小学四年级下册奥数题练习及答案解析

合集下载

(完整word版)小学四年级下册带答案数学奥数题(带答案)(参考)

(完整word版)小学四年级下册带答案数学奥数题(带答案)(参考)

(完整word版)小学四年级下册带答案数学奥数题(带答案)小学四年级下册带答案数学奥数题1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5.在花圃的身边方式菊花,每隔1米放1盆花。

花圃身边共20米长。

需放多少盆菊花?20÷1×1=20盆6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。

从发电厂到闹市区有多远?30×(250-1)=7470米。

7.王老师把月收入的一半又20元留做日子费,又把剩余钞票的一半又50元储蓄起来,这时还剩40元给小孩交学费书本费。

他那个月收入多少元?[(40+50) ×2+20] ×2=400(元)答:他那个月收入400元。

8.一具人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,咨询:大提全长多少千米?1×2×2=4千米9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,翌日又加工了剩下的一半又10个,还剩下25个没有加工。

咨询:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个。

综合算式:【(25+10)×2+10】×2=160个10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。

咨询它几天能够长到4厘米?16÷2÷2=4(厘米),16-1-1=14(天)11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。

四年级奥数题及解析(6篇)

四年级奥数题及解析(6篇)

四年级奥数题及解析(6篇)四年级奥数题及解析(6篇)四年级奥数题及解析1暑期前老师去阅览室借书,如果每人借4本,则最后少2本;如果前2人每人借8本,余下每人借3本,这些图书恰好借完。

阅览室共有多少本书?答案与解析:这道题的第二次分配条件是需要调整的,因为第二次分配不是平均分配,将其调整为平均分配后才能解题。

第二次分配调整后:每人借3本,多出(8-3)某2=10(本)。

这时按盈亏问题的规律解题。

两次分配本数上相差:10+2=12(本),因为在第二次分配中每人少分了4-3=1(本),因此可知借书的人数:12÷1=12(人),书的本数:4某12-2=46(本)解:借书的人数:[2+(8-3)某2]÷(4-3)=12(人)书的本数:4某12-2=46(本)答:阅览室共有图书46本。

四年级奥数题及解析2题目:某车间计划20人每天工作8小时,8天完成一批订货,后来要提起交货,改由32人工作,限4天完成,每天需要工作几小时?解析:先列个简易的表格,整理好题目中已知的信息:20人8小时8天32人?小时4天在这个问题中工作总量是不变的。

把一个人一小时的工作量看作一份工作量,220人每小时可以完成20份工作量,先求出工作总量:20某8某8=1280(份)。

32人每小时可以完成32份工作量,可以先求出每天的工作总量,再求出每天的工作时间:1280÷4÷32=10(小时);也可以先求出总共需要多少小时,再求出每天需要多少小时:1280÷32÷4=10(小时)。

所以,每天需要工作10小时。

四年级奥数题及解析3题目:水库管理员想估计一下水库里共有多少条鱼。

他先捞了100条作为样本全部做上记号。

一个月后,他捕获了500条鱼,发现其中只有4条做过记号。

请你帮管理员估计一些,水库中大约有多少条鱼?解析:先列个简易的表格,整理好题目中已知的信息:4条记号鱼→500条鱼100条记号鱼→?条鱼这一题估计的根据是,所有鱼中记号鱼所占的比例是一定的。

小学四年级下册奥数题100道及答案(完整版)

小学四年级下册奥数题100道及答案(完整版)

小学四年级下册奥数题100道及答案(完整版)1. 简便计算:25×125×4×8答案:(25×4)×(125×8)= 100×1000 = 1000002. 小明在计算加法时,把一个加数十位上的0 错写成8,把另一个加数个位上的6 错写成9,所得的和是532。

正确的和是多少?答案:把一个加数十位上的0 错写成8,所得的和就多了80;把另一个加数个位上的6 错写成9,所得的和就多了3。

所以正确的和是532 - 80 - 3 = 4493. 果园里有梨树、桃树和苹果树共1200 棵,其中梨树的棵数是苹果树的3 倍,桃树的棵数是苹果树的4 倍。

求梨树、桃树和苹果树各有多少棵?答案:苹果树:1200÷(1 + 3 + 4)= 150(棵);梨树:150×3 = 450(棵);桃树:150×4 = 600(棵)4. 某工厂一车间和二车间共有100 人,二车间和三车间共有97 人,一车间和三车间共有93 人。

三个车间各有多少人?答案:三个车间总人数:(100 + 97 + 93)÷2 = 145(人);一车间:145 - 97 = 48(人);二车间:145 - 93 = 52(人);三车间:145 - 100 = 45(人)5. 学校买了4 个足球和2 个排球,共用去162 元。

每个足球比每个排球贵3 元,每个足球和每个排球各多少元?答案:假设全买的足球,总价要多2×3 = 6 元,所以足球的单价:(162 + 6)÷(4 + 2)= 28(元);排球单价:28 - 3 = 25(元)6. 鸡兔同笼,共有头30 个,脚86 只。

求鸡、兔各有多少只?答案:假设全是鸡,兔:(86 - 30×2)÷(4 - 2)= 13(只);鸡:30 - 13 = 17(只)7. 一条公路长1200 米,在公路的两旁每隔20 米栽一棵树,两端都栽。

四年级奥数题练习及答案解析

四年级奥数题练习及答案解析

四年级奥数题练习及答案解析统筹规划问题(一)【试题】1.烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶.【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶.洗茶杯.拿茶叶.共需要1+10=11分钟.【试题】2.有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升).为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3.用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一.二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上.两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟.统筹规划问题(二)【试题】4.甲.乙.丙.丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间.【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用.解:应按丙,乙,甲,丁顺序用水.丙等待时间为0,用水时间1分钟,总计1分钟乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟丁等待时间为丙.乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟.统筹规划问题(三)【试题】5.甲.乙.丙.丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟.因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人.现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧.最短时间是多少分钟呢?【分析】:大家都很容易想到,让甲.乙搭配,丙.丁搭配应该比较节省时间.而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒.为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务.那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙.丁搭配过桥,用时10分钟.接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟.所以花费的总时间为:2+1+10+2+2=17分钟.解:2+1+10+2+2=17分钟【试题】6.小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河.【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来.解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟.总共用时(2+1)+(6+2)+2=13分钟.速算与巧算(一)【试题】计算9+99+999+9999+99999【解析】在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105速算与巧算(二)【试题】计算199999+19999+1999+199+19【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225速算与巧算(三)【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算.解法一.分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1) =500解法二.等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250 =(1002-1000)×250=500速算与巧算(四)【试题】计算9999×2222+3333×3334【分析】此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.速算与巧算(五)【试题】56×3+56×27+56×96-56×57+56【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号.同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差.56×3+56×27+56×96-56×57+56=56×(32+27+96-57+1)=56×99 =56×(100-1)=56×100-56×1=5600-56速算与巧算(六)【试题】计算98766×98768-98765×98769【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项.解:98766×98768-98765×98769=(98765+1)×98768-98765×(98768+1)=98765×98768+98768-(98765×98768+98765)=98765×98768+98768-98765×98768-98765=98768-98765=3年龄问题【试题】: 1.父亲45岁,儿子23岁.问几年前父亲年龄是儿子的2倍?(设未知数)2.李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等.问李老师和王刚各多少岁?3.姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少.(设未知数)4.小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”.小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁.”问大象妈妈有多少岁了?5.大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁.问大.小熊猫各几岁?6.15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍.求父亲.儿子各多少岁.7.王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁.已知爷爷年龄是王涛的5 倍,爸爸年龄在四年前是王涛的4 倍,问王涛全家人各是多少岁?答案:1.一年前.2.刘红10 岁,李老师28 岁.(10+8-8)+(2- 1)=10(岁).3.妹妹7岁.姐姐14岁.[27-(3x2)]+(2+ l)=7( 岁).4.小象10 岁,妈妈19 岁.28-1)-3+1=10(岁).5.大熊猫15 岁,小熊猫5 岁.(28-4x2)+(3+1)=5(岁).6.父亲50岁,儿子20岁.(15+10)-(7-2)+15=20(岁)7.王涛12 岁,妈妈34岁.爸爸36岁,奶奶58岁,爷爷60岁.提示: 爸爸年龄四年前是王涛的4 倍,那么现在的年龄是王涛的4 倍少12 岁.(200+2+12+12+2)-( 1+5+5+4+4)- 12( 岁).牛吃草问题解析解决牛吃草问题的多种算法历史起源: 英国数学家牛顿(1642-1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起.在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题.主要类型:1.求时间2.求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力.基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数.②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”.③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数.基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽.如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的.”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草.)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草.)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽.第二种:公式解法有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的.(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?解答:1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)原有草量:21×8-12×8=72(份)16头牛可吃:72÷(16-12)=18(天)2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛.。

四年级奥数题练习及答案解析

四年级奥数题练习及答案解析

四年级奥数题练习及答案解析统筹规划问题(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

共需要1+10=11分钟。

【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。

为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。

小学四年级奥数题及答案解析(六篇)

小学四年级奥数题及答案解析(六篇)

小学四年级奥数题及答案解析(六篇)小学四年级奥数题及答案解析篇一A、22B、23C、24解析:假设1只羊1天吃草的量为1份。

每天新生草量是:(14×10-20×5)÷(10-5)=8(份)原草量是:20×5-8×5=60(份)安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23(只)小学四年级奥数题及答案解析篇二答案与解析:摘录条件:30辆小车+3辆卡车=75吨45辆小车+6辆卡车=120吨比较条件,转化为:60辆小车+6辆卡车=150吨45辆小车+6辆卡车=120吨从对应量的变化,可以看出(150-120)吨正好与(60-45)辆小车的载重量相对应,因此每辆小车每次可以运货=2吨,那么每辆卡车每次可以运货=5吨。

小学四年级奥数题及答案解析篇三【解析】因为乙和丙买走的重量一样多,且都是丁的2倍所以乙丙丁三人买走的重量是丁的5倍;而7袋大米的总重量是12+15+17+20+22+24+26=136千克从136千克里减去5的倍数,剩下的就是甲买走的重量反过来说,从136千克里减去甲买走的那一袋大米的重量,剩下的重量一定是5的倍数,要使136减去一个数后和得数能被5整除,这个数的个位数字一定是1或者6,而这7袋大米的重量中只有26的个位是6;因此甲买走的那一袋大米的重量是26千克小学四年级奥数题及答案解析篇四上下坡答案:设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60走与上坡同样距离的平路时用时间90/2=45因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

小学四年级奥数题及答案解析篇五答案与解析:把大强的苹果去掉4个后,大强的苹果数就是小强的两倍,这时候的苹果总数相当于小强苹果数的三倍。

小学四年级下册奥数题及解答

小学四年级下册奥数题及解答

小学四年级下册奥数题及解答小学四年级下册奥数题及解答篇一1、计算:123+234+345-456+567-678+789-890123+234+345-456+567-678+789-890=123+234+345+(567-456)+(789-678)-890=123+234+345+111+111-890=234+(123+567)-890=234+690-890=34+890-890=342、569+384+147-328-167-529569+384+147-328-167-529=(569-529)+147-(147+20)+388-4-328=40-20+56=763、计算:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)=(6480-8)+(5320-1)+(9360-6)+(6840-1)-(4476-2476-4)-(3323-1323-4)-(7358-5358-4)-(4843-2843-4)=(6480+5320)+(9360+6840)-8-1-6-1-2000+4-2000+4-2000+4-2000+4=11800+16200-8000-16+16=28000-8000=20000小学四年级下册奥数题及解答篇二1、计算:9998+998+99+9+69998+998+99+9+6=(10000-2)+(1000-2)+(100-1)+(10-1)+6=10000+1000+100+10+(6-2-2-1-1)=111102、计算:1966+1976+1986+1996+20061966+1976+1986+1996+2006=(1986-21)+(1986-10)+1986+(1986+10)+(1986+20)=1986×5-(20+10-10-20)=99303、计算:1234+2341+3412+41231234+2341+3412+4123=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+20+3)=(1000+2000+3000+4000)+(200+300+400+100)+(30+40+10+20)+(4+1+2+3)=10000+1000+100+10=11110小学四年级下册奥数题及解答篇三1、从1999这个数里减去253以后,再加上244,然后在减去253,再加上244,……,这样一直减下去,减到第多少次,得数恰好等于0?解:253-244=9,1999-253=1746,1746/9=194,194+1=195,所以减到第195次,得数恰好等于0。

小学四年级下册奥数题及答案

小学四年级下册奥数题及答案

小学四年级下册奥数题及答案整理的《小学四年级下册奥数题及答案》相关资料,希望帮助到您。

【篇一】小学四年级下册奥数题及答案 1、有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?解答:(1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)原有草量:21×8-12×8=72(份)16头牛可吃:72÷(16-12)=18(天)(2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛。

2、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。

解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。

总共用时(2+1)+(6+2)+2=13分钟。

【篇二】小学四年级下册奥数题及答案 1、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。

时速为72千米的列车相遇,错车而过需要几秒钟?答案与解析:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒)某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米)两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)2、A、B、C、D四个同学猜测他们之中谁被评为三好学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级下册奥数题练习及答案解析
【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

共需要1+10=11分钟。

【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。

为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)
【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?
我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)
【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。

但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

解:解法一、分组法
(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)
=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)
=1+1+1+…+1+1+1(500个1)
=500
解法二、等差数列求和
(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)
=(2+1000)×500÷2-(1+999)×500÷2
=1002×250-1000×250
=(1002-1000)×250
=500
【试题】计算9999×2222+3333×3334
【分析】此题如果直接乘,数字较大,容易出错。

如果将9999变为3333×3,规律就出现了。

9999×2222+3333×3334
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000。

【试题】计算98766×98768-98765×98769
【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。

解:98766×98768-98765×98769
=(98765+1)×98768-98765×(98768+1)
=98765×98768+98768-(98765×98768+98765)
=98765×98768+98768-98765×98768-98765
=98768-98765
=3
“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。


一般解法:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)
(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。

有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?
解答:
1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。

相关文档
最新文档