第六届“学用杯”全国数学知识应用竞赛七年级初赛试题A卷(含答案).doc
初中竞赛数学第六届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试题

第六届“学用杯”全国数学知识应用竞赛九年级初赛(B)卷试题一、选择题(每小题6分,共30分)1.刚刚喜迁新居的赵伟为估计今年4月份(30天)的家庭用电量,在4月上旬连续8天同你估计赵伟家4月份用电总量约为()(A)1297.5千瓦时(B)1482.9千瓦时(C)131.25千瓦时(D)150千瓦时2.电视台《周末大放送》节目中,有这样一个翻牌游戏:三个牌的正面写有1、2、3三个数字,三个数字的背面其中两个写有“谢谢参与”,只有一个写有“手机一个”.假若现在你已选择一个牌还未翻开,主持人翻开了另外一个牌的背面,上面写有“谢谢参与”,主持人问你,为了更大机会获得手机一个,你是否重新选择一个牌?()(A)重新选择,未选择的牌获得手机的机会大;(B)不重新选择,已选择的牌获得手机的机会大;(C)都一样,重新选择与不再选择机会相同;(D)无法确定3.裕丰“文明新村”按分期付款的方式福利分房,村委会给予一定的贴息.小聪家分得一套价值为120 000元的房子.按要求,需首期(第一年)付房款30 000元,从第二年起,以后每年应付房款5 000元与上一年剩余欠款利息的和.假设剩余欠款年利率为0.4%.请你算一算小聪家第8年应付房款()(A)5 220元(B)5 240元(C)5 360元(D)5 560元4.来自信息产业部的统计数字显示,2006年一至四月份我国手机产量为4 000万台,相当于2005年全年手机产量的80%,预计到2007年年底手机产量将达到9 800万台,则我国手机产量这两年中平均每年的增长率为()(A)24% (B)40% (C)44% (D)52%5.小学生雷雷要用一块等边三角形的硬纸片(如图1(1)所示)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图1(2)),他在△ABC内先画了一个△DEF,然后打算剪掉三个角(如四边形AMDN),可是比划了半天,还是不知如何下手,用你学过的知识判断,若想正好剪下三个角,∠MDN的度数应为()(A)100°(B)110°(C)120°(D)130°二、填空题(每小题6分,共30分)6.如图2,是一个边长相等的正五边形与一个正方形拼在一起的图形,并且正好拼成“福娃欢欢”.如果正方形顺时针旋转,五边形逆时针旋转,始终保持两条边邻接.那么各要转_________圈,可以恢复成“福娃欢欢”的图形.7.小明的奶奶每天都去早市上买菜,原因是早市上的菜便宜,但是买得多了,有时感觉斤两不足,为什么呢?因为有些不法商贩在卖菜时用的是杆秤,他们往往会将秤砣挖空,或更换较小的秤砣,使秤砣减轻,从而欺骗顾客.如图3,对于同一物体,用的是标准秤砣的是_________,所用的数学原理是___________.8.小敏家有两把扇子,一把折扇和一把团扇,如图4所示,已知折扇的骨柄与团扇的直径一样长,折扇扇面的宽度是骨柄长的一半,折扇张开的角度为120°.小敏用这两把扇子扇来扇去,也判断不出哪把扇子风量大.请用你学过的知识帮小敏判断:_________,理由是___________.9.如图5是小明设计的一种动画程序,屏幕上正方形区域ABCD表示黑色物体甲,其中,A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=2x+b发射信号,当信号遇到物体甲时,甲由黑变白,则b的取值范围为_________时,甲能由黑变白.10.王峰刚装修了新房,地板的图案非常漂亮,如图6(1)所示,是一种边长为60cm的正方形地砖图案,据说图案是这样设计的:①三等分AD(AB=BC=CD);②以点A为圆心,以AB长为半径画弧,交AD于B、交AG于E;③再分别以B、E为圆心,AB长为半径画弧,交AD于C、交AG于F,两弧交于H;④用同样的方法作出右上角的三段弧,如图6(1),用图6(1)拼成的图案就是图6(2)的效果,那么在图6(2)中灰色区域的面积为_________cm2(结果保留π).三、解答题(第11、12、13题各15分,第14题20分,第15题25分,共90分)11.同学们,你们的家在南方还是北方?你们见过雪吗?不管是实际见到还是从电视中看到,你们是否注意到平地的雪最厚,山坡越陡雪越薄,你们能用自己学过的知识解释其中的道理吗?请试一试.12.某隧道横截面由抛物线及矩形的三边组成,如图7所示,某卡车空车时,能通过此隧道,现装一集装箱,箱宽3米,车与箱共高4.5米,此时车能否通过此隧道?为什么?13.如图8(1),是一面矩形彩旗完全展开时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸锻旗面.(1)用经加工的圆木杆穿入旗裤做旗杆,求旗杆的最大直径.(精确到1cm)(2)在一个无风的天气里,如图8(2)那样将旗杆斜插在操场上,旗杆与地面成60°角,如果彩旗下角E恰好垂直地面,求旗杆露在地面以上部分的长度DG的近似值.(此时旗杆的直径忽略不计,精确到1cm)14.实验推理:数学来源于生活.因此,数学中的许多定理都可以用生活中的常识来解释,请你利用一个生活常识来解释:若a c e m b d f n====…,则a c e a b d f b +++=+++……. 15.操作探究:小明用长方形的彩纸ABCD ,按照如下的方法折了一个纸飞机:(1)使AB 边与DC 边重合折叠,然后展开,得出折痕EF (见图9);(2)使ED 、EA 落在EF 上,折成如图10的样子,并得折线EP ,EQ (见图10);(3)将P 、Q 向背面折叠,使EP 、EQ 都落在EF 上(见图11);(4)折后展成图12的样子,便得到了一个我们非常熟悉的纸飞机.为了便于看清飞机的形状,我们给出它的三种视图(图13),图中的虚线表示被遮挡的纸的边缘线.小明想把这个纸飞机寄给一位国外的小朋友做圣诞礼物,这就需要再做一个长方体的硬纸盒子,像图14那样摆放,把它装进盒子(飞机不折叠).如果长方形彩纸ABCD 的长为26cm ,宽为16cm ,那么刚好把飞机装入的纸盒的长(XY )、宽(YZ )、高(XX 1)各是多少?(做纸盒的硬纸板的厚度忽略不计,结果保留到0.1cm ,参考数据: 1.41=,sin 22.50.38= ,cos 22.50.92= )。
初一华杯赛试题及答案

初一华杯赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 计算下列表达式的结果是偶数的是:A. 3 + 5B. 4 × 6C. 7 - 3D. 2 × 3答案:B4. 一个数的平方等于它本身,这个数可能是:A. 0B. 1C. 0或1D. 都不是答案:C5. 下列哪个数是质数?A. 2B. 4C. 6D. 8答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是________。
答案:87. 如果一个数的立方等于-27,那么这个数是________。
答案:-38. 一个数的平方根是4,那么这个数是________。
答案:169. 一个数的绝对值是10,这个数可能是________或________。
答案:10 或 -1010. 一个数的倒数是1/2,那么这个数是________。
答案:2三、解答题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 3时。
答案:将x = 3代入表达式,得到(3×3 - 2) / (3 + 1) = (9 - 2) / 4 = 7 / 4。
12. 一个长方形的长是宽的两倍,如果长和宽的和是20厘米,求长和宽各是多少?答案:设宽为x,则长为2x。
根据题意,x + 2x = 20,解得x = 20 / 3,所以宽为20 / 3厘米,长为40 / 3厘米。
13. 一个数的平方加上这个数的两倍等于21,求这个数。
答案:设这个数为x,根据题意,x^2 + 2x = 21。
解这个一元二次方程,得到x = 3 或 x = -7。
14. 一个班级有40名学生,其中1/4的学生是男生,求班级中女生的人数。
答案:班级中有1/4 × 40 = 10名男生,所以女生的人数为40 - 10 = 30名。
第六届“学用杯”全国数学知识应用竞赛八年级初赛试题(B)

第六届“学用杯”全国数学知识应用竞赛八年级初赛(B)卷试题一、选择题(每小题6分,共30分)1.王老师组织学生举行了一次手抄报活动,最后把十名优秀者的手抄报粘合在一起,在教室里展出.如图1,已知每张报纸长为38cm ,宽为28cm ,粘合部分的纸为2cm 宽,则这10张报纸粘合后的长度为( ) A .360cm B .362cm C .364cm D .380cm2.电脑上有一个有趣的“扫雷”游戏,图2是扫雷游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A 、B 、C 三个方格未被探明,其它地方为安全区(包括有数字的方格),则A 、B 、C 三个方格中有地雷的概率最大的方格是( ) A .A B .B C .C D .无法确定3.紧跟2006年第十八届世界杯足球赛的步伐,师大学生也举行了足球比赛,下表是师范大文系以1∶0获胜;②表示与①同一场比赛,数学系输给了中文系.按规定,胜一场得3分,平一场得1分,负一场得0分,按得分由多到少排名次,则此次比赛的冠军队是( ) A .数学系 B .中文系 C .教育系 D .化学系 4.如图3,A 、B 、C 是固定在桌子上的三根立柱,其中A 柱上穿有三个大小不同的圆片,下面圆片的直径总比上面的大.现想将这三个圆片移到B 柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A 、B 、C 三个柱之一且较大的圆片不能叠在小圆片的上面,那么完成这件事至少要移动圆片的次数是( ) A .6 B .7 C .8 D .95.秋天的一个周末,王明的大学同学去帮王明家收梨子,上午大家全部摘梨,下午一半同学(包括王明)继续摘梨,一半同学把梨搬运到果园外的车上以备运走,结果梨都摘完了,而需搬运的梨还留下一个人一天的工作量.如果每个人每搬运两筐梨的时间就能摘一筐梨,那么王明和他的同学共( )A.4人B.6人C.8人D.10人二、填空题(每小题6分,共30分)6.王英和张昊今年6月份刚毕业,同去一家公司进行面试,主管人员对王英和张昊的打分如下表:已知此公司对专业知识、工作经验和仪表形象这三方面的重要性要求是6∶3∶1,那么被录用的可能性大.7.如图4,高娃承包了一块三角形草地,他把草地分成东、南、西、北四块分别牧羊,一段时间后他发现:西边的草地可以放牧5只羊,南边的草地可以放牧10只羊,东边的草地可以放牧8只羊,则北边那块草地可以放牧只羊.8.为了美化环境,净化城市的天空,某市要将建在西里(城中村)的一座高50m的烟囱拆除,由于烟囱附近的房子密集,拆除只能采取分段拆除,若烟囱折断时,顶端下来正好砸在距烟囱底部10m的地方最安全,那么按以上要求该烟囱应从底部向上米处折断.9.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图5所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.10.In figure 6,Suppose A is Mary's home.B is Mary's school.Mary walks to school every day .From the map we know that there are many shortest ways to the school .How many do you know?(Just from A to B)Answer:.三、解答题(每小题15分,共60分)11.李红和张静的移动电话收费方式不同,她们都认为自己所用的卡收费低.已知李红用的“便民卡”与张静用的“如意卡”每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图7.请你计算一下,李红和张静的说法谁对?根据一个月内使用情况分析哪种卡便宜?12.如图8是一层楼梯ABC 的剖面示意图,请你用学过的数学知识解释,为什么楼的每层楼梯ABC 的往复转折处的回廊BD 都在每层楼高EF 的中间位置,这样的设计有什么现实意义?13.建筑业有这样一个规定:房屋的窗户面积应小于房屋内地面的面积.根据采光标准,窗户面积与地面面积的比应不小于10%,并且这个比例越大,住宅的采光条件越好. 问:(1)如果同时增加相等的窗户和地面的面积,房屋的采光条件是变好还是变坏?请说明理由.(2)通过(1)的解答,你发现其中蕴含的数学结论是什么?请写出来.14.如图9,某班进行拔河比赛,一共有两个老师,一个男老师,一个女老师,六个学生,三个男学生,三个女学生.其中每个男学生的力量相同,每个女学生的力量相同. 如果有三场比赛的结果是:第一场:一个男老师为一方,五个同学(两男三女)为另一方进行比赛,男老师输了; 第二场:女老师为一方,五个同学(一男四女)为另一方进行比赛,女老师赢了;第三场:男老师加一个男同学为一方,女老师与三个女同学为另一方进行比赛,男老师一方赢了. 问:女老师加两个男同学与男老师加上三个女同学进行比赛,结果将会怎么样?为什么? 四、开放题(本题30分)15.中国古代的兵法是我国前人无数心血与智慧的结晶,它里面也蕴含着许多的数学思想,如“李代桃僵”.原文是“桃生露井上,李树生桃旁,虫来嗤根,李树代桃僵.树木身相代,兄弟还相忘?”原话说,李树替桃树受虫蛀,原比喻兄弟间应友爱相帮,后来转喻为互相替代,代换.在军事谋略中,这是常用之计.等量代换也是思考数学问题的常用方法.那么,请同学们编写一道用等量代换的思考方式解题的数学题目,并说明解题思路,写出详细的解题过程.怎么样? 图9第六届“学用杯”全国数学知识应用竞赛八年级初赛(B)卷试题参考答案一、1. B 2. A 3. B 4. B 5. C二、6.王英 7. 22 8. 24 9. D ,4 10. 200三、11.解:设便民卡的通话时间与通话费用的函数关系为111y k x b =+, 由1y 过(0,30),(30,35)两点可得1130(0)6y x x =+≥. 设如意卡的通话时间与通话费用的函数关系为222y k x b =+, 由2y 过(0,0),(30,15)两点可得21(0)2y x x =≥. 当12y y =时,113062x x +=,解得90x =.当12y y >时,113062x x +>,解得90x <.当12y y <时,113062x x +<,解得90x >.因此李红和张静的说法都不正确.当一个月内通话时间为90分钟时,使用两种卡费用一样;当一个月内通话时间少于90分钟时,使用如意卡(张静用的卡)便宜; 当一个月内通话时间多于90分钟时,使用便民卡(李红用的卡)便宜; 12.如右图,过回廊BD 的端点B 作BD 的垂线l ,并作点A 关于直线l 的对称点A ′,连接A ′C 交直线l 于O 点,连接AO ,分别过A 、C 作AG 、CH 垂直于l ,垂足分别为G 、H . 则有 90COH A OG AGO CHO '===∠∠,∠∠, 根据实际情况,应有CH AG =. 由轴对称性质可知:AO A O AG A G AOG A OG '''===,,∠∠, 由此可得COH A OG '△≌△. 所以OH OG CO A O '==,.即O 为GH 的中点时,折线AOC 为最短(两点C 、A ′之间线段CA ′最短) 现实意义:只有当楼梯ABC 的往复转折处的回廊BD 建在每层楼高的中间位置时,楼梯ABC 的长度最短,这样就最省料,最经济(造价最低).13.(1)房屋的采光条件变好.理由:设原来窗户的面积为x ,地面的面积为y ,且x y <,当窗户的面积和地面的面积同时增加的面积为z 时,x y变为x z y z ++,而()0()x z x z y x y z y y y z +--=>++,所以采光条件变好. (2)结论:对于一个分式,(0)yx y x>>,如果这个分式的分子,分母同时增加(0)z z >,分式的值将增大.14.解:女老师加两男同学一方将战胜男老师加三个女同学一方.理由:设A 代表男老师,B 代表女老师,C 代表男同学,D 代表女同学;不等式中较大的一端代表获胜方. 已知23C D A +> ① >4B C D + ② ①、②两式相加,得234B C D A C D ++>++ ③ 从③式两端同时减去3C D +,得B C A D +>+ ④ 又已知3A C B D +>+, ⑤ ④、⑤两式相加,得24A B C A B D ++>++ ⑥ 从⑥式两端同时减去A B +,得24C D >,即2C D > ⑦ ④、⑦两式相加,得23B C A D +>+. 四、15.答案不惟一 (此题为开放题,要求题目的解法中须用到等量代换,编写出符合题意的题目即可得15分,说明解题思路得20分,写出详细过程,得满分)。
数学知识应用竞赛七年级(A)

第四届“学用杯”全国数学知识应用竞赛 七年级初赛试题(A)卷一、填空题(每小题5分,共40分)1.一粒米,在许多人看来是微不足道的,平时在餐桌上毫不经意掉下几粒,也很少有人在 乎它.一粒米大约重0.022克,我国现有人口13亿,按每人每天三餐计算,如果每人每 餐掉一粒米,那么全国人民一年(按365天计算)大约浪费粮食____________千克. (要求:用科学记数法表示).2.某厂承印新课程标准实验教材,新书出厂时,要将打包成长、宽、高分别为x 分米、y 分 米、z 分米的长方体包装加上扎带(如图所示双虚线位置).若扎带每个接头处要多余0.5 分米,则一个长方体包装上的扎带总长_____________分米.3.如图,为云南省某地的等高线示意图,图中a ,b ,c 为等高线,海拔最低的一条为80 米,等高距离为20米,那么A 处的海拔为__________米,B 处的海拔为__________米,C 处的海拔为___________米.4找到了地下室的金柜.她知道,只要打开金柜,剩下的事就好办了.有关金柜的密码,“独一枝”是这样告诉她的:“金柜上放着一本厚约500页的书,有一书签夹在书中,夹着书签的那两页书的页码和就是密码”.若书签可能夹在:①85页86页之间;②413页414页之间;③420页421页之间则你认为金柜的密码是____________.5.甲、乙两队举行拔河比赛,标志物先向乙队方向移动0.2米,又向甲队方向移动0.5米,相持一会儿,又向乙队方向移动0.4米,随后又向甲队方向移动1.3米,在大家的欢呼鼓励中,标志物又向甲队移动0.9米,若规定标志物向某队方向2米该队即可获胜,那么现在__________队赢了.6.如图是一个风景区,A,B,C,D,E,F是这一风影区内的五个主要景点,现观光者聚于A 点.假若你是导游,要带领游客欣赏这五个景点后再回到A 点,但又不想 多走“冤枉路”,你将选择的行走路线为____________.(只需填一种即可)7.如图,在一块展示牌上,整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露 出了三个正方形的空白(图中阴影部分),已知卡片的短边长度是12cm .现要将这三个 正方形的空白用三张图片填补,则一张图片的边长应为___________cm .8.同学们,你们玩过积木吗?现有两个同样大小的正方体积木,每个正方体上相对两个面 上写的数字之和都等于2 ,将这两个正方体并列放置,看得见的五个数字如图所示,则 看不见的七个数字之和等于___________.34 5 67三、解答题(每小题20分,共40分)17.课上,刘老师说:“下面我们要用天平称出质量相等的A,B两种粉末状药品,药品不能直接放在托盘上,”,这时,刘老师发现上讲台时少带了一只烧杯,他环顾四周,见废纸篓里有一张美术课上丢弃的三角形厚纸板(质地均匀),于是从容一笑,继续说到:“我们可在天平两个托盘上垫上两张质量相等的‘隔面’,就好比这块厚纸板”,说着,他顺手将三角形纸板捡起,一量,一点,一画,一剪,便把它分成了质量相等的两块,然后顺利完成了实验.你知道他是怎样将三角形纸板分成质量相等的两块吗?他的依据是什么?18.2004年9月,重庆、四川遭遇特大洪涝灾害,中央财政紧急安排救济补助费用于帮助解决灾区安置灾民的基本生活困难问题.有一救灾指挥部,将救灾物品装入34个集装箱:4吨的集装箱3个,3吨的集装箱4个,2.5吨的集装箱5个,1.5吨的集装箱10个,1吨的集装箱12个,那么至少需要多少辆载重5吨的汽车才能一次将这些救灾物品运走?提出你的运输方案.四、开放题(本题30分)19.下图描述了秦宁放学回家的行程情况:根据上图回答问题:(1)秦宁放学后是径直回家吗?(2)图中的哪一段表明秦宁在某处逗留了一段时间?(3)编一个秦宁放学回家的故事,使得故事情节与图象中描述的情况一致.第四届“学用杯”全国数学知识应用竞赛七年级初赛试题(A)卷参考答案一、填空题(每小题5分,共40分)1.73.131710⨯ 2.246 1.5x y z +++ 3.80,100,1204.841 5.甲 6.AEDCFB (或AEDCBF ) 7.6 8.37-三、解答题(每小题20分,共40分)17.等底等高的两个三角形面积相等,因直板质地均匀,所以它们的质量相等. 说明:若附图形说明正确者也可.18.为了用载重5吨的汽车把所有的赈灾物资一次运走,我们将不同规模的集装箱进行有效组合,即尽量使每一辆汽车都能满载.由题设可知,物资总重63.5吨,而1263.5513<÷<,由此可知要把这些赈灾物资一 次运走,需要的汽车不能少于13辆. ················· (5分) 于是我们提出如下设计方案:A 类:每辆装4吨集装箱1个和1吨集装箱1个,安排3辆汽车; ····· (7分)B 类:每辆装3吨集装箱1个和1吨集装箱2个,安排4辆汽车; ····· (9分)C 类:每辆装2.5吨集装箱2个,安排2辆汽车; ·········· (11分)D 类:每辆装2.5吨、1.5吨、1吨集装箱各1个,安排1辆汽车; ···· (13分)E 类:每辆装1.5吨集装箱3个,安排3辆汽车. ··········· (15分)而3421313++++=辆,因此,至少需要13辆载重5吨的汽车才能一次将这些救灾 物品运去. ··························· (20分) 说明:对于其他正确解法,请酌情给分. 19.开放题(本题30分)(1)不是;(2)AB ; (3)只要符合题意即可.。
七年级数学上册竞赛试题(包含答案)[2]
![七年级数学上册竞赛试题(包含答案)[2]](https://img.taocdn.com/s3/m/a3c2acd17cd184254a3535b0.png)
七年级数学上册竞赛试题(包含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册竞赛试题(包含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册竞赛试题(包含答案)(word版可编辑修改)的全部内容。
一、选择题1、已知代数式3++的值是()x yx y+的值是4,则代数式261A、10B、9C、8D、不能确定【答案】2、用四舍五入得到的近似数中,含有三个有效数字的是( )A、0.5180B、0.02380C、800万D、4.0012【答案】3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9∶15记为-1,10∶45记为1等等,依此类推,上午7∶45应记为()A、3B、-3C、-2.15D、-7.45【答案】4、x、y、z在数轴上的位置如图所示,则化简y+-的结果是()x-yzA、x z-C、2-B、z x+-D、以上都不对x z y【答案】5、观察下列图形,并阅读图形下面的相关文字两直线相交,最多1个交点三条直线相交最多有3个交点四条直线相交最多有6个交点像这样的十条直线相交最多的交点个数为()A、40个B、45个C、50个D、55个【答案】6、如图棋盘上有黑、白两色棋子若干,找出所有只要有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条?.( )A 、2条B 、3条C 、4条D 、5条 【答案】7、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售。
2023年全国中学生数学能力竞赛初一年级组样题及答案

2023年全国中学生数学能力竞赛初一年
级组样题及答案
题目一
题目:
在一个数字序列中,每个数字都是前面两个数字的和。
例如,序列的前两个数字是1和1,则下一个数字是2(1 + 1)。
接下来是3(1 + 2),然后是5(2 + 3),依此类推,请写出数列的前10个数字。
答案:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55
题目二
题目:
已知数x和数y满足以下方程组:
2x + y = 10
3x - 2y = 5
求解方程组,得到x和y的值。
答案:
x = 5, y = 0
题目三
题目:
有一张长方形的纸片,长边长为8cm,短边长为5cm。
如果将该纸片沿着长边的方向剪成3段,然后将其中两段相连组成一个边长为4cm的正方形,剩下的一段作为矩形的一条边,求这条边的长度。
答案:
3cm
题目四
题目:
某超市在“9折优惠”的日子里,对商品A进行促销。
如果商品A的原价为90元,折扣后的价格是多少元?
答案:
81元
题目五
题目:
甲乙两个人同时在同一地点出发,在同一时间开始从该地点往东行驶。
假设甲的速度是每小时60km,乙的速度是每小时90km。
如果甲乙两人同时行驶2小时,则此时乙比甲行驶的距离多多少公里?
答案:
60公里。
第六届“数学学用杯”全国数学知识应用竞赛高一年级初赛试题(B)卷及答案

则 N 53a1 52 a2 5a3 a4 ai T,i 1,2,3,4
(a1a2a3a4 )5 ai T,i 1,2,3,4 .
其中 (a1a2a3a4)5 表示四位数, (a1a2a3a4 ) 是 5 进制数.
则 N 中最大数为 (4444) 5 =4 53+4 52 +4 5+4=624 .
在十进制中,从 624 起从大到小顺序排列的第
500 个数是
624-499=125,而 125 53 (1000)5 将此数除以 54 ,便得 M 中的数
100 0
5 5 5 5.
10.第四个人是说实话的人.由第一个人的回答可以判断: 4 人
之中一定有说实话的人 (若 4 人都是说谎的人, 那么谁也不会说
“我们 4 人全是说谎的人” ),所以第一个人是说谎的人. 由第二、
1.请写出以上三种环的解开步骤. 2.请同学们反思,你的解题思路是如何形成的?由简到繁,由 易到难的转换策略是如何具体运用的? 3.此类解环的问题还有很多,请同学们自己列举出几个,并写 出他们的解法.
第六届“学用杯”全国数学知识应用竞赛
高一年级初赛( B)卷试题答案
一、 1. 3
2. 20kg 3. 7.1
第六届“学用杯”全国数学知识应用竞赛
高一年级初赛( B)卷试题
一、填空题 (每小题 6 分,共 36 分)
1.生物课老师说:“在我实验室饲养的动物中, 除了两只以外所
有的动物都是兔子,除了两只以外所
有的都是猫,除了两只以外所有的都
是鹦鹉,你猜我总共养了多少只动
物?”你的答案是
.
2.按照民行总局规定,乘坐 A 航空公司中经济仓的乘客所托运 行李的重量 x(kg) 与其运费 y(元)的关系如右图函数所示,请问
全国初一初中数学竞赛测试带答案解析

全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺水速度之比为( )。
A.B.C.D.。
2.如右图所示,三角形ABC的面积为1cm2。
AP垂直ÐB的平分线BP于P。
则与三角形PBC的面积相等的长方形是( )。
3.设a,B是常数,不等式+>0的解集为x<,则关于x的不等式bx-a>0的解集是( )。
A.x>B.x<-C.x> -D.x<。
4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。
A.1B.2C.3D.4 。
5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出一些石子放入另一堆中。
若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式进行若干次“操作”后,四堆石子的个数可能是( )。
A.0, 0, 0, 1B.0, 0, 0, 2C.0, 0, 0, 3D.0, 0, 0, 4 。
二、填空题1.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10-a。
如果一个数按照上面的方法加密后为473392,则该数为。
2.老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:没有人;B:一个人;C:二个人;D;三个人;E:四个人。
老师知道:他们之中有人玩过游戏,也有人没有玩过游戏。
若没有玩过游戏的人说的是真话,那么他们5个人中有个人玩过游戏。
3.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如下图所示:由于坏了一支荧光管,某公交线路号变成“351”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届“学用杯”全国数学知识应用竞赛七年级初赛试题A卷温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认 真审题,缜密思考,细心演算,交一份满意的答卷. 一、选择题(每小题6分,共30分)1.在一本名为《数学和想象》的书中,作者爱德华·卡斯纳和詹姆斯·纽曼引入了一个名叫“Googol ”的大数,这个数既大且好,很快就被著书撰文者采用并普及到数学文章中,“Googol ”是这样一个数,即在1这个数字后面跟上一百个零.如果用科学记数法表示“Googol ”这个大数,它的指数是( )A.98 B.99 C.100 D.1012.老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,如图1所示,其中可看见7个面,而11个面是看不到的,则看不见的面其点数总和是( )A.21 B.22 C.41 D.43.如果在第六届“学用杯”夏令营活动中,将有198名学生参加,这198名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第198名学生所报的数是( ) A.1 B.2 C.3 D.44.天意花店在母亲节感恩大特卖活动中,康乃馨1.5元/支,玫瑰花2元/支,包装成整束加工费2元.莉莉手里有21元钱,想买10支花,包装成整束后送给妈妈,应该如何搭配( )A.7支康乃馨,3支玫瑰花 B.8支康乃馨,2支玫瑰花 C.3支康乃馨,7支玫瑰花 D.2支康乃馨,8支玫瑰花5.小明和爸爸在锻炼时发现:小明每跑8步而爸爸只能跑5步,可是爸爸2步的距离相当于小明5步的距离.如果小明从爸爸面前跑了27步后,爸爸才开始追小明,则爸爸把小明追上至少需要跑的步数为( ) A.20 B.30 C.40 D.48 二、填空题(每小题6分,共48分)6.中央电视台李咏主持的“幸运52”节目中,有这样一个游戏:李咏向甲出示一张纸条,让甲用语言或动作将纸条上的内容告诉乙,但甲的叙述中不能出现纸条上的字.假设你和同学聪聪玩这种游戏,李咏向你出示的纸条上面写着“0”,你对聪聪可以说“两个相等的数的差”等,但不能说“零”.你还有其他说法吗?请写出3种不同的说法(要求语言简练、准确):(1)__________;(2)__________;(3)__________. 7.在用flash 画一个正方形时,如图2,实折线是正方形的两条 邻边,虚折线是由实折线经过平移得到的,当虚折线按顺时针方图1 图2向旋转__________度,并经过适当平移后恰好与实折线组成正方形.8.我国古代用算筹记数,表示数的算筹有纵、横两种方式:如要表示一个多位数字,即把各位的数字从左到右横列,各位数的筹式需要纵横相间,个位数用纵式表示,十位数用横式表示,百位、万位用纵式,千位、十万位用横式.例如:614用算筹表示出来是;数字有空位时,如86021用算筹表示出来是,百位是空位就不放算筹.那么,“”表示的最小的数是__________.9.我们知道,赤道周长近似等于40000km,它可以看作是地球的“腰带”.如果假设这根“腰带”长出10m,那么它离开地球表面的空隙是__________;判断你和你的同学能否从这根新“腰带”下走过呢?__________.(填“能”或“不能”).10.公园里修了五条笔直的甬路,其余的部分进行绿化,那么需要绿化的部分最多有__________块.11.芭比玩具厂实行计时工资制,每个工人工作1小时的报酬是5元,一天工作8小时.但是用于计时的那口钟不准:每72分钟才使分针与时针重合一次,因此工厂每天少付给每个工人的工资是__________元.(提示:正常的时钟,分针与时针重合一次的时间为606011⎛⎫+⎪⎝⎭分)12.在一次师生互动交流会上,参加者是部分科目的老师和该班的学生,共有31人.会上,第1位老师与16名学生交换意见;第2位老师与17名学生交换意见;第3位老师与18名学生交换意见;…;依次类推,直到最后一位老师和所有学生交换意见.参加这次会议的老师有__________位,学生有__________名.13.李强租种了张大伯一块土地,他每年要支付给张大伯800元钱和若干千克小麦.某天,他心里打起了小算盘:当时小麦的价格为每千克1.2元,这笔开销相当于每亩地70元;但现在小麦的市价己涨到每千克1.6元,所以他所支付的相当于每亩地80元.通过李强的小算盘,你可以知道这块农田是__________亩.三、解答题(每小题14分,共42分)14.在实际生活中,平行线的“影子”很多很多,如图3-1,笔直的两条铁轨和一条条枕木都给我们平行线的形象.在你的身边,还有哪些平行线的实例?不妨举出两个.图3-2是以多组平行线设计的图案,请你展开自己的想象力利用平行线设计一幅美丽的图案.图3-1 图3-215.如图4表示的是一个正方体房间,一只苍蝇在房间上角B 处,一只蜘蛛在房间下角A 处,蜘蛛发现苍蝇后准备沿屋面(包括地面)偷袭苍蝇.根据以上数学情景,请提出数学问题,并解答.16.有一位盲人把6筐24个西瓜摆成一个三角形(如图5),三角形的每条边上都是三筐西瓜,且个数和为9个.为检查西瓜是否丢失,他每天摸一次,只要每条边上三筐的西瓜一共是9个,他就放心了.没想到,他的邻居,一个淘气的小男孩跟他开了个玩笑,第一天偷出了6个,第二天又偷出了3个,一共少了9个西瓜,而这位盲人却一点没发现,这是怎么回事?图4图5四、创新题(本题30分)17.一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给孩子一块糖;来两个孩子,老人就给每个孩子两块糖…… (1)第一天有a 个男孩去了老人家,老人一共给了这些孩子2a 块糖; (2)第二天有b 个女孩去了老人家,老人一共给了这些孩子2b 块糖;(3)第三天这()a b +个孩子一起去了老人家,老人一共给了这些孩子()2a b +块糖. 这些孩子第三天得到的糖果数与前两天他们得到的糖果总数相比哪个多,哪个少?为什么?经过思考可知,a 个男孩每人多得了b 块糖,b 个女孩每人多得了a 块糖,因此多得了2ab ab ab +=块糖,即有()2222a b a b ab +=++.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在一定条件下,数和形之间可以相互转化,相互渗透.体会数形结合思想的内涵,试设计一种图形来说明()2222a b a b ab +=++.(要求:画出图形,并利用图形作必要的推理说明)参考答案一、选择题(每小题6分,共30分) 1.C 2.C 3.B 4.D 5.B 二、填空题(每小题6分,共48分)6.答案不惟一.如:数轴上原点对应的数,表示没有的数,和任何数相乘都等于自身的数,等 7.1808.103409.1.59m ,能.(提示:10 1.592π2πC C+-≈) 10.16.(提示:实质是5条直线相交,最多将平面分成几部分) 11.4.(提示:实际每天工作7288.8606011⨯=+小时) 12.8,23.(提示:设老师有x 位,则()1531x x ++=) 13.20.(提示:设这块农田是x 亩,根据题意,得708001.6800801.2x x -⨯+=)三、解答题(每小题14分,共42分) 14.实例1 ···································································································· 2分 实例2 ·········································································································· 2分 如,实例1:操场上的双杠;实例2:电梯上的扶手.答案不惟一. 设计图案要求:(1)必须有平行线 ························································································· 4分 (2)图案正确,有一定的设计道理 ···································································· 4分 (3)图案美观 ······························································································· 2分 15.答案不惟一. 提出的问题 ···································································································· 6分 如:蜘蛛沿屋面偷袭苍蝇,最近的路线有几条? 问题的解答 ···································································································· 8分 16.第一次输出了6个西瓜后,剩余西瓜重新摆放如下图: ···································· 7分第二次偷出了3个西瓜后,剩余西瓜重新摆放如下图: ··········································· 7分四、创新题(本题30分) 17.给出图形 ······························································································· 20分 给出说明 ····································································································· 10分如图,该图形的面积等于()2a b +,还等于()22a ab ab b +++,即222a ab b ++.所以通过求此图形的面积可知()2222a b a ab b +=++.。