a小学数学奥赛5-1-1-2 算式谜(二).学生版

合集下载

小学奥数5-1-2-5 最值的数字谜(二).专项练习及答案解析(精品)

小学奥数5-1-2-5 最值的数字谜(二).专项练习及答案解析(精品)

1. 掌握最值中的数字谜的技巧2.能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜; 2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等. 3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4.除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。

1111123456□□□□ 例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二)【考点】混合计算中的数字谜【难度】3星【题型】填空【关键词】华杯赛,初赛,第9题【解析】题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,,,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷++=满足条件(情况不唯一),所以结果的最大值为87.÷+=,又3157987【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459+-=+,所以十位数上的数字之和越大,则五x x x个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,只能在“分”、“秒”两个两位数的十位,而3只能在,,,,,那么54“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,只能在“分”、“秒”两个两位数的十位,而3只能在,,,,,那么54“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,只能在“分”、“秒”两个两位数的,,,,,那么54十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是,,依次在“日期”的十54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例 5】 0. 2.0080.ABCC AB∙∙=∙∙,三位数ABC 的最大值是多少?【考点】乘除法中的最值问题 【难度】3星 【题型】填空 【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC 的最大值为753.【答案】753模块二、乘除法中的最值问题【例 6】 已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed =⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题 【难度】3星 【题型】填空 【关键词】迎春杯,五年级,初赛,第7题 【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a ++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895. 【答案】59895【例 7】在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷ 数字谜解出之后,最好验算一遍.例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【考点】乘法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第2题【解析】 乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是59915×所以,所填四个数字之和便是1+9+9+5=24【答案】24【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【考点】乘法数字谜 【难度】2星 【题型】填空【关键词】走美杯,四年级,初赛,第12题,五年级,初赛,第11题【解析】 由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,如果“美”为2,根据“美”ד学”的个位数为“妙”,那么“妙”为偶数,即为4,推出“学”为7,又由 “美”+“学”=“数”,可知“数”为9,所以=美妙数学2497。

小学数学奥赛5-1-2-3 乘除法数字谜(二).学生版

小学数学奥赛5-1-2-3 乘除法数字谜(二).学生版

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字;⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜(1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998学习改变命运变【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。

杯小9望99999×赛赛希学例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AE D EE E E E ×3C B【例 4】 下页算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字,则符合题意的数“华罗庚学校赞”是什么?学赞学庚赞校华罗庚×好校罗华【例 5】 如图相同字母表示相同的数字,不同字母表示不同的数字。

小学奥数 5-1-2-3 乘除法数字谜(二).教师版

小学奥数  5-1-2-3 乘除法数字谜(二).教师版

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题 【解析】 “变”就是7,19999987285714÷= 【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。

例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题 【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。

小学四年级奥数第6讲 算式迷(二)(含答案分析)

小学四年级奥数第6讲 算式迷(二)(含答案分析)

第6讲算式谜(二)一、知识要点解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。

二、精讲精练【例题1】在下面的方框中填上合适的数字。

练习1:在□里填上适当的数。

【例题2】在下面方框中填上适合的数字。

练习2:在□内填入适当的数字,使下列除法竖式成立。

【例题3】下面算式中的a、b、c、d这四个字母各代表什么数字?练习3:求下列各题中每个汉字所代表的数字。

1 华罗庚金杯× 3华罗庚金杯 1花红柳绿× 9柳绿花红盼望祖国早日统一×一盼盼盼盼盼盼盼盼盼【例题4】在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。

1 2 3 4 5 6 7 8 9 = 100练习4:(1)在下面等号左边的数字之间添上一些加号,使其结果等于99(数字的顺序不能改变)。

9 8 7 6 5 4 3 2 1 = 99(2)一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100(数字的顺序不能改变)。

1 2 3 4 5 6 7 8 9 = 100(3)添上适当的运算符号和括号,使下列等式成立。

1 2 3 4 5 = 100【例题5】在下面的式子里添上括号,使等式成立。

7×9+12÷3-2 = 23练习5:1.在下面的式子里添上括号,使等式成立。

(1)7×9+12÷3-2 = 75(2)7×9+12÷3-2 = 47(3)88+33-11÷11×2 = 52.在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。

小学奥数5-1-1-2 算式谜(二).专项练习-精品

小学奥数5-1-1-2 算式谜(二).专项练习-精品

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.例题精讲知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.【例2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【例3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□模块二、填横式数字谜综合【例4】将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 将1~8这八个数字分别填入下面算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每个算式都成立.【例 8】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则=_________+++++===+ dcba+++++===+ 1287546213+===+++++【例9】将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中a,b,c,d四个数的乘积为多少?a+b=+++cd+=+=【例10】请将1~12这12个自然数分别填入到右图的方框中,每个数只出现1次,使得每个等式都成立.那么乘积A B C D⨯⨯⨯=____________()28||||||126+÷=+-÷--=----⨯=-+÷+÷=模块三、数字谜与逻辑推理【例11】题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C处填的数各是多少?【例12】自然数M N满足:.410-=-=-NNMM则=+NM()【例13】用下图的3张卡片,能组成29的倍数的数是【例14】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。

(教师版)小学奥数5-1-2-2 乘除法数字谜(一).专项检测题及答案解析

(教师版)小学奥数5-1-2-2 乘除法数字谜(一).专项检测题及答案解析

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【考点】乘法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第2题 【解析】 乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)59915×所以,所填四个数字之和便是1+9+9+5=24【答案】24【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【考点】乘法数字谜 【难度】2星 【题型】填空【关键词】走美杯,四年级,初赛,第12题,五年级,初赛,第11题【解析】 由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,如果“美”为2,根据“美”ד学”的个位数为“妙”,那么“妙”为偶数,即为4,推出“学”为7,又由 “美”+“学”=“数”,可知“数”为9,所以=美妙数学2497。

小学奥数5(1)2(5最值的数字谜(二).学生版)-

小学奥数5(1)2(5最值的数字谜(二).学生版)-

小学奥数5(1)2(5最值的数字谜(二).学生版)-
5-1-2-5。

最高谜题数(2)
1。

掌握最多谜题的技巧
2。

能够综合运用数论相关知识解决谜题
教学目标
知识点
常用分析方法
1。

数字拼图一般分为纵横字谜和垂直数字拼图。

十字数字谜往往是结合数论知识来考察的,有时
可以转换成竖式数字谜;
2。

垂直填字游戏通常有以下突破点:最后和第一个位置、进位和借位、一位数、位数差异等。

3。

填字游戏常用的分析方法有:单位数分析、高位数分析、位数估
计分析、进位错位分析、
分解素因子法、奇偶分析等。

4。

除了数值谜题中常用的分析方法外,比较方法通常是通过比较计算公式计算过程中的步骤来获得
的可能值,然后验证是否可以获得最大值。

5。

数字难题通常结合了数字的可分特征、质数和组合、分解质数因子、一位数、余数、小数和小数替换、
方程、估计、寻找规则等。

范例集中在
模块一,纵横字谜
[范例1]用四个运算符号填写下列公式□中?、?、?、?(每个符号只填一次),最大计算结果为
_ _ _ _ _ _。

1□2□3□4□5
1 11[例2]将+、-、×、>四个操作符号分别填入以下四个框中,使公式的值最大□□□□
23456
[例3]在等号左边的5个方框中填入1、3、5、7和9,在等号右边的4个方框中填入2、4、6和8,这样等式
成立,等号两边的计算结果都是自然数。

这个结果的最大值是. ??????。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 21】在算式(A□B)△(C○D)中,□,△,○代表的是三个互不相同的四则运算符号(即加、减、乘、除),A,B,C,D是4个互不相同的非零阿拉伯数字.如果无论□,△,○具体代表的是哪三个互不相同的四则运算符号,(A□B)△(C○D)的计算结果都是整数.那么,四位数 是.
【例 22】右图是一所小学的科技数,它有4层,正面每层的三个圆形窗户由左向右表示一个三位数,这些三位数是:837、571、206、439,但是不知道这四个数和哪一层的窗户对应,请你观察一下,然后画出表示2008的四个窗户。
【例 26】将1、2、3、……、15、16填入右图的16个方格中,并满足下列条件.(1) ;(2) ;(3) ;(4) ;(5) ;(7) ;(7) :(8) ;(9) .那么L=__________.
【例 27】如图,A,B,C,D,E,F,G,H,I,J表示10个各不相同的数字。表中的数为所在行与列的对应字母的和,例如“G+C=14”。请将表中其它的数全部填好。
【例 10】请将1~12这12个自然数分别填入到右图的方框中,每个数只出现1次,使得每个等式都成立.那么乘积 =____________
模块三、数字谜与逻辑推理
【例 11】题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C处填的数各是多少?
【例 12】自然数 满足: 则 ()
偶数-奇数=奇数;
偶数-偶数=偶数.
④整数的乘法有以下性质:
奇数×奇数=奇数;
奇数×偶数=偶数;
偶数×偶数=偶数.
模块一、填横式数字谜
【例 1】将数字1~9填入下面方框,每个数字恰后,算式中唯一的减数(★处)是.
【例 2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:
【例 16】一辆汽车以不变的速度在行驶,司机看了三次里程表,如图8所示,由此可知汽车每小时行驶千米。
【例 17】小明把5个数字的乘法算式的两边改写其中两个数字后得到错误算式:4×5×4×5×4=2247,那么原来正确的乘法算式是______________。
【例 18】有一类多位数,从左数第3位数字开始,每位上的数都等于其左边第2个数减去左边第1个数的差.如74312、6422.那么这类数中最大的是.
【例 6】是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.
【例 7】将1~8这八个数字分别填入下面算式的□中 ,使每个算式都成立.
【例 8】将 , , , , , , , 这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则 _________
【例 9】将 , , , , , , , 这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中 , , , 四个数的乘积为多少?
【例 23】写有0、1、2、3、…、9的卡片各一张, 、 、 、 、 分别拿走2张,然后报出自己所拿两张卡片上的数的和,已知 报5, 报12, 报10, 报12, 拿的是和.
【巩固】写有1,2,3,…10的卡片各一张, , , , , 分别拿走2张,然后报出自己所拿两张卡片上数的和。已知 报5, 报12, 报10, 报12, 拿的是________和__________。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法
(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质
(一)定义:整数可以分为奇数和偶数两类
【例 19】小明去同学家玩。走进了弄堂,但记不起门牌号码了。怎么办呢?他忽然想起,这个门牌号码挺有意思,曾经研究过一次。它是一个三位数,个位数字比百位数字大4,十位数字比个位也大4。根据这点记忆,你能帮助小明找到同学家吗?如果想到了,就写在下面。门牌号码是________.
【例 20】在信息时代信息安全十分重要,往往需要对信息进行加密。若按照“叠3加1取个位”的方式逐位加密,明码“16”加密之后的密码为“49”。若某个四位明码按照上述加密方式,经过两次加密得到的密码是“2445”,则明码是___________。
【例 24】有9张纸牌,分别为1至9。A,B,C,D四人取牌,每人取2张。已知A取的两张牌之和是10;B取的两张牌之差是1;C取的两张牌之积是24;D取的两张牌之商是3。剩下的一张牌是。
【例 25】下表中,A、B、C、D、E、F、G、H、M各代表一个互不相同的非零数字,其中A+B=14,M÷G=M-F=H-C,D×F=24,B+E=16,那么H代表.
【例 13】用下图的3张卡片,能组成29的倍数的数是
【例 14】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。那么最小的“学而思数”是。
【例 15】如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两个小时内的平均速度是千米/时。
【例 3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:
模块二、填横式数字谜综合
【例 4】将1~9分别填入下面算式的中 ,使每个算式都成立,其中1,2,5已填出.
【例 5】下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题
一、基本概念
填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
【例 28】在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”=2、“四”=4,如果四位数“二月四日”的22倍等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于__________。
(A)12(B)15(C)16(D)27
(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.
(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.
(二)性质:①奇数≠偶数.
②整数的加法有以下性质:
奇数+奇数=偶数;
奇数+偶数=奇数;
偶数+偶数=偶数.
③整数的减法有以下性质:
奇数-奇数=偶数;
奇数-偶数=奇数;
相关文档
最新文档