最新静安区中考数学二模试卷及答案
2024届上海市静安区初三二模数学试卷(含答案)

2024届上海市静安区初三二模数学试卷(满分150 分,100 分钟完成)2024.04一、选择题:(本大题共 6 题,每题4 分,满分24 分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂] 1.下列各数中,是无理数的为( )A B C 0πD .172.下列运算正确的是( )A .231a a a−÷=B a=C .()325aa =D .336a a a+=3.下列图形中,对称轴条数最多的是( )A .等腰直角三角形B .等腰梯形C .正方形D .正三角形 4.一次函数y kx b =+中,如果0,0k b <≥,那么该函数的图像一定不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断菱形ABCD 是正方形的为( )第5题图A .AOB AOD ∠=∠ B .ABO ADO ∠=∠C .BAO DAO ∠=∠D .ABC BCD ∠=∠6.对于命题:①如果两条弧相等,那么它们所对的圆心角相等; ②如果两个圆心角相等,那么它们所对的弧相等.下列判断正确的是( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①、②都是真命题D .①、②都是假命题二、填空题:(本大题共 12 题,每题4 分,满分48 分) [在答题纸相应题号后的空格内直接填写答案]7.计算:1−=______. 8.函数()11f x x =+的定义域是______.11.如果关于x 的一元二次方程2210ax x ++=有实数根,那么a 的取值范围是______.12.反比例函数21m y x+=(其中m 为任意实数)的图像在第______象限.13.将一枚硬币连续抛两次,两次都是正面朝上的概率是______.14.一位短跑选手10次100米赛跑的成绩如下:2次12"3,1次12"1,3次12"7,4次12"5,那么这10个数据的中位数是______.15.在ABC △中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,设,DE a DF b ==,那么向量AB 用向量a b 、表示为______.16.如图,在平面直角坐标系中,已知直线1l 与直线2l 交于点()0,1C ,它们的夹角为90°.直线1l 交x 负半轴于点A ,直线2l 与x 正半轴交于点()2,0B ,那么点A 的坐标是______.第16题图17.如果半径分别为r 和2的两个圆内含,圆心距3d =,那么r 的取值范围是______.18.如图,矩形ABCD 中,8,17AB BC ==,将该矩形绕着点A 旋转,得到四边形111AB C D ,使点D 在直线11B C 上,那么线段1BB 的长度是______.第18题图三、解答题:(本大题共 7 题,满分78 分)9.方程(x − 0 的根为______.10.如果一个正多边形的内角和是720°,那么它的中心角是______度.先化简,再求值:22424412x x xx x x x−+÷−−++−,其中x=.20.(本题满分10分)解不等式组3043326xxx−≥⎧⎪⎨+>−⎪⎩,并写出它的整数解.21.(本题满分10分)已知:如图,CD是⊙O的直径,AC、AB、BD是⊙O的弦,AB CD∥.第21题图(1)求证:AC BD=;(2)如果弦AB长为8,它与劣弧AB组成的弓形高为2,求CD的长.某区连续几年的GDP (国民生产总值)情况,如下表所示:我们将这些数据,在平面直角坐标系内,用坐标形式表示出来,它们分别为点:A (1,10.0)、B (2,11.0)、C (3,12.4)、D (4,13.5).如果运用函数与统计等知识预测该区下一年的GDP ,可以尝试选择直线AB 、直线AC 等函数模型来进行分析.(1)根据点A 、B 的坐标,可得直线AB 的表达式为9y x =+.请根据点A 、C 坐标,求出直线AC 的表达式;(2)假设经济发展环境和条件不变,要预测该区第五年的GDP 情况,可以参考方差等相关知识,分析选用哪一函数模型进行预测较为合适.(说明:在计算与绘图时,当实际数据绘制的点与模型上对应的点位置越接近时,模型越适宜.我们可通过计算一组GDP 所有实际值偏离图像上对应点纵坐标值的程度,即偏离方差,来进行模型分析,一般偏离方差越小越适宜.)请依据以上方式,求出关于直线AC 的偏离方差值:2AC S =______;问题:你认为在选用直线AB 与直线AC 进行预测的两个方案中,相对哪个较为合适? 请写出所选直线的表达式:______;根据此函数模型,预估该区第五年的GDP 约为______百亿元.23.(本题满分12分)己知:如图,直线EF 经过矩形ABCD 顶点D ,分别过顶点A 、C 作EF 的垂线,垂足分别为点E 和点F ,且DE DF =,联结AC .(1)求证:2AD AE AC =⋅;(2)联结BE 和BF ,求证:BE BF =.如图,在平面直角坐标系xOy 中,已知抛物线关于直线52x =对称,且经过点A (0,3)和点B (3,0),横坐标为4的点C 在此抛物线上.(1)求该抛物线的表达式;(2)联结AB 、BC 、AC ,求tan BAC ∠的值;(3)如果点P 在对称轴右方的抛物线上,且45PAC ∠=︒,过点P 作PQ y ⊥轴,垂足为Q ,请说明APQ BAC ∠=∠,并求点P 的坐标.25.(本题满分14分)如图1,ABC △中,已知6,9,AB BC B ==∠为锐角,1cos 3ABC ∠=. (1)求sin C 的值;(2)如图2,点P 在边AB 上,点Q 是边BC 的中点,P 经过点A ,P 与Q 外切,且Q 的直径不大于BC ,设P 的半径为x ,Q 的半径为y ,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题条件下,联结PQ ,如果BPQ △是等腰三角形,求AP 的长.参考答案一、选择题1.B2. A3. C4. C5. D6. A 二、填空题7.1 8. 1x ≠− 9. 2x = 10. 60 11. 1a ≤且0a ≠ 12. 一、三 13.1414.12"515.22b a − 16.1,02⎛⎫−⎪⎝⎭17.r >518.三、解答题19.化简为12x −,代入后值为22−20.13x −<≤,整数解0,1,2,3x =21.(1)证明略 (2)1022.(1) 1.28.8y x =+(2)0.0125;应选 1.28.8y x =+;14.8 23.(1)证明略 (2)证明略 24.(1)215322y x x =−+ (2)13(3)1744,39P ⎛⎫⎪⎝⎭25.(1)9(2)17124y x x ⎛⎫=−≤< ⎪⎝⎭ (3)32或3。
2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
静安区中考二模数学试卷

考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 2x + 1,则函数f(x)的图像是()A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个顶点在x轴上的抛物线D. 一个顶点在y轴上的抛物线2. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°3. 若a、b、c是等差数列,且a + b + c = 12,b = 4,则a + c的值是()A. 8B. 10C. 12D. 144. 下列各式中,正确的是()A. sin(α + β) = sinα + sinβB. cos(α + β) = cosα + cosβC. tan(α + β) = tanα + tanβD. cot(α + β) = cotα + cotβ5. 若x是实数,且(x + 1)^2 ≥ 0,则x的取值范围是()A. x ≥ -1B. x ≤ -1C. x ≠ -1D. x ∈ R6. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像与x轴有两个交点,且a > 0,则下列说法正确的是()A. b > 0B. b < 0C. b = 0D. 无法确定7. 在直角坐标系中,点A(2, 3),点B(-3, 4),则线段AB的中点坐标是()A. (-0.5, 3.5)B. (-1, 3)C. (0.5, 3.5)D. (1, 3)8. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 3, 6, 9, 12C. 4, 7, 10, 13D. 5, 8, 11, 149. 若x^2 - 5x + 6 = 0,则x^2 - 3x + 2的值是()A. 1B. 2C. 3D. 410. 在等腰三角形ABC中,AB = AC,AD是BC的中线,则∠ADB的度数是()A. 45°B. 60°C. 90°二、填空题(每小题3分,共30分)11. 若log2(3x - 1) = 2,则x = ________。
2023年上海市静安区中考数学二模试卷(含解析)

2023年上海市静安区中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 化简(−x3)2的结果是( )A. −x6B. −x5C. x6D. x52. 下列无理数中,在−2与0之间的数是( )A. −1−2B. 1−2C. −1+2D. 1+23. 下列关于9的算术平方根的说法正确的是( )A. 9的算术平方根是3与−3B. 9的算术平方根是−3C. 9的算术平方根是3D. 9的算术平方根不存在4. 甲、乙两名射击运动员分别进行了相同次数的射击训练,如果将甲、乙两人射击环数的平均数分别记作−x甲和−x乙,方差分别记作S2甲和S2乙,那么下列描述能说明甲运动员成绩较好且更稳定的是( )A. −x甲>−x乙且S2甲<S2乙B. −x甲>−x乙且S2甲>S2乙C. −x甲<−x乙且S2甲<S2乙D. −x甲<−x乙且S2甲>S2乙5. 某种型号油电混合动力汽车计划从甲地开往乙地,如果纯用电行驶,则电费为25元,如果纯燃油行驶,则燃油费为75元.已知每行驶1千米,纯燃油费用比纯用电费用多0.6元.如果设每行驶1千米纯用电的费用为x元,那么下列方程正确的是( )A. B. C. D. .6. 下面是“作∠AOB的平分线”的尺规作图过程:①在OA、OB上分别截取OD、OE,使OD=OE;②分别以点D、E为圆心,以大于1DE的同一长度为半径作弧,两弧交于∠AOB内的一点C;2③作射线OC.OC就是所求作的角的平分线.该尺规作图可直接利用三角形全等说明,其中三角形全等的依据是( )A. 三边对应相等的两个三角形全等B. 两边及它们的夹角对应相等的两个三角形全等C. 两角及它们的夹边对应相等的两个三角形全等D. 两角及其中一个角的对边对应相等的两个三角形全等第II卷(非选择题)二、填空题(本大题共12小题,共48.0分)7. 1的倒数是______ .58. 计算:______ .9. 已知f(x)=x−1,那么f(3)=______ .10. 方程2x−1=x的解是______ .11. 如果关于x的一元二次方程x2−3x+c=0有两个不相等的实数根,那么c的取值范围为______ .12. 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有______ 人. 13. 毕业典礼上,李明、王红、张立3位同学合影留念,3人随机站成一排,那么王红恰好站在中间的概率是______ .14. 已知半径分别是2和6的两圆的圆心距为6,那么这两个圆有______ 个公共点.15.如图,已知四边形ABCD中,点P、Q、R分别是对角线AC、BD和边CD的中点.如果设A D=a,B C=b,那么向量PQ=______ (用向量a、b表示).16.某旅游风景区为满足不同游客的需求,推出了100、150、200(单位:元)三种价格的套票.景区统计了这三种套票一年的销售情况,并将销售量数据绘制成扇形统计图(如图所示).那么这一年销售的套票的平均价格是______ 元.17.如图,在△ABC中,AB=AC,将△ABC绕着点B旋转后,点C落在AC边上的点E处,点A落在点D处,DE与AB相交于点F,如果BE=BF,那么∠DBC的大小是______ .18. 在平面直角坐标系xOy中,我们定义点A(x,y)的“关联点”为,如果已知点A在直线y=x+3上,点B在⊙O的内部,⊙O的半径长为32(如图所示),那么点A的横坐标x的取值范围是______ .三、解答题(本大题共7小题,共78.0分。
2024上海静安区初三二模数学试卷及答案

更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx更多资料联系老师微信:ofshengxue多资料联系老师微信:ofshengxue联系老师微信:ofshengxue更多资料联系老师微信:ofshengxue更多资料联系老师微信:更多资料联系老师微信:ofshengx静安区质量调研九年级数学试卷参考答案及评分标准2024.4一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.C ;5.D ;6.A .二.填空题:(本大题共12题,满分48分)7.12-;8.1-≠x ;9.2=x ;10.60;11.1≤a 且0≠a ;12.一、三;13.41;14.12″5;15.a b 22-;16.)0,21(-;17.5>r ;18.171716或171764.三、(本大题共7题,第19~22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.22424412x x xx x x x -+÷--++-解:原式=221)2()2)(2(2--++⋅--+x xx x x x x ………………………………………………(5分)=221---+x xx x ………………………………………………(2分)=21-x ………………………………………………(1分)将2=x 代入得,原式=222+-.………………………………………………(2分)20.⎪⎩⎪⎨⎧->+≥-6233403xx x 解:由①得:3≤x ………………………………(2分)由②得:x x ->+98,1->x ………………………………(4分)∴不等式组的解集为31≤<-x ………………………………(2分)∴整数解为0,1,2,3.………………………………(2分)21.已知:如图,CD 是⊙O 的直径,AC 、AB 、BD 是⊙O 的弦,AB ∥CD .(1)求证:AC =BD ;(2)如果弦AB 长为8,弧AB 的拱高为2,求CD 的长.解:(1)作直径MN ⊥CD 交AB 于点E ,交⊙O 于点M 、N ,∵AB ∥CD ,∴∠MEB =∠MOD =90°,即MN ⊥AB ,……………(2分)∴,,⋂=⋂⋂=⋂MD MC MB MA …………………………(2分)∴,⋂=⋂BD AC ∴AC =BD.…………………………(1分)•BACDO 第21题图E NM(2)联结AO ,ME =2,AB 长为8,设圆的半径为r ,OE =r -2………………………………(1分)Rt △AOE 中,∵直径MN ⊥AB 于点E ,∴AE =4∵222OE AE OA +=,即222)2(4-+=r r ,解得5=r ,…………(3分)∴CD=2r =10.………………………………(1分)22.解:(1)设直线AC 表达式为)0(≠+=k b kx y ,将A (1,10.0)、C (3,12.4)代入得⎩⎨⎧=+=+4.12310b k b k ,解得:⎩⎨⎧==8.82.1b k ………………………………………………(4分)∴直线AC 表达式为8.82.1+=x y AC .………………………………(1分)(2)0125.02=AC S ;………………………………………………(2分)选用直线AC :8.82.1+=x y AC ;………………………………………………(2分)∴根据此函数模型,预估该区第五年的GDP 约为14.8百亿元…………………(1分)23.证明:(1)∵矩形ABCD ,∴∠ADC =90°,∴∠ADE +∠CDF =90°,∵AE ⊥EF ,CF ⊥EF ,在Rt △ADE 中,∠ADE +∠EAD =90°,∴∠CDF =∠EAD ,…………………(2分)又∵∠E =∠F =90°,∴Rt △ADE ∽Rt △DCF ,…………(1分)得DF AEDC AD =,…………………(1分)∵DE =DF ,∴DE AE DC AD =,即DE DC AE AD =,∴Rt △ADC ∽Rt △AED ,………(2分)∴AD AC AE AD =,即AC AE AD ⋅=2.…………………(1分)(2)联结BD ,交AC 于点O ,∵矩形ABCD ,∴AC =BD ,BD DO AC AO 21,21==,∴AO =OD ,∴∠OAD =∠ODA ,…………………(1分)又∵Rt △ADC ∽Rt △AED ,∴∠OAD =∠EAD ,…………………(1分)∴∠ODA =∠EAD ,∴AE ∥OD ,∴∠BDE =∠E =90°,即BD ⊥EF ,…………………(2分)∵DE =DF ,∴BD 垂直平分EF ,∴BE =BF .…………………(1分)24.解:(1)∵抛物线经过A (0,3),∴设为32++=bx ax y ,…………………(1分)A BDCFE第23题图∵关于直线25=x 对称,∴252=-a b ,a b 5-=,∴设为352+-=ax ax y ,……………(1分)将B (3,0)代入得03159=+-a a ,解得21=a ,25-=b ,∴抛物线表达式为325212+-=x x y .…………………(2分)(2)∵横坐标为4的点C 在此抛物线上,代入解析式由计算得C (4,1),……………(1分)又∵A (0,3),B (3,0)∴18992=+=AB ,2112=+=BC ,204162=+=AC ,∴222AC BC AB =+,∴∠CBA =90°,…………………(1分)∴Rt △ABC 中,31232tan ===∠BA BC BAC .…………………(2分)(3)∵AC 边确定,点P 在对称轴右方的抛物线上,且∠PAC =45°,由于抛物线顶点与AC 夹角小于45°,∴点P 一定在点C 上方,作PQ ⊥y 轴于Q ,∵∠BAO =∠P AC =45°,即∠BAO +∠P AC =90°,∴∠P AQ +∠BAC =90°,∵∠APQ +∠P AQ =90°,∴∠APQ =∠BAC ,……………(2∴在Rt △PQA 、Rt △ACB 中,tan∠APQ =tan∠BAC ,,31==AB BC PQ AQ ,∴3AQ =PQ ,设P (x ,325212+-x x ),PQ =x ,AQ =OQ -OA =x x 25212-,代入3AQ =PQ ,得x x x =-)2521(32,解得317=x ,代入944331725)317(213252122=+⨯-=+-=x x y ,∴P (944,317).……………(2分)25.解:(1)过点A 作AH ⊥BC 于H ,AB =6,BC =9,cos ∠在Rt △ABH 中,316==BH AB BH ,∴BH =2,……………(1分)AH =2422=-BH AB ,HC =7,……………(2分)在Rt △AHC 中,AC ==+22HC AH 9,……………(1分)∴Rt △AHC 中,924sin ==AC AH C .……………(1分)(2)∵⊙P 与⊙Q 外切,⊙P 的半径为x ,⊙Q 的半径为y ,∴PQ =x+y ,由已知BP =6-x ,BQ =29,…………(1分)过点P 作PG ⊥BC 于G ,∵Rt △BPG 中31cos =B ,∴)6(31x BG -=,)6(32222x BG PG -==,x x GQ 3125)6(3129+=--=,…………(2分)∴在Rt △PGQ 中,22GQ PG PQ +=41539)3125()6(98222+-=++-=+=x x x x y x PQ ,…………(1分)∴x x x y -+-=415392,定义域为4171<≤x .…………(2分)(3)∵△BPQ 是等腰三角形(i)当BP =BQ 时,296=-x ,23==x AP ;(ii)当BQ =PQ 时,∠BPQ =∠B =∠A ,∴PQ //AC ,点Q 是边BC 的中点,∴P 为AB 中点,∴3=AP ;(iii)当BP =PQ 时,PG ⊥BC ,此时BQ =2BG ,29632=-)(x ,43-=x ,不合题意,舍去∴如果△BPQ 是等腰三角形,AP 的长为23或3.……………(3分)ABCQP第25题图2G。
上海市静安区2022年九年级数学二模试卷-答案

静安区2021学年第二学期初中适应性练习九年级数学测试试卷 参考答案及评分说明2022.6一、选择题: 1.D ; 2.B ; 3.A ; 4.B ; 5.D ; 6.C . 二、填空题: 7.2; 8.2≠x ; 9.1=x ; 10.21≤<-x ; 11.0<k ; 12.二;13.21; 14.不相似;15.a 25; 16.106<<r ; 17.43; 18.13-或13+.(18题答对一解得3分)三、解答题:19.解:原式=112)11(12222+-+-⋅-+--a a a a a a a ……………………………(3分)=1)1()1()1(122222+--⋅-+--a a a a a a =)1(12+--a a ………………(3分)=a a +-2…………………………(2分)由题意得:0=a ,代入得,原式= 0.…………………………(2分)20.解:(1)∵点A (2,1)与点B (21,b )都在双曲线my x =上.将点A 代入得2=m ,双曲线的表达式为xy 2=,…………………………(2分) 将点B 代入解析式得4=b ,∴点B (4,21).…………………………(2分) (2)由题意得,5=OA ,523949=+=AB ,2651641=+=OB ,…………………………(3分) ∵222AB OA OB +=,∴△OAB 的形状是直角三角形,……………………(1分) Rt △ABC 中,32tan ==∠AB OA OBA ,即∠OBA 的正切值为32.…………(2分)21.(1)证明:∵直线AD ⊥BC ,垂足为D ,且O 为圆心,∴BD=DC,即AD 垂直且平分BC ,……………………(1分) ∴AB =AC ,∴∠B =∠ACB .……………………(2分)又∵EC =AB ,∴EC =AC ,∠CAE =∠E ,……………………(1分) ∴∠ACB =∠CAE +∠E=2∠E ,即∠B =2∠E .……………………(1分)(2)联结OC ,∵AD 垂直且平分BC ,∴∠BAO =∠DAC , ∵23cos =∠BAO ,∴∠BAO =30°,∠DAC =30°,∠ACD =60°,……………(1分) ∵OC =OA ,∴∠OCA =∠OAC =30°,∠DOC =∠OCA +∠OAC =60°,∠OCD =30°, ∵OC =OA =2, ∴Rt △ODC 中,OD =1, DC =31222=-,……………………(2分)∴CE = AC =2 DC =32,∴DE =DC +CE =33.……………………(2分)22.解:设甲车间用了x 天,乙车间用(x +2)天完成各自任务.……………(1分) 根据题意得125225003000=+-x x ,……………………(4分) 122024=+-x x ,04822=--x x ,……………………(2分) 0)6)(8(=+-x x ,81=x ,62-=x ,……………………(1分)经检验,6-=x 不合题意,舍去,∴8=x 是原方程的根,且符合题意,………(1分)102=+x .……………………(1分)答:甲车间用8天,乙车间用了10天分别完成各自任务.23.证明:(1)∵点E 、F 分别是边BC 、DC 的中点,且BM =MN =ND , 即ME 、NF 分别是△BCN 和△DCM 的中位线∴ME //NC ,NF //MC , ……………………(4分)即AM //NC ,AN //MC ,∴AMCN 是平行四边形. ……………………(2分)(2)联结AC 交BD 于O ,……………………(1分)∵AMCN 是平行四边形,∴OA =OC ,OM =ON , ……………………(1分) ∵BM =ND , ∴OB =OD , ∴ABCD 是平行四边形. ……………………(1分) 又∵点E 、F 分别是边BC 、DC 的中点,∴AE AM 32=,AF AN 32=, ∵AE =AF ,∴AM =AN , ∴四边形AMCN 是菱形,……………………(2分)∴AC ⊥BD ,∴四边形ABCD 是菱形. ……………………(1分)24.解:(1)∵点A 坐标是(2,4),点 B 在x 轴上,OB =AB ,设B (x ,0),且22AB OB =,∴16)2(22+-=x x ,5=x ,∴B (5,0),………(3分)∵二次函数的图像经过点O 、A 、B 三点,顶点为D .∴设bx ax y +=2,将A (2,4),B (5,0),代入得⎩⎨⎧=+=+0525424b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=31032b a ……………………(2分) ∴625)25(323103222+--=+-=x x x y ,D (25,625). ……………………(1分) (2)设直线AB 解析式:b kx y AB +=,将A (2,4),B (5,0),代入得⎩⎨⎧=+=+0542b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=32034b k ,∴32034+-=x y AB……………………(2分) ∵抛物线对称轴是直线25=x ,将E (m ,25)代入直线解析式, 求得310=m ,∴E (310,25). ……………………(1分) (3)由题意得,设抛物线应向右平移21个单位,向下平移若干个单位,此时顶点D 的对应点D 1坐标设为(3,y ),代入直线AB 表达式32034+-=x y ,………………(1分)解得38=y ,∴D 1(3,38),二次函数解析式:38)3(322+--=x y .………(2分)25.解:(1)作DH ⊥BC ,垂足为H ,∵梯形ABCD 中,AD //BC ,∠A =90°,∴∠ABC =90°,, ∴四边形ABHD 是矩形 ∵AB =3,AD =6,BC =7, ∴DH =3,AH =6,CH =BC-BH=1,Rt △DHC 中, 231=+=DC ,∴∠CDH =30°, ………………(3分) ∴∠ADC =90°+30°=120°. ………………(1分)(2)∵AD //BC ,∴∠PCB =∠DPC , 又∵∠BPF =∠ADC , ∴△DPC ∽△PCB ,∴PCBCPD PC =, ∴BC PD PC ⨯=2,…………(3分)作PM ⊥BC 于M ,设AP =x ,∴BM =x ,MC =7-x ,222MC PM PC +=, 则)6(7)7()3(22x x -=-+,01072=+-x x ,………………(2分)解得21=x ,52=x ,所以,AP 的长为2或5.………………(1分)(3)∵AD //BC ,∴∠PEB =∠DPF又∵∠BPF =∠ADC ,∴△DPF ∽△PEB ∴∠PBE =∠F , 在AD 上截取AQ =1, Rt △DHC 中, 3tan =∠AQB ,得∠AQB =60°, ∴∠PQB =120°, ∴∠PQB =∠PDF ,又∠BPQ =∠PBE =∠F , ∴△PQB ∽△FDP ,DP DF BQ PQ =,xyx -=-621,………………(2分) ∴)6)(1(21x x y --=,327212-+-=x x y ,定义域为25x ≤≤.…………(2分)A BD图(2)P MPF。
2021年上海市静安区中考数学二模试卷(含解析)

2021年上海市静安区中考数学二模试卷(含解析)2021年上海市静安区中考数学二模试卷一、选择题(共6小题)1.下列计算正确的是()A。
1-1=-1B。
1+1=2C。
(-1)-1=-2D。
(-1)×(-1)=12.如果关于x的方程x²-6x+m=0有实数根,那么m的取值范围是()A。
m>9B。
m≥9C。
m<9D。
m≤93.一次函数y=3x-2的图象不经过的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限4.对于等边三角形,下列说法正确的为()A。
既是中心对称图形,又是轴对称图形B。
是轴对称图形,但不是中心对称图形C。
是中心对称图形,但不是轴对称图形D。
既不是中心对称图形,又不是轴对称图形5.某厂对一个班组生产的零件进行调查,该班组在8天中每天所出的次品数如下(单位:个):3,3,2,2,3,4,3.那么该班组在8天中出的次品数的中位数与方差分别是()A。
2.5与1.5B。
2与1.5C。
2.5与2D。
2与66.对于命题:①如果一个圆上所有的点都在另一个圆的内部,那么这两个圆内含;②如果一个圆上所有的点都在另一个圆的外部,那么这两个圆外离。
下列判断正确的是()A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①、②都是真命题D。
①、②都是假命题二、填空题(共12题,每题4分,满分48分)7.化简:|4-7|÷|3-6|=1/3.8.计算:x÷(x²-x)=1/(x-1)。
9.函数f(x)=√(x²-4x+3)的定义域为(-∞,1]∪[3,∞)。
10.如果正比例函数的图象经过第二、四象限,那么函数值y随x的增大而减小。
11.方程组2x-3y=7,3x+2y=1的解为x=-5,y=-9.12.从1,2,3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被3整除的概率是1/3.13.为了了解学生用于阅读课外书籍的时间的情况,某校在300名九年级学生中随机对40名学生每周阅读课外书籍所用的时间进行统计。
2020-2021学年上海市静安区、青浦区中考二模数学试题及答案解析

上海市静安区、青浦区中考二模数 学(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.当2-<a 时,2)2(+a 等于(A )2+a (B )2-a (C )a -2 (D )2--a 2.如果b a <,那么下列不等式中一定正确的是(A )b b a -<-2 (B )ab a <2 (C ) 2b ab < (D )22b a <3.已知函数2)1(-+-=k x k y (k 为常数),如果y 随着x 的增大而减小,那么k 的取值范围是(A )1>k (B )1<k (C ) 2>k (D )2<k4.某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如下表: 表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是(A )中位数在105~119分数段 (B )中位数是119.5分 (C )中位数在120~134分数段 (D )众数在120~134分数段5.如图,将△ABC 沿直线AB 翻折后得到△1ABC ,再将△ABC 绕点A 旋转后得到△22C AB ,对于下列两个结论:①“△1ABC 能绕一点旋转后与△22C AB 重合”; ②“△1ABC 能沿一直线翻折后与△22C AB 重合”的正确性是 (A )结论①、②都正确 (B )结论①、②都错误 (C )结论①正确、②错误 (D )结论①错误、②正确 6.如果四边形ABCD 的对角线相交于点O ,且AO =CO ,那么下列条 件中 不能..判断四边形ABCD 为平行四边形的是 (A )OB =OD (B )AB//CD (C )AB =CD (D )∠ADB =∠DBC 二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.数25的平方根是 ▲ . 8.分解因式:=--122x x ▲ .9.如果二次根式x 23-有意义,那么x 的取值范围是 ▲ . 10.关于x 的方程0122=++-m mx x 根的情况是 ▲ .11.如果抛物线h x a y +-=2)1(经过点A (0,4)、B (2,m ),那么m 的值是 ▲ . 12.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 ▲ .(第5题图)13.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学的概率是 ▲ .14.如图,在△ABC 中,点D 在边AC 上,AD=2CD ,如果b BD a A B ==,,那么=BC ▲ .15.在Rt △ABC 中,∠C =90° ,点D 、E 分别是边AC 、AB 的中点,点F 在边BC 上,AF 与DE 相交于点G ,如果∠AFB =110° ,那么∠CGF 的度数是 ▲ .16. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得134--x x 的值是 ▲ .17.如果⊙O 1与⊙O 2相交于点A 、B ,⊙O 1的半径是5,点O 1到AB 的距离为3,那么⊙O 2的半径r 的取值范围是 ▲ .18.如图,在等腰梯形ABCD 中,AD//BC ,点E 、F 、G 分别在边AB 、BC 、CD 上,四边形AEFG 是正方形,如果∠B= 60°, AD=1,那么BC 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)化简:x x x x -++--12121)1)(1(,并求当13+=x 时的值.20.(本题满分10分)(第18题图)(第14题图)解方程:411322=+++x x x x .21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在菱形ABCD 中,AE ⊥BC ,垂足为E ,对角线BD= 4,21tan =∠CBD . 求:(1)边AB 的长;(2)∠ABE 的正弦值.22.(本题满分10分)小丽购买了6支水笔和3本练习本,共用21元;小明购买了12支水笔和5本练习本,共用39元.已知水笔与练习本的单价分别相同,求水笔与练习本的单价.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图,在△ABC 中,AB=AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2; (2)联结CG ,求证:∠ECB =∠DCG .(第21题图) ABCED(第23题图)ABCDE GF24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,31cos =∠BAO ,设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当∠OCA =∠OPC 时,求⊙P25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)(第24题图)如图,反比例函数的图像经过点A(–2,5)和点B(–5,p),□ABCD的顶点C、D分别在y 轴的负半轴、x轴的正半轴上,二次函数的图像经过点A、C、D.(1)求直线AB的表达式;(3)如果点E且∠DCE=∠BDO,求点E(第25题图)上海市静安区、青浦区中考二模数学试卷参考答案及评分标准.10一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.B ; 4.B ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.5±; 8.)21)(21(--+-x x ; 9.23≤x ; 10.没有实数根; 11.4; 12.6; 13.53; 14.a b 2123-; 15.︒40; 16.1; 17.4≥r ; 18.32+. 三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=x xx -+-11……………………………………………………………………(4分)=xxx -=-111……………………………………………………………………(2分) 当13+=x 时,原式=233)13)(13()13(313131-=-+--=+--.…………………(4分) 20.解:设xx y 12+=,…………………………………………………………………………(1分)得:43=+y y,………………………………………………………………………(1分) 0342=+-y y ,…………………………………………………………………(1分).3,121==y y ……………………………………………………………………(2分)当1=y 时,,112=+xx 012=+-x x ,此方程没有数解.…………………(2分)当3=y 时,,312=+x x 0132=+-x x ,253±=x .………………………(2分) 经检验253±=x 都是原方程的根,…………………………………………(1分) 所以原方程的根是253±=x .21.解:(1) 联结AC ,AC 与BD 相交于点O ,………………………………………………(1分)∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =221=BD .……………………(1分) ∵Rt △BOC 中,21tan ==∠OB OC CBD ,………………………………………(1分) ∴OC =1,…………………………………………………………………………(1分) ∴AB =BC =5212222=+=+OC BO .……………………………………(1分)(2)∵AE ⊥BC ,∴AC BD AE BC S ABCD ⋅⋅21==菱形,………………………………(2分)∵AC =2OC =2,∴42215⨯⨯=AE ,…………………………………………(1分)∴54=AE ,………………………………………………………………………(1分)∴54sin ==∠AB AE ABE .…………………………………………………………(1分)22.解:设水笔与练习本的单价分别为x 元、y 元,…………………………………………(1分)∴⎩⎨⎧=+=+,39512,2136y x y x ………………………………………………………………………(4分)解得⎩⎨⎧==.3,2y x ……………………………………………………………………………(4分)答:水笔与练习本的单价分别是2元与3元.…………………………………………(1分)23.证明:(1)∵AB=AC ,AD =,21AC AE =,21AB ∴AD =AE ,…………………………(1分) ∵∠BAD=∠CAE ,∴△BAD ≌△CAE .…………………………………………(1分) ∴∠ABD =∠ACE ,…………………………………………………………………(1分) ∵DF ⊥AC ,AD =CD ,∴AF =CF ,………………………………………………(1分) ∴∠GAD =∠ACE ,∴∠GAD =∠ABD .………………………………………(1分) ∵∠GDA=∠ADB ,∴△GDA ∽△ADB .…………………………………………(1分) ∴ADDGDB AD =,∴BD DG AD ⋅=2.……………………………………………(1分) (2)∵ADDG DB AD =,AD =CD ,∴CD DGDB CD =.………………………………………(1分) ∵∠CDG=∠BDC ,∴△DCG ∽△DBC .…………………………………………(1分) ∴∠DBC=∠DCG .…………………………………………………………………(1分) ∵AB=AC ,∴∠ABC=∠ACB .……………………………………………………(1分) ∵∠ABD =∠ACE ,∴∠ECB =∠DBC=∠DCG .………………………………(1分)24.解:(1)在⊙O 中,作OD ⊥AB ,垂足为D ,……………………………………………(1分)在Rt △OAD 中,31cos ==∠OA AD BAO ,………………………………………(1分)∴AD=31AO=1. ∴AB=2AD=2.………………………………………………(1分) (2)联结OB 、PA 、PC ,∵⊙P 与⊙O 相切于点A ,∴点P 、A 、O 在一直线上.……………………(1分)∵PC=PA ,OA=OB ,∴∠PCA=∠PAC=∠OAB=∠OBA ,∴PC//OB .………(1分) ∴AO PA AB AC =,∴AC 32xAC AB PA =⋅=. ………………………………………(1分) ∵81322222=-=-=AD OA OD ,CD=AD+AC=132+x , ∴OC=8)132(222++=+x CD OD ,………………………………………(1分)∴81124312++=x x y ,定义域为0>x .…………………………………(1分)(3) 当⊙P 与⊙O 外切时,∵∠BOA=∠OCA ,∠CAO=∠POC ,∴△OAC ∽△OCP .∴OPOCOC OA =,∴OP OA OC ⋅=2,……………………(1分) ∴)3(3)81124(912x x x +=++,∴01=x (不符合题意,舍去)4152=x , ∴这时⊙P 的半径为415.………………………………………………………(1分) ∴2932=x ,427=x ,∴这时⊙P 的半径为427.……………………………(1分) ∴⊙P 的半径为415或427.25.解:(1)设反比例函数的解析式为xky =.∵它图像经过点A (–2,5)和点B (–5,p ), ∴5=2-k,∴10-=k ,∴反比例函数的解析式为xy 10-=.……………………(1分)∴2510=--=p ,∴点B 的坐标为(–5,2).……………………………………(1分) 设直线AB 的表达式为n mx y +=,则⎩⎨⎧+-=+-=,52,25n m n m ………………………………(1分) ∴⎩⎨⎧==.7,1n m ∴直线AB 的表达式为7+=x y .………………………………………(1分) (2)由□ABCD 中,AB//CD ,设CD 的表达式为c x y +=,…………………………(1分)∴C (0,c ),D (–c ,0),…………………………………………………………(1分) ∵CD =AB ,∴22AB CD =∴2222)52()25(-++-=+c c ,……………………(1分)∴c =–3,∴点C 、D 的坐标分别是(0,–3)、(3,0).………………………(1分)(3)设二次函数的解析式为32-+=bx ax y ,⎩⎨⎧-+=--=,3390,3245b a b a ………………………(1分) ∴⎩⎨⎧-==.2,1b a ∴二次函数的解析式为322--=x x y .…………………………(1分) 作EF ⊥y 轴,BG ⊥y 轴,垂足分别为F 、G .∵OC =OD ,BG =CG ,∴∠BCG =∠OCD=∠ODC =45 º.∴∠BCD=90º,∵∠DCE =∠BDO ,∴∠ECF=∠BDC .……………………………………………(1分)∴tan ∠ECF=tan ∠BDC=35)30()03()23()50(2222=++-+++=CD BC .…………………………(1分) 设CF =3t ,则EF =5t ,OF =3–3t ,∴点E (5t ,3t –3),………………………(1分) ∴31025332--=-t t t ,2513,(021==t t 舍去).∴点E (513,2536-).………(1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
更多精品文档静安区2016学年第二学期期中教学质量调研 九年级数学试卷 2017.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. 212-等于(A )2; (B )2-; (C )22; (D )22-. 2.下列二次根式里,被开方数中各因式的指数都为1的是(A )22y x ; (B )22y x +; (C )2)(y x +; (D )2xy . 3.关于x 的一元二次方程012=--mx x 的根的情况是(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )不能确定.4.一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:那么这8位学生做对题目数的众数和中位数分别是(A )9和8; (B )9和8.5 ; (C )3和2; (D )3和1. 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为(A )正五边形; (B )正六边形; (C )等腰梯形; (D )平行四边形. 6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD //BC ,下列判断中错误..的是 (A )如果AB =CD ,AC =BD ,那么四边形ABCD 是矩形; (B )如果AB //CD ,AC =BD ,那么四边形ABCD 是矩形; (C )如果AD =BC ,AC ⊥BD ,那么四边形ABCD 是菱形; (D )如果OA =OC ,AC ⊥BD ,那么四边形ABCD 是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案] 7.计算:=--0122 ▲ .8.在实数范围内分解因式:=-622x ▲ .更多精品文档9.不等式组⎩⎨⎧->->-5,032x x 的解集是 ▲ .10.函数32--=x x y 的定义域是 ▲ . 11.如果函数xm y 13-=的图像在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大,那么m 的取值范围是 ▲ .12.如果实数x 满足02)1()1(2=-+-+x x x x ,那么xx 1+的值是 ▲ .13.为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05, 由此可估计全区初中毕业生的体重不小于60千克 的学生人数约为 ▲ 人.14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同, 从布袋里摸出两个球,摸到两个红球的概率是 ▲ . 15.如图,在△ABC 中,点D 是边AC 的中点,如果BC ==,, 那么=BD ▲ (用向量表示). 16.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上, △AEF 是等边三角形,如果AB =1,那么CE 的长是 ▲ . 17. 在Rt △ABC 中,∠C =90°,∠B =70°,点D 在边AB 上, △ABC 绕点D 旋转后点B 与点C 重合,点C 落在点C ’, 那么∠ACC ’的度数是 ▲ .18.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线 AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是 ▲ .三、解答题:(本大题共7题,满分78分)[]19.(本题满分10分) 化简:(632-++x x x -42-x x )21+÷x ,并求321-=x 时的值. 20.(本题满分10分)解方程:.1521=-++x x 21.(本题满分10分,每小题满分5分) F(第15题图)更多精品文档已知:如图,在Rt △ABC 和Rt △BCD 中,∠ABC =∠BCD =90°,BD 与AC 相交于点E , AB =9,53cos =∠BAC ,125tan =∠DBC . 求:(1)边CD 的长; (2)△BCE 的面积.22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n 个,所有盒子所装物品的总量为w 克. ①求w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD 中,点E 在边BC 上,点F 在BA 的延长线上,BE =AF ,CF //AE ,CF 与边AD 相交于点G . 求证:(1)FD =CG ;(2)FC FG CG ⋅=2.24.(本题满分12分,第(1)小题满分5已知二次函数c bxx y ++-=221的图像与x 轴的正半轴相交于点A (2,0)和点B 、 与y 轴相交于点C ,它的顶点为M 、对称轴与x 轴相交于点N . (1) 用b 的代数式表示顶点M 的坐标; (2) 当tan ∠MAN =2时,求此二次函数的解析式 及∠ACB 的正切值.(第23题图)C (第21题图)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB 相交于点C,AC的延长线与⊙O相交于点D.设线段AB的长为x, 线段OC的长为y.(1)求y关于x的函数解析式,并写出定义域;(2)当四边形ABDO是梯形时,求线段OC的长.更多精品文档更多精品文档静安区质量调研九年级数学试卷参考答案及评分标准2017.4.20一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.A .二.填空题:(本大题共12题,满分48分)7.21-; 8.)3)(3(2+-x x ; 9.523<<x ;10.3≠x ; 11.31<m ; 12.2;13.1500; 14.103; 15.a b 2121-;16.13-; 17.50°; 18.23或29.三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=21])2)(2()2)(3(3[+÷-+--++x x x x x x x ……………………………………(3分)=)2(])2)(2()2)(2(2[+⋅-+--++x x x xx x x ……………………………………(2分)=22-x .…………………………………………………………………………(2分)当32321+=-=x 时,…………………………………………………………(1分) 原式=32=332.……………………………………………………………………(2分)20.解:1152+-=-x x ,………………………………………………………………(1分)112152+++-=-x x x ,…………………………………………………………(2分)x x -=+712.………………………………………………………………………(1分)2144944x x x +-=+,………………………………………………………………(2分)045182=+-x x ,……………………………………………………………………(1分)15,321==x x ,………………………………………………………………………(1分)经检验:15,321==x x 都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在Rt △ABC 中,53cos ==∠AC AB BAC .………………………………………(1分)∴1535==AB AC ,………………………………………………………………(1分)∴BC =129152222=-=-AB AC .…………………………………………(1分)在Rt △BCD 中,125tan ==∠BC CD DBC ,………………………………………(1分)∴CD =5.…………………………………………………………………………(1分) (2)过点E 作EH ⊥BC ,垂足为H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB .更多精品文档∴95==AB DC AE CE .………………………………………………………………(1分)∵∠EHC =∠ABC =90°,∴EH//AB ,∴145==CA CE AB EH .…………………(1分) ∴14459145145=⨯==AB EH .…………………………………………………(1分) ∴71351445122121=⨯⨯=⋅=∆EH BC S EBC .……………………………………(1分)22.解:(1)设小盒每个可装这一物品x 克,…………………………………………………(1分)∴120120120=+-x x ,…………………………………………………………………(2分)02400202=-+x x ,……………………………………………………………(1分)60,4021-==x x ,………………………………………………………………(1分) 它们都是原方程的解,但60-=x 不合题意.∴小盒每个可装这一物品40克.(1分)(2)①n n n w 203000)50(6040-=-+=,(n n ,500<<为整数)…………(2分) ②)50(6040n n -=,30=n ,2400=w .…………………………………(2分) ∴所有盒子所装物品的总量为2400克.23.证明:(1)∵在菱形ABCD 中,AD //BC ,∴∠F AD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分) ∴FD =EA ,…………………………………………………………………………(1分) ∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分) ∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分)∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分) ∴FDFGFC FD =,FC FG FD ⋅=2.…………………………………………………(1分) ∵FD=CG ,FC FG CG ⋅=2.……………………………………………………(1分)24.解:(1)∵二次函数c bx x y ++-=221的图像经过点A (2,0),∴c b ++⨯-=24210,………………………………………………………………(1分)更多精品文档∴b c 22-=,…………………………………………………………………………(1分)∴244)(212221212222+-+--=-++-=++-=b b b x b bx x c bx x y ,………(2分)∴顶点M 的坐标为(b ,2442+-b b ).……………………………………………(1分)(2)∵tan ∠MAN ==ANMN2,∴MN =2AN .………………………………………………(1分) ∵M (b ,2442+-b b ),∴ N (b ,0),22)2(21244-=+-=b b b MN .……(1分)①当点B 在点N 左侧时, AN =b -2,∴)2(2)2(212b b -=-,2-=b .不符合题意.…………………………………………………………………………(1分)②当点B 在点N 右侧时, AN =2-b , ∴)2(2)2(212-=-b b ,6=b .…………(1分)∴二次函数的解析式为106212-+-=x x y .………………………………………(1分) ∴点C (0,–10),∵点A 、B 关于直线MN 对称,∴点B (10,0).∵OB =OC =10,∴BC =102,∠OBC =45°.………………………………………(1分) 过点A 作AH ⊥BC ,垂足为H ,∵AB =8,∴AH =BH =42,∴CH =62.∴322624tan ===∠CH AH ACB .……………………………………………………(1分)25.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)∴△ABC ∽△OAB .…………………………………………………………………(1分) ∴OA AB AB BC =,∴2xx BC =,………………………………………………………(1分)更多精品文档∴221x BC =,∵OC=OB –BC ,∴y 关于x 的函数解析式2212x y -=,……(1分) 定义域为20<<x .………………………………………………………………(1分)(2)①当OD //A B 时,∴OD ABCO BC =,∴22122122x x x=-,……………………………(1分) ∴2212x x -=,∴0422=-+x x ,……………………………………………(1分) ∴51±-=x (负值舍去).……………………………………………………(1分) ∴AB =15-,这时AB ≠OD ,符合题意.∴OC =15)15(21221222-=--=-x .………………………………………(1分)②当BD //OA 时,设∠ODA =α,∵BD //OA ,OA =OD ,∴∠BDA =∠OAD =∠ODA =α,又∵OB =OD ,∴∠BOA =∠OBD =∠ODB =α2.…………………………………(1分) ∵AB =AC ,OA =OB ,∴∠OAB =∠ABC =∠ACB =∠COA +∠CAO =α3.………(1分) ∵∠AOB +∠OAB +∠OBA =180°,∴︒=++180332ααα,∴︒=5.22α,∠BOA =45°.………………………………………………………(1分) ∴∠ODB =∠OBD =45°,∠BOD =90°,∴BD =22. ∵BD //OA ,∴OABDCO BC =. ∴2222=-y y ,∴222-=y .222-=OC .………………………………(1分) 由于BD ≠OA ,222-=OC 符合题意.∴当四边形ABDO 是梯形时,线段OC 的长为15-或222-.或:过点B 作BH ⊥OA ,垂足为H , BH =OH =2,AH =2–2, ∴248)2()22(22222-=+-=+=BH AH AB . ∴222)224(221221222-=--=-=-=AB x OC .…………………………(1分)。