高考数学排列组合解题技巧总结

合集下载

高考数学各题型答题技巧

高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。

下面介绍一些常见的排列组合问题的解题方法和策略。

1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。

高中数学排列组合解题技巧

高中数学排列组合解题技巧

高中数学排列组合解题技巧在高中数学中,排列组合是一个重要的概念和考点。

它涉及到对一组对象进行有序或无序地选择和排列的问题,常常出现在数学竞赛和高考中。

掌握排列组合的解题技巧对于提高数学成绩至关重要。

本文将介绍一些常见的排列组合题型,并提供解题技巧和例题分析,帮助高中学生和家长更好地掌握这一知识点。

一、排列问题排列问题是指从给定的一组对象中,按照一定的顺序选择一部分或全部对象的问题。

常见的排列问题有全排列、循环排列和有条件的排列等。

1. 全排列全排列是指从n个不同的元素中,按照一定的顺序选取m个元素进行排列的问题。

全排列的计算公式为P(n, m) = n! / (n-m)!,其中n!表示n的阶乘。

例题1:从1、2、3、4中任选3个数字,共有多少种排列方式?解析:根据全排列的计算公式,P(4, 3) = 4! / (4-3)! = 4! / 1! = 4 × 3 × 2 = 24。

因此,共有24种排列方式。

2. 循环排列循环排列是指将n个不同的元素排成一个环状,不计顺序的排列问题。

循环排列的计算公式为C(n) = (n-1)!,其中n!表示n的阶乘。

例题2:将1、2、3、4排成一个环状,共有多少种循环排列方式?解析:根据循环排列的计算公式,C(4) = (4-1)! = 3! = 3 × 2 = 6。

因此,共有6种循环排列方式。

二、组合问题组合问题是指从给定的一组对象中,按照一定的顺序选择一部分对象的问题。

与排列不同的是,组合不考虑对象的顺序,只关注对象的选择。

常见的组合问题有选择问题和有条件的组合等。

1. 选择问题选择问题是指从n个不同的元素中,按照一定的顺序选取m个元素的问题。

选择问题的计算公式为C(n, m) = n! / (m! × (n-m)!)。

例题3:从1、2、3、4中任选3个数字,共有多少种选择方式?解析:根据选择问题的计算公式,C(4, 3) = 4! / (3! × (4-3)!) = 4! / (3! × 1!) = 4。

高考数学排列组合问题解题技巧

高考数学排列组合问题解题技巧

高考数学排列组合问题解题技巧排列组合问题一直是高考数学常考内容。

但此类问题不仅具有内容抽象、解法灵活等特点,更因在解题过程极易出现“重复”或“遗漏”等错误。

导致排列组合问题成为很多考生失分的“重灾区”。

下面是小编为大家整理的关于高考数学排列组合问题解题技巧,希望对您有所帮助。

欢迎大家阅读参考学习!高考数学排列组合问题解题技巧排列组合有关的题型主要从以下三个方面去考查考生:1、掌握分类计数原理和分步计数原理及其简单应用;2、理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质及其简单应用;3、掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。

与排列组合相关的高考题,它的知识背景与生活息息相关,考查的形式主要基于“基础知识+思想方法+数学能力”这三种方式结合的模式。

排列组合相关知识内容并不难,但主要难在解题方法上面。

排列组合典型例题分析一:有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻;(6)全体排成一排,甲、乙两人中间恰好有3人;(7)全体排成一排,甲必须排在乙前面;(8)全部排成一排,甲不排在左端,乙不排在右端.解析:(1)从7个人中选5个人来排,是排列.有A75=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73·A44=5 040(种).事实上,本小题即为7人排成一排的全排列,无任何限制条件.(3)(优先法)方法一:甲为特殊元素,先排甲,有5种方法;其余6人有A66种方法,故共有5×A66=3600种;方法二:排头与排尾为特殊位置,排头与排尾从非甲的6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3600种。

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法排列组合应用问题是历年高考必考题目,因其内容比较抽象、题型繁多、灵活多变、解题方法独特,与学生原有解题经验甚不相同,而成为高中数学教学的一个难点。

但只要我们认真审题,明确题目属于排列还是组合问题,或是排组混合问题,抓住问题本质特征,把握基本思想,灵活应用基本原理,注意讲究一些基本策略和方法技巧,善于分类讨论,适当转化,就能开拓思路,化难为易,使问题迎刃而解。

求解排列组合问题除了掌握两个基本原理(加法原理和乘法原理)外,没有现成的方法可套,只能根据具体问题灵活采用各种技巧。

本文就此通过一些实例介绍一下解决此类问题的一些常见的技巧。

一、对等法。

在有些问题中,某种限制条件的肯定与否定是对等的,各占全体的二分之一,在求解中只要求出全体,就可以得到所求。

例如:期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?分析:对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了。

并且也避免了问题的复杂性。

解:不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种。

二、插入法。

对于某两个元素或者几个元素要求不相邻的问题,可以用插入法,即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素后的空档之中即可。

例如:学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析:此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。

所涉及问题是排列问题。

解:先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。

根据乘法原理,共有的不同坐法为种。

排列\组合问题的常用解题技巧与方法

排列\组合问题的常用解题技巧与方法

排列\组合问题的常用解题技巧与方法纵观近年全国高考数学试题,每年都有1-2个排列组合题,考察排列组合的基础知识与思维能力,试题的难度与课本中的试题难度相当,但也有个别试题的难度较大,重点考察学生理解、分析和解决问题的能力,有些试题以应用题的形式出现,考察学生解决实际生活问题的能力。

有关排列组合的问题是高中学生学习中棘手的一个问题,很多学生在高考中失分较多。

解决排列组合的有关问题,首先,必须认真审题,明确问题是否是排列、组合问题。

其次,抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。

实践证明,备考的有效方法是题型和解法归类,识别模式,熟练运用。

下面,谈谈笔者在多年教学研究中的一些解题思路与方法:一、相邻问题“捆绑法”(大元素法、整体法或并组法)对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来,看作一个大元素(整体)与其他元素排列,然后再对大元素内部进行排列。

例1:书架上有4本不同的数学书,5本不同的语文书,3本不同的化学书,全部竖起排成一排,如果不使同类书分开,一共有多少种排法?分析:由于同类书不分开,即把4本数学书,5本语文书,3本化学书,分别捆成一捆,看作3个大元素进行排列有,每捆内部分别有种、种、种不同的排列,再由分步计数原理,共有排法: =103680种。

二、不相邻问题“插空法”对于某几个元素要求不相邻的问题,可以先将其他无要求的全排列,再把规定不相邻的几个元素插入上述几个元素之间及两端的空位之中。

例2:七个人并排站成一排,如果甲、乙两人必须不相邻,那么,不同排法的种数是多少?分析:先把5个人全排列有不同排法,再把甲乙两人插入6个空位有种插法。

∴共有=3600种不同排法。

三、特殊元素“优先安排法”对含有特殊元素的排列组合问题,一般应优先考虑特殊元素的排法,再考虑其他元素的排列。

例3:七人站成一排照相,其中甲不站排头,也不站排尾,共有多少种排法?分析:由于甲不站两端,既为“特殊”元素,应优先安排,甲可站个位置,其余6人再进行全排列共有,由分步计数原理得共有=3600种。

排列组合问题的解题技巧

排列组合问题的解题技巧

排列组合问题的解题技巧陕西武功梁小宁排列组合问题历来是高中数学教学的一个难点,其思考方法独特,求解思路灵活,因而在解题中极易出现“重复”或“遗漏”的错误.虽然近几年高考将侧重点放在两个计数原理的考察上,但当对问题类型把握准确时,解答的准确性上将会有很大的提升,解答速度也会大大提高.以下介绍几类典型排列组合问题的解答技巧:1、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种。

A、720B、360C、240D、120解:因甲、乙两人要排在一起,故将甲乙两人捆在一起视作一人有种排法,与其余四人进行全排列有种排法,由乘法原理可知,共有 =240种不同排法,故选(C)。

点评:从上述解法可以看出,所谓“捆绑法”,就是对元素进行整体处理的形象化表述,体现数学中的整体思想。

对于以“某些元素必须相邻”为附加条件的排列组合问题,只要把必须相邻的元素“捆”成一个整体,视作一个“大”元素,再考虑相邻元素内部的排列或组合,就能保证这些元素相邻而不散乱。

训练: 3名男教师,3名女教师,6名学生站成一排,要求男教师和女教师必须站在一起,且教师不站在两端,则一共有多少种站法?2、相隔问题插空法例2排一张5个歌唱节目和4个舞蹈节目的演出节目单(1)任何两个舞蹈节目不相邻的排法有多少种?(2)舞蹈节目和歌唱节目间隔排列的方法有多少种?解:(1)先排歌唱节目有种,歌唱节目及两端有6个空位,从这6个空位中选4个放入舞蹈节目,共有种方法,所以任何两个舞蹈节目不相邻的排法有种。

(3)先排舞蹈节目有种排法,在舞蹈节目和两端有5个空位,恰好供5个歌唱节目放入,所以舞蹈节目和歌唱节目间隔排列的方法有种。

训练:若将例题当中的“4个舞蹈节目”改为“5个舞蹈节目”,求舞蹈节目和歌唱节目间隔排列的方法有多少种?点评:从解题过程可以看出,“插”的策略是解决排列与组合中若干特殊元素互不相邻问题的常用手段。

在具体操作时,可以先将其它元素排好,再将所指定的不相邻的元素“插入”到它们的间隙及两端位置,从而保证它们不相邻。

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。

掌握排列组合知识对于解决相关题目至关重要。

本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。

1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。

排列有两种情况:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。

【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。

求不同的组队方案数。

解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。

根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。

1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。

【例题2】:有 9 个不同的球队参加一场篮球比赛。

其中第一名和第二名分别获得冠军和亚军。

请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。

根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。

2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。

同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学排列组合解题技巧总结
一、定义
排列:一般地,从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m个元素的一个排列.
组合:一般地,从n个不同元素中任取m(m≤n)个元素,并成一组,叫做从n个不同元素中任取m个元素的一个排列.
二、学习指导
1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。

组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的.
2、较复杂的排列组合问题一般是先分组,再排列。

必须完成所有的分组再排列,不能边分组边排列.
3、排列组合问题的常见错误是重复和遗漏。

弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.
4、“正难则反”是处理问题常用的策略.
三、常用方法
1、合理选择主元
例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有$A_5^3$种不同坐法。

例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。

2、“至少”型组合问题用隔板法
对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。

例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?
解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:$C_5^3$(种)
3、注意合理分类
元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)
的特殊性进行合理分类,求出各类排列组合数。

再用分类计数原理求出总数。

例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。

解:比2015大的四位数可分成以下三类:
第一类:3×××,4×××,5×××,共有:$3A_5^3=180$(个);
第二类:21××,23××,24××,25××,共有:$4A_4^2=48$(个);
第三类:203×,204×,205×,共有:$3A_3^1$(个)
∴比2015大的四位数共有237个。

4、特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?
分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有$A_4^1$种站法;第二步再让其余的5人站在其他5个位置上,有$A_5^5$种站法,故站法共有:$A_4^1×A_5^5$=480(种)
解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有$A_5^2$种;第二步再让剩余的4个人(含甲)站在中间4个位置,有$A_4^4$种,故站法共有:$A_5^2×A_4^4$=480(种)
5、分排问题用直排法
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。

例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有$A_9^9$种。

6、复杂问题用排除法
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。

在应用此法时要注意做到不重不漏。

例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()A. 150种B. 147种C. 144种D. 141种
解:从10个点中任取4个点有$C_(10)^4$种取法,其中4点共面的情况有三类。

第一类,取出的4个点位于四面体的同一个面内,有4$C_6^4$种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。

以上三类情况不合要求应减掉,所以不同的取法共有:$C_(10)^4-C_6^4-6-3=141$(种)。

7、排列、组合综合问题用先选后排的策略
处理排列、组合综合性问题一般是先选元素,后排列。

例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?
解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:$(C4^2×C_2^1×C_1^1)/(A_2^2)=6$(种),
第二步将这三组教师分派到3种中学任教有$A_3^3$种方法。

由分步计数原理得不同的分派方案共有:$(C4^2×C_2^1×C_1^1)/(A_2^2)×A_3^3=36$(种)。

因此共有36种方案。

7、排列、组合综合问题用先选后排的策略。

8、多元问题用分类法
总结:总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。

相关文档
最新文档