山东省滨州市高考数学一轮复习 课题四十一 排列组合二项式定理拓展提升学案

合集下载

高考数学一轮复习 课题四十一 排列组合二项式定理探究提升学案

高考数学一轮复习 课题四十一 排列组合二项式定理探究提升学案

课题四十一 排列、组合、二项式定理 探究提升案排列、组合概念及公式推导过程,总结二项式定理推导过程2.限时30分钟独立、规范完成基础知识梳理部分,并总结规律方法. 重点:两个计数原理和排列组合概念,二项式定理;难点:排列组合。

【问题情境】如图所示,在A ,B 间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A ,B 之间线路不通,则焊接点脱落的不同情况有________种.探究主题:排列、组合、二项式定理的应用探究一 两个计数原理的应用【例1】 (2016·全国甲卷)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .9【拓展】有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.总结两个计数原理的应用方法:探究二 排列组合的应用 【例2】(1)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种. (2)3名男生,4名女生,选其中5人排成一排,则有________种不同的排法.总结解排列应用题的方法:【例3】(1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是( )A .60B .63C .65D .66(2)要从12人中选出5人去参加一项活动,A ,B ,C 三人必须入选,则有________种不同选法.总结解组合应用题的两种类型:探究三 二项式定理及其应用【例3】若n 4)x21x (+展开式中前三项系数成等差数列.试求:(1)展开式中含x 的一次项; (2)展开式中所有x 的有理项; (3)二项式系数最大项.【拓展】的系数是的展开式中234)1()1(x x x --( )A. 15-B.85C. 120-D.274【高考在线】1. (2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)2.(2014山东)若24()bax x+的展开式中5x 项的系数为20,则22a b +的最小值为 .3.(2016年山东高考)若(a x 25的展开式中x 5的系数是—80,则实数a =_______.4.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________。

高三数学一轮复习教学案:排列、组合、二项式定理 学案

高三数学一轮复习教学案:排列、组合、二项式定理 学案

排列、组合、二项式定理2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时两1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N =种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N =种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。

高三数学第一轮复习教案讲义排列、组合、二项式定理复习资料

高三数学第一轮复习教案讲义排列、组合、二项式定理复习资料

高三新数学第一轮复习教案—排列、组合、二项式定理一.课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。

二.命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。

三.要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系m n A =)!(!m n n =n ·(n -1)…(n -m+1);(3)全排列列:n n A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ; (3)组合数的性质①C n m =C n n-m;②r n r n r n C C C 11+-=+;③rC n r =n ·C n-1r-1;④C n 0+C n 1+…+C n n =2n ;⑤C n 0-C n 1+…+(-1)n C n n =0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n =C n 0a n +C n 1a n-1b+…+C n k a n-k b k +…+C n n b n ;(2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k ;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。

高三数学(理)一轮复习专题突破训练排列组合二项式定理 Word版含解析

高三数学(理)一轮复习专题突破训练排列组合二项式定理 Word版含解析

山东省届高三数学理一轮复习专题突破训练排列组合二项式定理一、二项式定理、(年山东省高考)若()的展开式中的系数是—,则实数.、(年山东省高考)若的展开式中项的系数为,则的最小值为。

、(泰安市届高三二模)在二项式的展开式中,所有二项式系数的和是,则展开式中各项系数的和为. . . .、(德州市届高三二模)在()()…()(∈,≥)的展开式中,的系数为,则的系数为()....、(威海市届高三二模)在二项式(﹣)的展开式中,偶数项的二项式系数之和为,则展开式中的系数为.、(潍坊市届高三二模)()(﹣)的展开式中,的系数为.、(德州市届高三上学期期末)已知,则....、(济南市届高三上学期期末)二项式的展开式中的系数为,则、(胶州市届高三上学期期末)则的展开式的常数项为.、(临沂市届高三上学期期末)若多项式,则.、(威海市届高三上学期期末)若展开式中含的项的系数为,则的值为.、(潍坊市届高三上学期期末)的二项展开式中的系数为(用数字表示).、(青岛市高三月模拟)在二项式的展开式中,常数项等于(用数字作答);、(日照市高三月模拟)的展开式中,含次数最高的项的系数是(用数字作答).、(泰安市高三月模拟)设二项式的展开式中的系数为,常数项为,若,则▲.、(烟台市高三月模拟)已知,则二项式的展开式中的系数为、(淄博市高三月模拟)二项式的展开式中的系数为,则.、(济南市高三月模拟)二项式展开式中的常数项为.二、排列组合、(年山东省高考)观察下列各式:……照此规律,当时,… .、(东营市、潍坊市届高三下学期第三次模拟)在一次抽奖活动中,张奖券中有一、二、三等奖各张,其余张无奖.甲、乙、丙、丁四名顾客每人从中随机抽取张,则不同的获奖情况有()。

高考冲刺 排列组合、二项式定理(提高)

高考冲刺 排列组合、二项式定理(提高)

高考冲刺 排列组合、二项式定理编稿:孙永钊 审稿:张林娟【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心. 【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式 ①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A mn (m ≤n)A n n =n! =n(n ―1)(n ―2) ·…·2·1. ②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C mn (m ≤n).③组合数性质:①m n n m n C C -=(m ≤n). ②nn n n n n C C C C 2210=+⋅⋅⋅+++ ③1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种: (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略; (7)定序问题除法处理的策略; (8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略; (10)构造模型的策略. 二、二项式定理 1、二项式定理(a +b)n =C 0n a n +C 1n a n -1b+…+C r n a n -r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n an -r b r . 2、二项展开式的通项公式二项展开式的第r+1项T r+1=C r n an -r b r (r=0,1,…n)叫做二项展开式的通项公式。

高考数学知识模块复习指导学案——排列、组合与二项式定理.docx

高考数学知识模块复习指导学案——排列、组合与二项式定理.docx

高考数学知识模块复习指导系列学案排列.组合、二项式定理【考点梳理】一、考试内容1•分类计数原理与分步计数原理。

2.排列、排列数公式。

3.组合、组合数公式。

4.组合数的两个性质。

5.二项式定理,二项式展开的性质。

二、考试要求1•拿握分类计数原理及分步计数原理,并能川这两个原理分析和解决一些简单的问题。

2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它解决一些简单的问题。

3.掌握二项式定理利二项式系数的性质,并能用它们计算和论证一些简单问题。

三、考点简析1•排列、组合、二项式知识相互关系表两个基本原理| --- 1年列} - 1组甸! ------- 1二项式皐理-------------- 匕应用巴-----------2.两个基本原理(1)分类计数原理中的分类。

(2)分步计数原理中的分步。

正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系A;:=---- :——=n • (n・l)・・・(n-m+l)(n -m)\(3)全排列列:A: =n!(4)记住下列几个阶乘数:1 ! =1, 2! =2, 3! =6, 4! =24, 5! =120, 6! =7204.组合(1)组合的定义,排列与组合的区别n\ _ n(n - l)_.(n-m + l)(2) 组合数公式:C n m=m!(z? 一m)! m x (m 一1) x …x 2 x 1(3)组合数的性质①C n m=C n nHn②c:「+c:=c;;®rC n r=n ・ Cn_「④C n°+C n,+-+Cn n=2n⑤©叱」+・・・+(・1)七化0即C n°+C n2+C n4+-=C n1+C n3+-=2n-15.二项式定理(1)二项式展开公式(a+b)n=C n°a n+C n,a n-,b+- +C n k a n'k b k+ • • •+C n n b n(2)通项公式:二项式展开式中第k+1项的通项公式是T k+1=C n k a nk b k6.二项式的应用(1)求某些多项式系数的和。

高考冲刺 排列组合二项式定理提高

高考冲刺 排列组合二项式定理提高

高考冲刺排列组合、二项式定理编稿:孙永钊审稿:张林娟【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式n!m?n(n?1)??A??(n?m?1) (m①排列数公式:≤n)n(n?m)!n A=n! =n(n―1)(n―2) ·…·2·1. n n!n(n?1)???(n?m?1)m?C?(m≤n).②组合数公式:n m!(n?m)!m?(m?1)?????2?1mn?m012nn C?CC?C?C?????C?2③组合数性质:①≤(mn).②nnnnnn02413n?1C?C?C????C?C?????2③nnnnn4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并.能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理01rnrnnr1nrnn --b+…+C项,n+1+…+Cb(a +b) =Ca其中各项系数就是组合数+Ca,Ca,展开式共有b nnnnnrrnr-.ab项是第r+1T =C r+1n2、二项展开式的通项公式rrnr-叫做二项展开式的通项公式。

高三数学高考《排列 组合 二项式》专题学案排列

高三数学高考《排列 组合 二项式》专题学案排列

第2课时 排 列1.一般地说,从n 个不同元素中,任取m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.排列的定义包含两个基本内容:一是“取出元素”;二是“按照一定顺序排列”.因此当元素完全相同,并且元素的排列顺序也完全相同时,才是同一个排列.2.从n 个不同元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个为不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式A mn = .这里m ≤n ,其中等式的右边是 个连续的自然数相乘,最大的是 ,最小的是 .3.n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,全排列数用A nn 表示,它等于自然数从1到n 的连乘积,自然数从1到n 的连乘积叫做n 的阶乘,用 表示.4.解有约束条件的排列问题的方法有直接法、间接法、元素位置分析法、插空法、捆绑法、枚举法、对称法、隔板法.5.排列问题常用框图来处理.例1、(1) 元旦前某宿舍的四位同学各写一张贺卡先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配有多少种?(2) 同一排6张编号1,2,3,4,5,6的电影票分给4人,每人至少1张,至多2张,且这两张票有连续编号,则不同分法有多少种?(3)(06湖南理14)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法有多少种数?解:(1)分类:9种(2)假设五个连续空位为一个整元素a ,单独一个空位为一个元素b ,另4人为四个元素c 1、c 2、c 3、c 4.问题化为a,b,c 1,c 2,c 3,c 4的排列,条件是a,b 不相邻,共有2544A A =48种;(3)将丙,丁看作一个元素,设想5个位置,只要其余2项工程选择好位置,剩下3个位置按甲、乙(两丁)中唯一的,故有25A =20种变式训练1:有2个红球、3个黄球、4个白球,同色球不加以区分, 将这9个球排成一列有 ____ 种不同的方法.解:9个球排成一列有A 99种排法,再除去2红、3黄、4白的顺序即可,故共有排法126044332299 A A A A 种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.12种B.10种C.9种D.8种
5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()
A. 6种B. 12种C. 30种D. 36种
6.(2014辽宁)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为
7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则
课题四十一排列、组合、二项式定理拓展提升案
学习目标:
1.运用两个计数原理和排列数、组合数公式,解决际问题;
2.运用二项式定理解决与二项展开式有关的简单问题.
1.四名学生争夺三项冠军,获得冠军的可能的种数是()
A.81B.64C.24D.4
2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个新节
9.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种。
(用数字作答)
10.7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有种。(用数字作答)
11. ( )的展开式中,系数最大的项是()
A.第 项B.第n项C.第n+1项D.第n项与第n+1项
不同的赠送方法共有()
A.4种B.10种C.18种D.20种
8. (2014广东)设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()
A.60B.90C.120D.130
12. ( )
A.0 B.1 C.11 D.12
目插入原节目单中,那么不同插法的种数为()
A . 42 B. 30 C. 20 D. 12
3.现有4种不同的颜色,要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()
A 24种B 30种C 36种D 48种3题图
4.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()
相关文档
最新文档