD【解析】设1,,AB a AD b AA c ===,求得2222,4a b a b c ⋅====,根据1AC a b c =++,求得1AC 的值,可判定A 正确;由110BD BC ⋅=,可判定B 错误;由ABD △为正三角形,根据10DD DB ⋅=,得到对角面11BDD B 为矩形,可判定C 错误;由16A ABD V V -=,可判定D 正确.设1,,AB a AD b AA c ===,则22222cos 602,4a c b c a b a b c ⋅=⋅=⋅=⨯====, 对于A 中,因为1AC a b c =++,可得2221=22224AC a b c a b c a b a c b c =+++++⋅+⋅+⋅== 所以A 正确;对于B 中,因为2211()()0BD B C b c a b c c b a c a b ⋅=+-⋅-=-++⋅-⋅=, 可得异面直线1BD 与1B C 夹角的余弦值为0,所以B 错误;对于C 中,因为2,60AB AD DAB ==∠=,所以ABD △为正三角形,可得2BD =, 因为1()0DD DB c a b c a c b ⋅=⋅-=⋅-⋅=,所以1DD BD ⊥,所以对角面11BDD B 为矩形,其面积为22=4⨯≠C 错误; 对于D 中,设AC 与BD 交于点O ,连接1OA ,取1AA 的中点M ,连接OM ,可得11116622232A ABD AA OV V SBD -==⨯⋅=⨯⨯=,所以D 正确. 故选:AD.4.ABD 【解析】建立空间直角坐标系,利用空间向量法一一计算可得;解:如图建立空间直角坐标系,令正方体的棱长为1,则()1,0,0A ,()11,1,1B ,()10,0,1D ,()0,1,0C ,()11,0,1A ,()0,0,0D ,因为点P 在线段1BC 上运动,设(),1,1P t t -,[]0,1t ∈,则(),1,1DP t t =-, 所以()10,1,1AB =,()11,0,1AD =-,()11,1,1CA =-,所以()110111110AB CA ⋅=⨯+⨯-+⨯=,()()110111110AD CA ⋅=⨯-+⨯-+⨯=,所以11AB CA ⊥,11AD CA ⊥,因为11AB AD A ⋂=,11,AB AD ⊂平面11AB D ,所以1A C ⊥平面11AB D ,因为1AC ⊂平面1PA C ,所以平面1PAC ⊥平面11AB D ,故A 正确;显然()11,1,1CA =-可以作为平面11AB D 的法向量,因为()1111110CA DP t t ⋅=⨯-⨯+⨯-=,所以1CA DP ⊥,因为DP ⊄平面11AB D ,所以//DP 平面11AB D ,故B 正确;因为11//AB D C 且11=AB D C ,所以四边形11ABC D 为平行四边形,所以11//AD BC ,所以直线DP 与1BC 所成角即为异面直线DP 与1AD 所成角,显然当P 在1BC 的两端点时所成的角为3π,当P 在1BC 的中点时所成的角为2π,故异面直线DP 与1AD 所成角的取值范围是,32ππ⎡⎤⎢⎥⎣⎦,故C 错误; 因为11//AD BC ,1AD ⊂平面11AB D ,1BC ⊄平面11AB D ,所以1//B C 平面11AB D ,所以1B C 到平面11AB D 距离即为P 到平面11AB D 的距离,故P 到平面11AB D 的距离为一定值,设P 到平面11AB D 的距离为h , 则11111113D APB P D AB D AB V V Sh --==⋅为定值,故D 正确;故选:ABD5.ACD 【解析】对三棱锥11P AC D -转化顶点可判定选项A ,找到异面成角的最小值的情况即可判断选项B,转化直线1C P 与平面11AC D 所成角的正弦值的最大值为直线1C P 与直线1BD 所成角的余弦值最大,进而判断选项C ,利用线面垂直的性质判定可判定选项D. 如图,对于选项A ,1111P A C D C A PD V V --=,因为点P 在线段1B C 上运动,所以1112A DP S A D AB =⋅,面积为定值,且1C 到平面11A PD 的距离即为1C 到平面11A B CD 的距离,也为定值,故体积为定值,故A 正确; 对于选项B ,当点P 与线段1B C 的端点重合时,AP 与1A D 所成角取得最小值为60︒, 故B 错误; 对于选项C ,因为直线1BD ⊥平面11AC D ,所以若直线1C P 与平面11AC D 所成角的正弦值最大,则直线1C P 与直线1BD 所成角的余弦值最大,则P 运动到1B C 中点处,即所成角为11C BD ∠,设棱长为1,在11Rt D C B 中,1111cos C B C BD BD ∠===,故C 正确; 对于选项D ,连接1B D ,由正方体可得11BC B C ⊥,且DC ⊥平面11B C CB ,则1DC BC ⊥,所以1BC ⊥平面1CDB ,故1BC DP ⊥,过P 作直线1//l AD ,则1//l BC ,所以l DP ⊥;故D 正确.故选:ACD 6.ACD 【解析】折叠问题,关键是抓住其中的不变量.选项A :说明SA 、SE 、SF 两两垂直,将四面体的外接球问题,转化为长方体的外接球问题; 选项B :由于SA 、SE 、SF 两两垂直,可证S 在面AEF 上的射影为AEF 的垂心; 选项C :线面角的定义法求解;选项D :将四面体补成长方体,找出球心,将问题转化为过一定点作球的截面求截面圆面积最值问题.对于A 项,易知SA 、SE 、SF两两垂直,故可以补成长方体,其体对角线长l ,外接球半径R =,故外接球体积为34π3V ==⎝⎭, 故A 项正确;对于B 项,由于SA 、SE 、SF 两两垂直,故S 在面AEF 上的射影为AEF 的垂心, 理由如下:如图,过点S 作SO ⊥平面AEF ,交平面AEF 于点O , 因为SO ⊥平面AEF ,EF ⊂平面AEF ,所以SO EF ⊥,又因为SA SE ⊥,SA SF ⊥,SE ,SF 都在平面SEF 内,且相交于点S , 所以SA ⊥平面SEF ,又EF ⊂平面SEF ,所以SA EF ⊥,又SO SA A =,所以EF ⊥平面SAO ,又AO ⊂平面SAO ,所以AO ⊥EF . 同理可证EO AF ⊥,FO AE ⊥,所以S 在面AEF 上的射影为AEF 的垂心.故B 项错误;对于C 项,设M 为EF 中点,则EF SM ⊥,AM EF ⊥,SM AM M ⋂=,故EF ⊥平面SAM ,故平面AEF ⊥平面SAM ,所以SA 在平面AEF 上的射影为AM ,SA 与平面AEF 所成角为SAM ∠,2SA =,2SM =,π2ASM ∠=,tan SAM ∠=故C 项正确;对于D 项,设O 为四面体S AEF -的外接球球心,OM ⊥平面SEF ,连接MG ,OG ,当过点G 的截面经过球心O 时截面圆面积最大,面积为3π2;当OG 垂直截面圆时,截面圆面积最小,此时1122GM SF ==,1OM =,OG ==12r ===,截面圆面积为π4, 得截面圆面积取值范围是13π,π42⎡⎤⎢⎥⎣⎦.故D 项正确. 故选:ACD.方法点睛:求解几何体的外接球问题或空间角问题一般从以下角度出发:(1) 外接球问题,关键是找出球心,规则图形的球心在对称中心;不规则图形,能补成规则图形最好,若不能,则利用球心与截面圆圆心的连线垂直于截面,可做出球心,再利用几何知识求解. (2) 空间角的处理一般是建系,用向量法求解;若图形中垂直关系明显,空间角容易找出,也可用空间角的定义求解. 7.14 47【解析】(1)以AB ,AD ,1AA 为基底,把向量1D P ,11DC 分别用基底表示,利用两个向量相等的条件即可算出;(2)由11A P k AC =得,1A ,P ,C 三点共线,利用(1)把k 求出来,再利用等体积法1111A PD C P AD C V V --=算出P 到面11AD C 的距离,三角形11AD C 的面积,即可算出体积. 如图,(1)111()D P D A AP AM A DD AN D λμ=+=-+++111()()AA AD AA AM AD DN λμ++-+=-+ 11111()()22AA AA AB AD AD AA λμ=-+-+++ 1111112(()1)2A AB u u AA tD C t A D B λλ=+-+-=+=, 所以12101102t u u λλ⎧=⎪⎪-=⎨⎪⎪+-=⎩,所以14t =.(2)11111(11(1)1)22A P A D D AB P AD AD u u AA λλ+=+=++-+-111)22(1AD AB u u AA λλ=+++-, 111AC A A AB BC AB AD AA =++=+-, 因为11A P k AC =,所以11111)(22()AD AB AD AA AB u u AA k λλ++-=++-,所以12112k u k u kλλ⎧=⎪⎪=⎨⎪⎪+-=-⎩,所以27k =,如图,连接1A D ,1A C ,分别与1AD ,1AC 交于点E ,O , 连接EO ,过点P 作1//PG A E ,在正方体1111ABCD A B C D -中,易证1A E ⊥面11AD C , 所以PG ⊥面11AD C ,因为1112A E A D = 因为1112477A P AC AO ==,所以137OP AO =,所以137PG A E ==1111111222AD C S AD D C =⋅=⋅=△,所以1111111143377A PD C P AD C AD C V V S PG --==⋅⋅=⋅=,故答案为:(1)14;(2)47.8.【解析】由P BCE P ABC E ABC V V V ---=-,可得当E ABC V -最大时,P BCE V -最小,建立空间直角坐标系求E 到底面距离的最大值,则答案可求.解:设BC 中点为O ,以O 为坐标原点,分别以OA 、OB 、OD 所在直线为x 、y 、z 轴建立空间直角坐标系,得(6A ,0,0),设(E x ,0,)z ,则(6,0,)AE x z =-,(,0,)OE x z =,AP α⊥,∴AE OE ⊥,得2(6)00x x z -++=,则z当3x =时,3max z =, 又1(4)3P BCE P ABC E ABC ABCV V V Sz ---=-=⋅-,∴三棱锥P BCE -体积的最小值为116132V =⨯⨯⨯=故答案为:9【解析】建立空间直角坐标系,设(11,)DA a '=-,,设面DA C '的法向量为1(1)n x y =,,,利用空间向量数量积求得法向量,由直线AB 到面DA C '的距离d 就等于点A 到面DA C '的距离,利用射影的求解公式求解即可得出结论.如图建立空间坐标系A xyz -,设(11,)DA a '=-,,(010)DC =,,,设面DA C '的法向量为1(1)n x y =,,,则有1100DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩',得1(01)n a =,,, 直线AB 到面DA C '的距离d 就等于点A 到面DA C '的距离,也等于向量AD 在面DA C '的法向量上的投影的绝对11||22||AD nd n ⋅==. 故答案为:2. 10.135【解析】求出BP 在BD 上的射影长再利用勾股定理可得答案.因为,,⊥⊥⊥BA BC AP BC AP BA , 所以00=0,,⋅⋅=⋅=BA BC AP BC AP BA , ()()⋅=+⋅+BP BD BA AP BC BA()229=⋅++⋅+⋅==BA BC BA AP BC AP BA AB ,22225=+=BD BC CD ,22210=+=BP BA AP ,所以5BD =,210=AP ,因为·95=PB BD BD,所以BP 在BD 上的射影长为95, 所以点P 到直线BD 的距离22·13105=-==PB BD d AP BD .故答案为:135. 11【解析】如图所示,建立空间直角坐标系,利用向量夹角公式即可得出异面直线所成的角.如图所示,建立空间直角坐标系,可得(2A,0,0),(0B ,2,0),(1M ,1,2),(1N ,0,2).∴(1AN =-,0,2),(1BM =,1-,2),cos AN ∴<,1||||5AN BM BM AN BM ⋅->==⋅12.8- 【解析】设正四面体外接球球心为O ,把,PM PN 用,,PO OM ON 表示并计算数量积后可得. 设正四面体外接球球心为O , 正四面体A BCD -的外接球半径为3,设正四面体A BCD -内切球半径为r ,一个面的面积为S ,高为h ,则11433ABCD V Sr Sh =⨯=,所以4h r =,显然34r h r +==,所以1r =,即min 1PO =.22()()9198PM PN PO OM PO ON PO OM ON PO ⋅=+⋅+=+⋅=--=-.故答案为:8-. 13.(1)45°;(2)57.【解析】(1)由四边形ABCD 为正方形,可得//AB CD ,再由线面平行的判定定理可得//AB 平面CDE ,由线面平行的性质定理可得//l AB ,由45BAC ∠=︒可得l 与AC 所成角的大小是45︒;(2)分别取AB 、CD 的中点O 、F ,连接EO ,可得OA 、OE 、OF 两两垂直,所以以O 为坐标原点,分别以OA 、OE 、OF 所在直线为x 、y 、z 轴建立空间直角坐标系,利用空间向量求解二面角的余弦值解:(1)⊥四边形ABCD 为正方形,⊥//AB CD , ⊥AB ∉平面CDE ,CD ⊂平面CDE ,⊥//AB 平面CDE , 又⊥AB平面ABE ,且平面ABE 平面CDE =直线l ,⊥//l AB ,⊥四边形ABCD 为正方形,⊥45BAC ∠=︒, 故l 与AC 所成角的大小是45︒;(2)分别取AB 、CD 的中点O 、F ,连接EO , 由ABE △为等边三角形,可知EO AB ⊥, 由四边形ABCD 为正方形,知FO AB ⊥,⊥平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =, 且FO ⊂平面ABCD ,⊥FO ⊥平面ABE ,以O 为坐标原点,分别以OA 、OE 、OF 所在直线为x 、y 、z 轴建立空间直角坐标系, 设2AB =,则()1,0,0A ,()1,0,2C -,()E ,()1,0,2D , 于是()2,0,2AC =-,()1,2CE =-,()2,0,0CD =, 设平面ACE 的一个法向量为(),,m x y z =, 由20220m CE x z m AC x z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1y =,可得(3,1,m =;设平面CDE 的一个法向量为()111,,n x y z =,由11112020n CE x z n CD x ⎧⋅=-=⎪⎨⋅==⎪⎩,取12y =,可得(0,2,3n =.⊥025cos ,77m n m n m n⋅+===⨯⋅. 由图可知,二面角A CE D --为锐二面角,则其余弦值为57.14.(1)证明见解析;(2【解析】(1)依题意可得PCB 为直角三角形,即可得到PC BC ⊥,根据面面垂直的性质定理即可证明; (2)由(1)可知PAC ∠即为直线PA 与平面ABCD所成角,即可得到PC PA =求出PC ,建立空间直角坐标系,利用空间向量法求出二面角的余弦值; 解:(1)在PCB 中,因为E 是PB 的中点, 且12CE PB =,所以CE EB PE ==, 所以PCB 为直角三角形,所以PC BC ⊥,又因为平面PBC ⊥平面ABCD ,平面PBC 平面ABCD BC =,PC ⊂平面PBC , 所以PC ⊥平面ABCD(2)因为PC ⊥平面ABCD ,所以直线PA 与平面ABCD 所成角为PAC ∠,所以sin PC PAC PA ∠==又222AC AD DC =+,4=AD ,2DC =,所以AC =在Rt PAC △中,设PC x =,则PA =,所以222PA PC AC =+,即)(222x =+,解得2x =,即2PC =,作//CF DA 交AB 于点F ,因为AB AD ⊥,所以AB CF ⊥,如图建立空间直角坐标系,则()0,0,0C ,()4,2,0A ,()4,2,0B -,()002P ,,,()2,1,1E -,()4,2,0CA =,()2,1,1CE =-,()0,0,2CP =,设面PAC 的法向量为(),,n x y z =,所以42020n CA x y n CP z ⎧⋅=+=⎨⋅==⎩,令1x =,则2y =-,0z =,所以()1,2,0n =-,设面EAC 的法向量为()111,,m x y z =,所以1111142020m CA x y m CE x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,令11x =,则12y =-,14z =-,所以()1,2,4m =--,设二面角P AC E --为θ,显然二面角为锐二面角,所以5cos 5n m n mθ⋅===⨯⋅;15.(1)证明见解析;(2. 【解析】(1)设AE 的中点为O ,连接OP 、OB ,证明出AE ⊥平面POB ,进而可得出AE PB ⊥; (2)证明出PO ⊥平面ABCE ,然后以O 为原点,OE 为x 轴、OB 为y 轴、OP 为z 轴,建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得结果. (1)设AE 的中点为O ,连接OP 、OB ,翻折前,因为1AD AB BC ===,2CD =,E 为CD 的中点,则1AD DE ==, //AB CE 且1AB CE ==,故四边形ABCE 为平行四边形,则BC AE =,故AD DE AE ==,所以,ADE 为等边三角形, O 为AE 的中点,则OD AE ⊥,因为//AB CD ,则3BAE AED π∠=∠=,翻折后,则有OP AE ⊥,在ABO 中,1AB =,12AO =,3BAO π∠=, 由余弦定理可得22232cos34OB AB AO AB AO π=+-⋅=,222AO OB AB ∴+=, 所以,OB AE ⊥,OP OB O =,AE ∴⊥平面POB ,PB ⊂平面POB ,故AE PB ⊥;(2)在平面POB 内作PQ OB ⊥,垂足为Q , AE平面POB ,PQ ⊂平面POB ,所以,PQ AE ⊥,PQ OB ⊥,AE OB O =,PQ ∴⊥平面ABCE ,所以,直线PB 与平面ABCE 所成角为4PBO π∠=,因为,OP OB =,则4OPB π∠=,所以,OP OB ⊥,故O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴、OB 为y 轴、OP 为z 轴,建立空间直角坐标系,则P ⎛⎫ ⎪ ⎪⎝⎭、1,0,02E ⎛⎫⎪⎝⎭、C ⎛⎫ ⎪ ⎪⎝⎭,则1,0,2PE ⎛= ⎝⎭,12EC ⎛⎫= ⎪ ⎪⎝⎭, 设平面PCE 的一个法向量为()1,,n x y z =,则1100n PE n EC ⎧⋅=⎪⎨⋅=⎪⎩,即102102x x y ⎧=⎪⎪⎨⎪=⎪⎩,令x =()13,1,1n =-,易知平面PAE 的一个法向量为()20,1,0n =,所以,121212cos ,n n n n n n ⋅<>==-=⋅212122sin ,1cos ,5n n n n <>=-<>=. 因此,二面角A PE C --16.(1)证明见解析;(2)3π4.【解析】(1)取底面中心O ,不妨设2AO =,根据线面角可得AC =PA PB ⊥,根据正棱锥的性质可得PA PC ⊥,进而可得结果;(2)建立如图所示的空间直角坐标系,易得面PAC 的法向量,求出面PCE 的法向量,求出法向量夹角的余弦值即可得结果.(1)由题意知:取底面中心O ,则有PO ⊥面ABCD , 所以PAO ∠即为PA 与底面ABC 所成角, 不妨设2AO =,则有PO=PA 在正ABC 中,因为2AO =,所以AC =在PAB △中,因为222PA PB AB +=,所以PA PB ⊥⊥ 又因为正三棱锥,所以PA PC ⊥⊥所以PA PB PA PCPA PB PC P ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩面PBC . (2)因为ABC 为等边三角形,取BC 中点D ,则AD BC ⊥, 作//l PO ,则l ⊥面ABC .以D 为原点,DB ,DE ,l 分别为x ,y ,z 轴建立空间直角坐标系. 则有:()0,0,0D,)B,(0,P -,()0,3,0A -,()C ,()0,1,0O -,所以()30,6,0AE AO ==,所以()0,3,0E . 因为PB ⊥面PAC,所以(13,1,n =为面PAC 的法向量,设面PCE 的法向量为()2,,n x y z =,所以由(2032,0n PC n n PE ⎧⋅=⇒=-⎨⋅=⎩.所以12121236cos ,2n n n n nn ⋅===⋅,所以二面角的大小为3π4.17.(1)证明见解析;(2)⎛ ⎝⎦.【解析】(1)延长BA 、CD 交于一点R ,根据平面几何知识得CA ⊥BA ,根据线面垂直的判定和性质可得证; (2)由(1)得,以A 为原点,射线AB ,AC ,AP 的方向为x ,y ,z 轴正方向建立空间坐标系,设PQ PB tPC =+,其中,0t t ∈≠R ,根据线面角的向量求解方法表示sin θ=,再由二次函数的性质可求得范围.(1)延长BA 、CD 交于一点R ,因为AD ⊥BC ,BC =2AD =2AB =2DC =2,所以RBC △为正三角形,且AD 为三角形RBC 的中位线,即A 为BR 边的中点,所以CA ⊥BA ,因为P A ⊥底面ABCD ,AC ⊥平面ABCD ,所以P A ⊥AC , 因为 AB P A =A ,所以AC ⊥平面P AB ,PB ⊥平面P AB , 所以AC ⊥PB ;(2)由(1)得,AP ,AB ,AC 两两垂直,故以A 为原点,射线AB ,AC ,AP 的方向为x ,y ,z 轴正方向建立空间坐标系,则平面P AC 的法向量为1(1,0,0)n =,P (0,0,1),C (00),B (1,0,0),所以PC =(01),PB =(1,0,-1),因为l ⊥PC ,所以可设(1,0,1)1),(1))PQ PB tPC t t =+=-+-=-+,其中,0t t ∈≠R ,2||sin ||||1n PQ n PQ θ⋅===⋅因为,0t t ∈≠R ,所以27422,4t t ∞⎡⎫++∈+⎪⎢⎣⎭,所以sin θ⎛=⎝⎦,当且仅当14t =-时,sin θ=18.(1) 证明见解析; (2) 79. 【解析】(1)利用线面垂直的判定证AB ⊥ 平面BEG ,得到AB EG ⊥,再证AB ⊥平面EFG ; (2)几何法求解.先确定二面角的平面角,再利用解三角形知识求角. (1) 连接BG ,FG ,因为G 为菱形ABCD 的边CD 上的中点,所以1122CG CD CB ==,又60BCD BAD ∠=∠=︒,由余弦定理得222232cos604BG CG CB CG CB CB =+-⋅=,由222223144CB CB BG CG CB ++==,知BG CG ⊥,即BG CD ⊥, 又//AB CD ,所以AB BG ⊥ . 根据题意,有AB BE ⊥又BG ,BE 都在平面BGE 内,且相交于点B 所以AB ⊥ 平面BEG又EG ⊂平面BEG ,所以AB EG ⊥.在等边三角形CDF 中,因为G 为CD 的中点,所以CD GF ⊥. 又在菱形ABCD 中,//AB CD ,所以AB GF ⊥. 因为EG ,GF 都在平面EFG 内,且相交于点G , 所以AB ⊥ 平面EFG .(2) 因为平面 ABCD 与平面CDF 的交线为CD , 由(1)知,BG CD ⊥,FG CD ⊥,所以BGF ∠为二面角A CD F --的平面角, 设2AB = ,则有2BE EF == ,BG GF = 由(1)知,AB ⊥ 平面BEG ,又AB平面ABCD ,所以平面ABCD ⊥ 平面BEG ,过点E 作EM BG ⊥交BG 于点M ,则有EM ⊥平面ABCD ,又BEC △ 为等边三角形,所以BM CM =,GM =EM =,EG =.在BEG 和EFG 中,由余弦定理得2221cos 23BG EG BE BGE BG EG +-∠==⋅,2221cos 23EG FG EF EGF EG FG +-∠==⋅,所以BGE EGF ∠=∠则27cos cos 22cos 19BGF BGE BGE ∠=∠=∠-=-,所以平面CDF 与平面ABCD 所成的锐二面角的余弦值为7cos 9BGF ∠= . 立体几何图形证明线面、面面位置关系或求线面、面面角可从以下几点考虑:(1)证明线面、面面位置关系的一般方法是利用相关的判定定理和性质定理,需注意二者的相互转化.若有坐标系也可利用向量法证明.(2)求线面、面面角的一般方法是向量法,若图形容易确定所求角,也可利用几何法,结合解三角形知识求角. 19.证明见解析 【解析】以O 为原点建立空间直角坐标系,写出各点坐标,求得向量坐标,利用空间向量数量积证得1AC BD ⊥,11AC BB ⊥,然后利用线面垂直判定定理证得结论.⊥OA 、OB 、1OA 两两垂直,以O 为原点建立空间直角坐标系,⊥1AB AA =⊥11OA OB OA ===,⊥(100)A ,,、(010)B ,,、(100)C -,,、(010)D -,,、1(001)A ,,, 由11AB A B =易得1(101)B -,,,⊥1(101)AC =--,,、(020)BD =-,,、1(101)BB =-,,, ⊥10AC BD ⋅=,110AC BB ⋅=,⊥1AC BD ⊥,11AC BB ⊥, 又1BD BB B ⋂=,且BD 、1BB ⊂平面11BB D D ,⊥1AC ⊥平面11BB D D .20.(1)证明见解析;(2. 【解析】(1)由面面垂直的性质得BC ⊥圆O ,由线面垂直的性质得BC EA ⊥,根据线面垂直的判定可得EA ⊥面EBC ,再由线面垂直的性质可证EA EC ⊥.(2)法一:以点O为坐标原点,建立如图所示的空间直角坐标系,首先求得1,0)2E ,再分别求平面DCE 和平面AEB 的法向量,利用法向量求二面角的余弦值;法二:首先作出两个平面的交线,再作出二面角的平面角,再求二面角的余弦值.(1)⊥平面ABCD 垂直于圆O 所在的平面,两平面的交线为AB ,BC ⊂平面ABCD ,BC AB ⊥,⊥BC 垂直于圆O 所在的平面.又EA 在圆O 所在的平面内,⊥BC EA ⊥. ⊥AEB ∠是直角,⊥BE EA ⊥.而BE BC B =,⊥EA ⊥平面EBC . 又⊥EC ⊂平面EBC ,⊥EA EC ⊥. (2)法1(向量法):如图,以点O 为坐标原点,AB 所在的直线为y 轴,过点O 与BC 平行的直线为z 轴,建立空间直角坐标系O xyz -.由异面直线AE 和DC 所成的角为6π,//AB DC 知6BAE π∠=,⊥3BOE π∠=,⊥1,0)2E . 由题设可知(0,1,1)C ,(0,1,1)D -,⊥33(,1)2DE =-,31(,1)2CE =--. 设平面DCE 的一个法向量为000(,,)p x y z =, 由0DE p ⋅=,0CE p ⋅=000000302102x y z x y z +-=--= 得00z =,00y =,取02x =,得0z⊥p =.又平面AEB 的一个法向量为(0,0,1)q =,⊥21cos ,7p q p q p q ⋅<>==.故平面DCE 与平面AEB 所成的锐二面角的余弦值7法2(几何法):如图,过点E 作直线//m DC , 则m 是平面DCE 与平面AEB 的交线. 再过点B 作BP m ⊥,P 为垂足,连接CP ,则BPC ∠是平面DCE 与平面AEB 所成锐二面角的平面角.在直角三角形AEB 中,6BAE π∠=,2AB =,所以 1.BE =在直角三角形PEB 中,,13BEP BE π∠==,所以BP =.在直角三角形PBC 中,BP PC BPC PC =∠==故平面DCE 与平面AEB .21.(1)1AC (2 【解析】(1)利用向量模的计算公式和向量的数量积的定义即可得出1AC 的长;(2)分别求出11||,||,AC BD AC BD 的值,代入数量积求夹角公式,即可求得异面直线1BD 与AC 所成角的余弦值. 解:(1)111111AC AA A B BC =++,()22222111111111111111111111222AC AA A B B C AA A B B C AA A B AA B A C B B C ∴=++=+++⋅+⋅+⋅222211212cos120212cos120211cos902=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=1AC ∴=(2)AC AB BC =+222222()21102AC AB BC AB BC AB BC ∴=+=++⋅=++=2AC ∴=111111BD BB B A A D =++()22222111111111111111111111222BD BB B A A D BB B A A D BB B A BB A D B A A D ∴=++=+++⋅+⋅+⋅222211212cos60212cos120211cos906=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=16BD ∴=()()1111112AC BD AB BC BB B A A D ∴⋅=+⋅++=-111cos ,2AC BD AC BD ACBD ⋅∴===⋅所以直线BD 1与AC 22.(1)证明见解析;(2 【解析】(1)由面面垂直的性质定理得PE ⊥平面ABCD ,故PE BE ⊥,再结合菱形的性质得BE AD ⊥,进而得BE ⊥平面PAD ;(2)由()1可知EA EB EP ,,两两垂直,故以E 为原点,EA EB EP ,,所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,利用坐标法求解即可.解:(1)证明:由2PA PD ==,E 是AD 的中点,得PE AD ⊥,因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,且PE ⊂平面PAD , 所以PE ⊥平面ABCD , 又BE ⊂平面ABCD , 所以PE BE ⊥,又因为四边形ABCD 是边长为2的菱形,60A ∠=︒, 所以BE AD ⊥, 又PEAD E =,且PE ,AD ⊂平面PAD ,所以BE ⊥平面PAD ;()2解:由()1可知EA EB EP ,,两两垂直,。
人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
人教a版高中数学选修21全册同步练习及单元检测含答案

答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根
假
三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1
人教A版2019学年高中数学选修2-1优化练习:第二章 2.4 2.4.1 抛物线及其标准方程_含解析

[课时作业] [A 组 基础巩固]1.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=yD .无法确定解析:由题设知抛物线开口向右或开口向上,设其方程为y 2=2px (p >0)或 x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以所求抛物线标准方程为 y 2=8x 或x 2=y ,故选C. 答案:C2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0, 则x 0=( ) A .1 B .2 C .4D .8解析:由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A. 答案:A3.若动点M (x ,y )到点F (4,0)的距离等于它到直线x +4=0的距离,则M 点的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x解析:根据抛物线定义可知,M 点的轨迹是以F 为焦点,以直线x =-4为准线的抛物线,p =8,∴其轨迹方程为y 2=16x ,故选D. 答案:D4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y解析:抛物线的焦点⎝ ⎛⎭⎪⎫0,p 2,双曲线的渐近线为y =±b a x ,不妨取y =b a x , 即bx -ay =0,焦点到渐近线的距离为|a ×p2|a 2+b2=2,即ap =4a 2+b 2=4c ,所以c a =p 4,双曲线的离心率为c a =2,所以c a =p4=2,所以p =8,所以抛物线方 程为x 2=16y .故选D. 答案:D5.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( ) A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.答案:A6.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为________.解析:依题意得,直线x =-p2与圆(x -3)2+y 2=16相切,因此圆心(3,0)到直线x =-p 2的距离等于半径4,于是有3+p2=4,即p =2.答案:27.设抛物线y 2=2px (p >0)的焦点为F ,定点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________. 解析:抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,线段F A 的中点B 的坐标为⎝ ⎛⎭⎪⎫p 4,1,代入抛物线方程得1=2p ×p4,解得p =2,故点B 的坐标为⎝ ⎛⎭⎪⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 答案:3248.对于抛物线y 2=4x 上任意一点Q ,点P (a,0)都满足|PQ |≥|a |,则a 的取值范围是________.解析:设Q (x 0,±2x 0)(x 0≥0),则|PQ |=(x 0-a )2+4x 0≥|a |对∀x 0≥0恒成立, 即(x 0-a )2+4x 0≥a 2对∀x ≥0恒成立.化简得x 20+(4-2a )x 0≥0.当4-2a ≥0时,对∀x 0≥0,x 20+(4-2a )x 0≥0恒成立,此时a ≤2; 当4-2a <0时,0<x 0<2a -4时不合题意. 答案:(-∞,2]9.已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.解析:如图,作PK 垂直于直线x =1,垂足为K ,PQ 垂直于直线x =2,垂足为Q ,则|KQ |=1, ∴|PQ |=r +1, 又|AP |=r +1. ∴|AP |=|PQ |.故点P 到圆心A (-2,0)的距离和到定直线x =2的距离相等.∴点P 的轨迹为抛物线,A (-2,0)为焦点. 直线x =2为准线. ∴p2=2.∴p =4.∴点P 的轨迹方程为y 2=-8x .10.如图所示,花坛水池中央有一喷泉,水管O ′P =1 m ,水从喷头P 喷出后呈抛物线状,先向上至最高点后落下,若最高点距水面2 m ,P 距抛物线的对称轴1 m ,则水池的直径至少应设计为多少米?(精确到整数位)解析:如图所示,建立平面直角坐标系,设抛物线方程为x 2=-2py (p >0),依题意有P (-1,-1),在此抛物线上,代入得p =12, 故得抛物线方程为x 2=-y . 又因为B 点在抛物线上, 将B (x ,-2)代入抛物线方程 得x =2,即|AB |=2,则水池半径应为|AB |+1=2+1,因此所求水池的直径为2(1+2),约为5 m , 即水池的直径至少应设计为5 m.[B 组 能力提升]1.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( ) A .|FP 1|+|FP 2|=|FP 3| B .|FP 1|2+|FP 2|2=|FP 3|2 C .2|FP 2|=|FP 1|+|FP 3| D .|FP 2|2=|FP 1|·|FP 3|解析:|FP 1|=x 1+p 2,|FP 2|=x 2+p 2,|FP 3|=x 3+p 2, ∵2x 2=x 1+x 3, ∴2|FP 2|=|FP 1|+| FP 3|. 答案:C2.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |等于( ) A .2 2 B .2 3 C .4 D .2 5 解析:设抛物线方程为y 2=2px (p >0), 则焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,准线方程为x =-p 2,∵M 在抛物线上,∴M 到焦点的距离等于到准线的距离,即2+p2=3,p =2,抛物线方程为y 2=4x ,∵M (2,y 0)在抛物线上,∴y 20=8,∴|OM |=22+y 20=22+8=2 3.答案:B3.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线 x 2a -y 2=1的左顶点为A .若双曲线的一条渐近线与直线AM 平行,则实数a 等于________.解析:由抛物线定义知1+p2=5,∴p =8, ∴抛物线方程为y 2=16x ,∴m 2=16, ∴m =4,即M (1,4),又∵A (-a ,0),双曲线渐近线方程为y =±1a x ,由题意知41+a =1a ,∴a =19.答案:194.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba =________.解析:∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C ⎝ ⎛⎭⎪⎫a 2,-a ,F ⎝ ⎛⎭⎪⎫a 2+b ,b .又∵点C ,F 在抛物线y 2=2px (p >0)上, ∴⎩⎪⎨⎪⎧a 2=pa ,b 2=2p ⎝ ⎛⎭⎪⎫a 2+b ,解得ba =2+1.答案:2+15.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解析:(1)证明:设A (-y 21,y 1),B (-y 22,y 2). 则y 1=k (-y 21+1),y 2=k (-y 22+1), 消去k 得y 1(1-y 22)=y 2(1-y 21).∴(y 2-y 1)=y 1y 2(y 1-y 2), 又y 1≠y 2,∴y 1y 2=-1,∴OA →·OB →=y 1y 2+y 21y 22=y 1y 2(1+y 1y 2)=0, ∴OA ⊥OB .(2)S △OAB =12×1×|y 2-y 1|,由⎩⎨⎧y 2=-x ,y =k (x +1),得ky 2+y -k =0, ∴S △OAB =12×1×|y 2-y 1|=121k 2+4=10,∴k =±16.6.已知抛物线y 2=2px (p >0).试问:(1)在抛物线上是否存在点P ,使得点P 到焦点F 的距离与点P 到y 轴的距离相等?(2)在抛物线上是否存在点P ,使得点P 到x 轴的距离与点P 到准线的距离相等? 解析:(1)假设在抛物线上存在点P ,使得点P 到焦点F 的距离与点P 到y 轴的距离相等.那么根据抛物线定义,得点P到准线的距离与点P到y轴的距离相等,这显然是不可能的.所以在抛物线上不存在点P,使得点P到焦点F的距离与点P到y轴的距离相等.(2)假设在抛物线上存在点P,使得点P到x轴的距离与点P到准线的距离相等,则由抛物线定义,得点P到x轴的距离与点P到焦点的距离相等.这样的点是存在的,有两个,即当PF与x轴垂直时,满足条件.。
高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。
高中数学选修2-3习题及答案

[基础训练A 组] 一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用145,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? 2.7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起, (4)甲、乙之间有且只有两人, (5)甲、乙、丙三人两两不相邻, (6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序, (8)甲不排头,乙不排当中。
人教版高中数学选修 练习题及参考答案

人教版高中数学选修-练习题及参考答案(附参考答案)一、选择题1.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是( ) A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab2.三角形全等是三角形面积相等的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件3.下列四个命题中,真命题是( )A.是偶数且是无理数B.8≥10C.有些梯形内接于圆D.xR,x2x+1≠04.命题“所有奇数的立方是奇数”的否定是( )A.所有奇数的立方不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数二、填空题5.命题“若a=1,则a2=1”的逆否命题是______________________.?? 6.b=0是函数f(x)=ax2+bx+c为偶函数的______________________.7.全称命题“aZ,a有一个正因数”的否定是________________________.??8.特称命题“有些三角形的三条中线相等”的否定是______________________.条件.的______ ___,则非p是非q9.设p:|5x1|>4;?三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x23x+2=0},B={x|x2mx+2=0},若A是B的必要不充分条件,求实数m范围.??12.给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中求实数的取值范围.有且仅有一个为真命题,常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤a=0或012.解:P真:对任意实数都有恒成立??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤或0.解:12P真:对任意实数都有恒成立a=0??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???圆锥曲线练习题一.选择题若椭圆经过原点,且焦点分别为,则其离心率为() 1.1A.B. C. D.4y2=4x的焦点作直线l,交抛物线于A,过抛物线B两点,若线段AB中点的横坐标2.为3,则|AB|等于()A.10B.8C.6D.4若双曲线+=1的离心率,则k的取值范围是() 3.A. B. C. D.与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是()4. B. A. C. D.过点M(2,0)的直线L与椭圆交于两点,设线段的中点为P,若直线l的斜率为,5.的斜率为,则等于()直线OP?1-A. B. C. D.2.如果方程+=1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是()6. A. B. C. D.二.填空题椭圆+=1的焦点分别是,点P在椭圆上,如果线段的中点在y轴上,那么是的7.倍.椭圆+=1的焦点分别是,过原点O做直线与椭圆交于A,B两点,若ABF2的面积8.是20,则直线AB的方程是.?与双曲线有共同的渐近线,并且经过点的双曲线方程是9.已知直线y=kx+2与双曲线x2y2=6的右支相交于不同的两点,则k的取值范围10.是.三.解答题?抛物线y=-x2与过点M(0,1)的直线L相交于A,B两点,O为原点,若OA和OB11.的斜率之和为1,求直线L的方程.?已知中心在原点,一焦点为F(0,)的椭圆被直线截得的弦的中点横坐标为,求此12.椭圆的方程.13.是椭圆+=1的两个焦点,为椭圆上一点,且AF1F2=45,求的面积.???圆锥曲线练习题答案一.选择题:CBCADD二.填空题:7. 7倍8.y=x 9. -=1 10.-,3)<k<-1?三.解答题解:斜率不存在不合题意,设直线代入抛物线得11.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则1解:设所求的椭圆为+=12.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.圆锥曲线练习题答案CBCADD 一.选择题:二.填空题:1,3)<k<--=7. 7倍8.y=x 9. 1 10.-?三.解答题解:斜率不存在不合题意,设直线代入抛物线得13.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则解:设所求的椭圆为+=114.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.空间向量练习题一.选择题1.直棱柱ABCA1B1C1中,若=,=,=,则=( )?→→+++D.+B.+C.A.b?c????2.已知A,B,C三点不共线,对平面ABC外的任意一点O,下列条件中能确定点M与A,B,C一定共面的是( )→→→A.=++C.=2OA?OB?OC1→C.=++D.=++OC 33.若向量同时垂直向量和,向量=+(,R, ,≠0),则()???????A.∥B.C.与不平行也不垂直D.以上均有可能?4.以下四个命题中,正确的是( )A.若=+,则P,A,B三点共线B.若{,,}为空间一个基底,则{+,+,+}构成空间的另一个基底C.|()|=||||||???D.ABC为直角三角形的充要条件是=0??5.已知=(+1,0,2),=(6,21,2),∥,则和的值分别为( )??????A.,B.5,2C.,D.5,2????二.填空题6.若=(2,3,1),=(2,0,3),=(0,2,2),则(+)=________.??7.已知G是ABC的重心,O是空间任一点,若++=,则的值为_______.??? 8.已知||=1,||=2,<,>=60,则|(+2)|=________.??三.解答题9.若向量(+3)(75),(4)(72),求与的夹角.?????10.设,试求实数,使成立.求与侧面所成的角.正三棱柱的底面边长为,11.侧棱长为,小大的角面二,时值何于等问,动移上棱在点,,,中体方长在.12.为.空间向量练习题答案 DDBBA一.选择题6.3 83 7.二.填空题6.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.=(2x,1,2)可求得平面的法向量为?..(舍去)空间向量练习题答案 DDBBA一.选择题6.3 8二.填空题6.3 7.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.可求得平面的法向量为=(2x,1,2)?..(舍去)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3A 组练习题
郑中钧中学 易安 一、 选择题
1.将3个不同的小球放入4个盒子中,则不同放法种数有( )
A .81
B .64
C .12
D .14
2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )
A .33A
B .334A
C .523533A A A -
D .2311323233A A A A A +
3.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、
物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )
A .男生2人,女生6人
B .男生3人,女生5人
C .男生5人,女生3人
D .男生6人,女生2人.
4.在832x x ⎛- ⎪⎝⎭的展开式中的常数项是( ) A.7 B .7- C .28 D .28-
5.5(12)(2)x x -+的展开式中3
x 的项的系数是( )
A.120 B .120- C .100 D .100- 6.22n x x ⎛⎫+ ⎪⎝
⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( ) A .180 B .90 C .45 D .360
7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是( )
A .1260
B .120
C .240
D .720
8.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )
A .3个
B .4个
C .6个
D .7个
9.三个元件123,,T T T 正常工作的概率分别为,4
3,43,21将它们中某两个元件并联后再和第三元件串联接入电路, 在如右图的电路中,电路不发生故
障的概率是( )
A .3215
B .329
C . 327
D . 32
17
x 则随机变量ξ的数学期望是( )
A .
B .0.52
C .
D .条件不足
二、填空题
11.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?
12.若9a x ⎛ ⎝
的展开式中3x 的系数为94,则常数a 的值为 . 13.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2
y ax bx c =++的系数,,a b c 则可组成不同的函数_______个,其中以y 轴作为该函数的图像的对称轴的函数有______个.
14.已知772127(12)o x a a a x a x -=++++L ,那么127a a a +++L 等于
三、解答题 15.解方程 432(1)140;x x A A =
16(1)在n
(1+x )的展开式中,若第3项与第6项系数相等,且n 等于多少?
(2)
n ⎛ ⎝
的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项。
(3)已知5025001250(2),a a x a x a x =++++L 其中01250,,,a a a a L 是常数,计算
220245013549()()a a a a a a a a ++++-++++L L
17.6个人坐在一排10个座位上,问:(1)空位不相邻的坐法有多少种? (2)
4个空位只有3 个相邻的坐法有多少种? (3) 4个空位至多有2个相邻的坐法有多少种?
18.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,
数学为0.8,英语为0.85,问一次考试中
(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少
19.如图,,A B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.
(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当6x ≥时,则保证信息畅通.求线路信息
畅通的概率;
(II )求选取的三条网线可通过信息总量的数学期望.
20.已知正四面体A —BCD ,有一只小虫自顶点A 沿每一条棱以等可能的概率爬到另外三个顶点B 、C 、
D ,然后又从B 、C 、D 中的一个顶点沿每一条棱以等可能的概率爬到另外三个顶点,依次进行下去。
记P n 为第n 次到顶点A 的概率。
⑴ 求P n 的通项公式;
⑵ 求2006次爬到顶点A 的概率.
参考答案:
一、 选择题
1~5 B C B A B 6~10 A DDAC
二、填空题
11、9
12、4
13、180,30
14、-2
三、解答题
15、
得3x =
16、(1)由已知得257n n C C n =⇒=
(2)由已知得1351...128,2
128,8n n n n C C C n -+++===,而展开式中二项式
系数最大项是444418(70T C x +== (3
)解:设50()(2)f x =-,令1x =
,得5001250(2a a a a ++++=L
令1x =-
,得5001250(2a a a a -+-+=L
17、解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔”可以插入空位.
(1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有4735C =种插法,
故空位不相邻的坐法有646725200A C =g
种。
(2)将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插
有27A 种插法,故4个空位中只有3个相邻的坐法有626730240A A =种。
(3) 4个空位至少有2个相邻的情况有三类:
①4个空位各不相邻有47C 种坐法;
②4个空位2个相邻,另有2个不相邻有1276C C 种坐法;
③4个空位分两组,每组都有2个相邻,有2
7C 种坐法.
综合上述,应有6412267767()118080A C C C C ++=种坐法。
18、解:分别记该生语、数、英考试成绩排名全班第一的事件为,,A B C ,
则()0.9,()0.8,()0.85P A P B P C ===
(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅
答:三科成绩均未获得第一名的概率是0.003
(Ⅱ)(()P A B C A B C A B C ⋅⋅+⋅⋅+⋅⋅)
答:恰有一科成绩未获得第一名的概率是0.329
19、解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ
(II )20
3)5(,5221311,101)4(,4211===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 答:(I )线路信息畅通的概率是
43. (II )线路通过信息量的数学期望是6.5 20、解:⑴由于第n 次到顶点A 是从B 、C 、D 三个顶点爬行而来,从其中任何一个顶点达到A 的概率都是13
,而第n -1次在顶点A 与小虫在顶点B 、C 、D 是对立事件。
因此,11(1)3n n P P -=-,∴1111()434
n n P P --=-- ∴1311()(3)434
n n P n -=⋅-+≥ ⑵ P 2006=43(-31)2005+41。