北师大版八年级数学下册第四章 因式分解单元测试
北师大版初二数学下册第4章《因式分解》单元测试卷 (含答案)

北师大版八年级数学下册第4章《因式分解》单元测试题一.选择题(共8小题,满分24分,每小题3分)1.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)2.多项式a2﹣25与a2﹣5a的公因式是()A.a+5B.a﹣5C.a+25D.a﹣253.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.1﹣a44.下列各式中,能用完全平方公式分解因式的个数是()(1)x2﹣4;(2)x2+6x+9;(3)4x4﹣2x2+;(4)x2+4xy+2y2A.1个B.2个C.3个D.4个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x6.将对x2+mx+n分解成(x﹣7)(x+2),则m,n的值为()A.5,﹣14B.﹣5,14C.5,14D.﹣5,﹣14 7.如果(x+4)(x﹣3)是x2﹣mx﹣12的因式,那么m是()A.7B.﹣7C.1D.﹣18.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299二.填空题(共7小题,满分28分,每小题4分)9.把多项式m3﹣81m分解因式的结果是.10.在实数范围内分解因式:m4﹣2m2=.11.分解因式:a2﹣9b2+2a﹣6b=.12.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.13.已知a、b满足a+b=5,ab2+a2b=10,则ab的值是.14.若x2+x﹣1=0,那么代数式x3+2x2﹣7的值是.15.232﹣1可以被10和20之间某两个整数整除,则这两个数是.三.解答题(共7小题,满分48分)16.把下列多项式分解因式:(1)x3﹣9x;(2)2a2+4ab+2b217.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4918.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.19.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.20.待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式.21.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式x3﹣5x2+x+10,我们把x=2代入多项式,发现x=2能使多项式的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后代入,就可以把多项式x3﹣5x2+x+10因式分解.【解决问题】(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.22.拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)则图③可以解释为等式:.(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解:3a2+7ab+2b2=.(拼图图形画在方框内)(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式:①xy=;②x+y=m;③x2﹣y2=m•n;④x2+y2=其中正确的关系式为.(4)试着用剪拼图形的方法由几何图形的面积来证明:a2﹣b2=(a+b)(a﹣b).参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.2.解:多项式a2﹣25=(a+5)(a﹣5)与a2﹣5a=a(a﹣5)的公因式是:a﹣5.故选:B.3.解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.4.解:(1)x2﹣1是两项,不能用完全平方公式,故此选项不符合题意;(2)x2+6x+9,符合完全平方公式;故此选项符合题意.(3)4x4﹣2x2+符合完全平方公式;故此选项符合题意;(4)x2+4xy+2y2不符合完全平方公式;故此选项不符合题意.故选:B.5.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.6.解:∵将对x2+mx+n分解成(x﹣7)(x+2),∴m=﹣7+2=﹣5,n=﹣7×2=﹣14,故选:D.7.解:∵(x+4)(x﹣3)是x2﹣mx﹣12的因式,∴(x+4)(x﹣3)=x2﹣mx﹣12=x2+x﹣12,故﹣m=1,解得:m=﹣1.故选:D.8.解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.二.填空题(共7小题,满分28分,每小题4分)9.解:m3﹣81m=m(m2﹣81)=m(m+9)(m﹣9).故答案为:m(m+9)(m﹣9).10.解:m4﹣2m2=m2(m2﹣2)=m2(m+)(m﹣).故答案为:m2(m+)(m﹣).11.解:a2﹣9b2+2a﹣6b,=(a2﹣9b2)+(2a﹣6b),=(a+3b)(a﹣3b)+2(a﹣3b),=(a﹣3b)(a+3b+2).12.解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.13.解:∵ab2+a2b=10,∴ab(b+a)=10,∵a+b=5,∴ab=2,故答案为:2.14.解:∵x2+x﹣1=0,∴x2+x=1∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6故答案为:﹣6.15.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.三.解答题(共7小题)16.解:(1)x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3);(2)2a2+4ab+2b2=2(a2+2ab+b2)=2(a+b)2.17.解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=,ab=﹣,∴原式=ab(a+b)2=﹣×()2=﹣3,即代数式a3b+2a2b2+ab3的值是﹣3.19.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.20.解:(1)∵x2+2x+3=x2+(3﹣a)x+3,∴3﹣a=2,a=1;故答案为:1;(2)设x3+2x+3=(x+1)(x2+ax+3)=x3+(a+1)x2+(a+3)x+3,a+1=0,解得a=﹣1,多项式的另一因式是x2﹣x+3.21.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5;(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2.22.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)拼图如图⑤所示:3a2+7ab+2b2=(3a+b)(a+2b);故答案为:(3a+b)(a+2b);(3)∵m2﹣n2=4xy∴①正确;∵x+y=m∴②正确;∵x+y=m,x﹣y=n∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,∴③正确;∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2);∴④正确.故答案为:①②③④.(4)剪拼图形如图⑥、⑦;把图⑥中的阴影沿虚线三次剪下来,拼成如图⑦所示的梯形,∴这个梯形的上底长为2b,下底长为2a,高为(a﹣b),∴S阴影(梯形)=(2a+2b)(a﹣b)=(a+b)(a﹣b),∵图⑥中的S阴影=a2﹣b2,∴a2﹣b2=(a+b)(a﹣b).。
北师大版八年级数学下册第四章《因式分解》单元练习题含答案解析 (4)

北师大版八年级数学下册第四章《因式分解》单元检测题4一、选择题1.下列能用完全平方公式因式分解的是( )A.x2+2xy−y2B.−xy+y2C.x2−2xy+y2D.x2−4xy+2y22.若x2+2(m−3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为( )A.−4B.16C.4或16D.−4或−163.下列各多项式中,不能分解因式的是( )A.4x2−y2B.2x4+8x3y+8x2y2C.a2+2ab−b2D.x2+xy−6y24.若∣a∣=5,∣b∣=6,且a>b,则a+b的值为( )A.−1或11B.1或−11C.−1或−11D.115.若a+b=3,则2a2+4ab+2b2−6的值是( )A.12B.6C.3D.06.如果x2+x−1=0,那么代数式x3+2x2−7的值是( )A.6B.8C.−6D.−87.某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A.1010B.4C.2D.18.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a,b的恒等式为( )A.a2−b2=(a+b)(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=(a+b)2−4ab D.a2+ab=a(a+b)9.若x i+1−x i2=1,其中i=0,1,2⋯⋯,( )A.当x0=0时,x2018=4037B.当x0=1时,x2018=4037C.当x0=2时,x2018=4037D.当x0=3时,x2018=403710.定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数),并且运算重复进行.例如,n=66时,其“C运算”如下66→[第1次]C②33→[第2次]C①100→[第3次]C②25⋯若n=26,则第2019次“C运算”的结果是( )A.40B.5C.4D.1二、填空题11.分解因式:3a(m−n)+2b(m−n)=.12.分解因式:a2b+4ab+4b=.13.已知a2+a−1=0,则a3+2a2+2018=.14.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.15.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=n2k(其中k是使F(n)为奇数的正整数)⋯,两种运算交替重复进行,例如,取n=13,则:若n=24,则第100次“F”运算的结果是.16.已知代数式x−2y的值是−4,则代数式3−x+2y的值是.17.如图是一个运算程序的示意图,若开始输入x的值为−2,则第2020次输出的结果为.三、解答题18.先化简,再求值:−2(−x2+5+4x)−(2x2−4−5x),其中x=−2.19.先化简,再求值:(x+3y)2−2(x−y)(x+y)+(x−3y)2,其中x=2,y=−12.20.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(1) 根据题意填表:a=,b=.一次购买数量(kg)3050150⋯甲批发店花费(元)180300900⋯乙批发店花费(元)a350b⋯(2) 设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式.(3) 若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?21.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax−3a2,就不能直接运用公式了,此时,我们可以在二次三项式x2+2ax−3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax−3a2=(x2+2ax+a2)−a2−3a2=(x+a)2−(2a)2=(x+3a)(x−a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1) 利用“配方法”分解因式:① a2−6a−7.② a4+a2b2+b4.(2) 已知x是实数,试比较x2−4x+5与−x2+4x−4的大小,说明理由.22.利用因式分解简便计算:(1) 32021−32020;32020−32019.(2) 1×2×3+3×6×9+5×10×15+7×14×211×3×5+3×9×15+5×15×25+7×21×3523.阅读下面的用配方法分解因式的过程,然后完成下列问题:x2+10x+16=x2+2x⋅5+52−52+16=x2+2x⋅5+52−9=(x+5)2−32=(x+8)(x+2).(1) 模仿,根据材料运用配方法分解因式x2−12x−28.(2) 领悟:x2+2mx+=(x+)2.(3) 应用:已知a,b是一个等腰三角形的两边长,且满足a2+b2−6a−8b+25=0,求这个等腰三角形的周长.24.已知A=3x2+x−2,B=2x2−2x−1.B;(1) 化简A+12B的值.(2) 当x=−1时,求A+1225.已知a2−3a−1=0,求a6+120a−2=.答案一、选择题1. 【答案】C【知识点】完全平方式2. 【答案】C【解析】因为x2+2(m−3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x 的一次项,所以m−3=±1,n+2=0,解得:m=4,n=−2,此时原式=16;m=2,n=−2,此时原式=4,则原式=4或16.【知识点】多项式乘多项式、完全平方式3. 【答案】C【解析】A选项:4x2−y2=(2x+y)(2x−y),故A正确;B选项:2x4+8x3y+8x2y2=2x2(x2+4xy+4y2)=2x2(x+2y)2,故B正确;C选项:无法因式分解,故C错误;D选项:x2+xy−6y2=(x+3y)(x−2y),故D正确.【知识点】完全平方式、十字相乘法4. 【答案】C【解析】已知∣a∣=5,∣b∣=6,则a=±5,b=±6∵a>b,∴当a=5,b=−6时,a+b=5−6=−1;当a=−5,b=−6时,a+b=−5−6=−11.【知识点】绝对值的化简、简单的代数式求值5. 【答案】A【解析】原式=2(a2+2ab+b2)−6 =2(a+b)2−6=2×32−6=12.【知识点】完全平方式6. 【答案】C【解析】由x2+x−1=0得x2+x=1,∴x3+2x2−7=x3+x2+x2−7=x(x2+x)+x2−7=x+x2−7=1−7=−6.故选C.【知识点】提公因式法7. 【答案】B【解析】由题意可得,当x=1时,第1次输出的结果是4,第2次输出的结果是2,第3次输出的结果是1,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,第8次输出的结果是2,第9次输出的结果是1,第10次输出的结果是4,⋯,从第三次输出的结果开始,每次输出的结果分别是1,4,2,1,4,2,⋯,每三个数一个循环,∴(2020−2)÷3=672⋯2,∴2020次输出的结果是4.【知识点】简单的代数式求值8. 【答案】C【解析】方法一阴影部分的面积为:(a−b)2,方法二阴影部分的面积为:(a+b)2−4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a,b的恒等式为(a−b)2= (a+b)2−4ab.【知识点】完全平方式、完全平方公式9. 【答案】B=1,其中i=0,1,2⋯⋯,【解析】因为x i+1−x i2所以x i+1−x i=2,所以x i+1=x i+2,所以x i=x0+2i,当x0=0时,x2018=0+2×2018=4036,故选项A错误,当x0=1时,x2018=1+2×2018=4037,故选项B正确,当x0=2时,x2018=2+2×2018=4038,故选项C错误,当x0=3时,x2018=3+2×2018=4039,故选项D错误,故选:B.【知识点】简单的代数式求值10. 【答案】D【知识点】简单的代数式求值二、填空题11. 【答案】(m−n)(3a+2b)【解析】提取公因式(m−n),∴3a(m−n)+2b(m−n)=(m−n)(3a+2b).【知识点】提公因式法12. 【答案】b(a+2)2【知识点】完全平方式、提公因式法13. 【答案】2019【解析】∵a2+a−1=0,∴a2=1−a,a2+a=1,∴a3+2a2+2018,=a⋅a2+2(1−a)+2018,=a(1−a)+2−2a+2018,=a−a2−2a+2020,=−a2−a+2020,=−(a2+a)+2020,=−1+2020,=2019.【知识点】简单的代数式求值14. 【答案】12【解析】∵a+b=4,a−b=1,∴(a+1)2−(b−1)2=(a+1+b−1)(a+1−b+1)=(a+b)(a−b+2)=4×(1+2)=12.【知识点】平方差15. 【答案】4【解析】当n=24,=3,则第1次“F”运算的结果是:2423第2次“F”运算的结果是:3n+1=10,第3次“F”运算的结果是:102=5,第4次“F”运算的结果是:3n+1=16,第5次“F”运算的结果是:1624=1,第6次“F”运算的结果是:3n+1=4,第7次“F”运算的结果是:422=1,⋯观察以上结果,从第5次开始,结果就只有1,4两个数循环出现,且当次数为奇数时,结果是1,次数为偶数时,结果是4,而100次是偶数,所以最后结果是4.故答案为4.【知识点】简单的代数式求值、用代数式表示规律16. 【答案】7【解析】∵x−2y=−4,∴3−x+2y=3−(x−2y)=3+4=7.【知识点】简单的代数式求值17. 【答案】−4【解析】次数输入输出1−2≤0−1 2−1≤00 30≤01 41>0−4 5−4≤0−3 6−3≤0−2 7−2≤0−1 8−1≤006个为一组找规律,2020÷6=336⋯4,∴输出为−4.【知识点】简单的代数式求值三、解答题18. 【答案】−2(−x2+5+4x)−(2x2−4−5x) =2x2−10−8x−2x2+4+5x=−3x−6.当x=−2时,原式=6−6=0.【知识点】整式的加减运算、简单的代数式求值19. 【答案】 原式=20y 2,把 y =−12 代入,得 原式=5.【知识点】整式的混合运算、简单的代数式求值20. 【答案】(1) 210;850(2) 由题意可得, y 1=6x ,当 0<x ≤50 时,y 2=7x ,当 x >50 时,y 2=50×7+(x −50)×5=5x +100, 由上可得,y 2={7x (0<x ≤50),5x +100(x >50).(3) 在甲店可以购买 360÷6=60(千克), ∵360>50×7,∴ 令 5x +100=360,得 x =52, ∵60>52,∴ 在甲店购买的数量多. 【解析】(1) a =7×30=210,b =7×50+(150−50)×5=850.【知识点】一次函数的应用、简单的代数式求值、一次函数与一元一次方程的关系21. 【答案】(1) ①a 2−6a −7=(a 2−6a +9)−9−7=(a −3)2−16=(a −3+4)(a −3−4)=(a +1)(a −7). ②a 4+a 2b 2+b 4=(a 4+2a 2b 2+b 4)−a 2b 2=(a 2+b 2)2−a 2b 2=(a 2+b 2+ab )(a 2+b 2−ab ).(2) x2−4x+5>−x2+4x−4.理由:(x2−4x+5)−(−x2+4x−4)=x2−4x+5+x2−4x+4=2x2−8x+9=2(x2−4x+4)−8+9=2(x−2)2+1≥1>0.∴x2−4x+5>−x2+4x−4.【知识点】完全平方式、平方差、实数的大小比较22. 【答案】(1) 3;(2) 25.【知识点】提公因式法23. 【答案】(1)x2−12x−28=x2−2x⋅6+62−62−28 =x2−2x⋅6+62−64=(x−6)2−82=(x−6+8)(x−6−8)=(x+2)(x−14).(2) m2;m(3) a2+b2−6a−8b+25=0,(a2−6a+9−9)+(b2−8b+16−16)+25=0,(a−3)2−9+(b−4)2−16+25=0,∴(a−3)2+(b−4)2=0,∴a=3,b=4,若3为腰长,则三边长分别为3,3,4,可以构成三角形周长=3+3+4=10,若4为腰长,则三边长分别为3,4,4,可以构成三角形周长=3+4+4=11,综上,三角形周长为10或11.【知识点】完全平方公式、完全平方式、等腰三角形的概念24. 【答案】(1)A+12B=3x2+x−2+12(2x2−2x−1)=3x2+x−2+x2−x−12=4x2−52.(2) 当x=−1时,A+12B=4×(−1)2−52=32.【知识点】简单的代数式求值、整式的加减运算25. 【答案】1309【解析】∵a2−3a−1=0,∴a2=3a+1,a6=(a2)3=(3a+1)2(3a+1)=(9a2+6a+1)(3a+1)=[9×(3a+1)+6a+1](3a+1)=(33a+10)(3a+1)=99a2+63a+10=99(3a+1)+63a+10=360a+109.∵a2−3a=1,∴120a−2=120a2⋅(a2−3a)=120−360a=120−360a ×(a2−3a)=120−360a+1080=1200−360a.∴a6+120a−2=360a+109+1200−360a=1309.【知识点】简单的代数式求值11。
最新北师大版初二数学下册第四章因式分解单元测试题

精品文档
21、如图,某市有一块长为 3a b 米,宽为 2a b 米的长方形地块, ?规划部 门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少 平方米? ?并求出当 a 3, b 2 时的绿化面积.
22、察下列各式 ( x- 1) (x+1)=x 2- 1
(x-1)(x 2+x+1)=x 3-1 ( x- 1) (x3+x2+x+1)=x 4-1
C、8cm
D、7cm
7、 在实数范围内分解因式 a2 6
。
精品文档
精品文档
8、当 x ___________时, x 4 0 等于 1;
2008
9、 2
2009
1.5
___________。
3
10、若 3x= 1 , 3y= 2 ,则 3x-y 等于
。
2
3
11、若 9x2 mxy 16 y2 是一个完全平方式,那么 m 的值是 __________。
精品文档
精品文档
( 1)分解因式: x5 1
( 2)根据规律可得 (x -1)(xn-1+…… +x +1)=
(其中 n 为正整数)
( 3)计算: (3 1)( 350 3 49 3 48
32 3 1)
( 4)计算: ( 2)1999 ( 2)1998 ( 2)1997
( 2)3 ( 2) 2 ( 2) 1
)
A、a 2 ( b)2
B、5m2 20mn
C、 x2 y 2
D、 x2 9
5、如 (x+m) 与(x+3)的乘积中不含 x 的一次项,则 m 的值为(
初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)

北师大版八年级下册第4 章《因式分解》单元测试卷满分: 100 分姓名: ___________班级: ___________学号: ___________成绩: ____________一.选择题(共 8 小题,满分 24 分)1.多项式 ① x 2 +8y 2, ② x 2 ﹣ 4y 2, ③ ﹣ x 2+1, ④ ﹣ x 2﹣ y 2中能用平方差公式分解因式的有( )A .①②B .②③C . ③④D . ①④2.下列各式从左到右的变形,是因式分解的是( )A .m (a+b )= ma+mbB . ma+mb+1= m ( a+b )+1C .(a+3)(a ﹣ 2)= a 2+a ﹣ 6D . x 2﹣ 1=( x+1)( x ﹣ 1)3.分解因式 a 4﹣ 2a 2b 2+b 4的结果是( )A .a 2( a 2﹣ 2b 2) +b 4B .( a ﹣ b )2C .(a ﹣ b )4D .( a+b ) 2( a ﹣ b )24.若△ ABC 的三边长为a ,b ,c 满足 a 2+b 2+c 2+50 = 6a+8b+10c ,则△ ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 5.若 x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),那么 a+b 的值为() A .﹣1B .1C .﹣ 2D . 22的值()6. a 是有理数,则多项式﹣ a +a ﹣ A .一定是正数B .一定是负数C .不可能是正数D .不可能是负数 7.(﹣ 2)100+(﹣ 2) 101的结果是()A .2100B .﹣ 2100C .﹣ 2D . 2 8.已知 a ﹣ b = 5,且 c ﹣ b = 10,则 a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac 等于() A .105B .100C . 75D . 50二.填空题(共 8 小题,满分 24 分)9.分解因式: 32.a +2a +a =10.如图中的四边形均为矩形,根据图形,写出一个正确的等式 .11.在实数范围内分解因式 : x 5﹣ 4x =.12.如果代数式 x 2+mx+9=( ax+b ) 2,那么 m 的值为.13.若 3x 2﹣mx+n 进行因式分解的结果为( 3x+2)( x ﹣ 1),则 mn =.14.若长方形的长为 a ,宽为 b ,周长为 16,面积为22的值为 .15,则 a b+ab 15.已知 a 2+a ﹣ 3= 0,则 a 3+3 a 2﹣a+4 的值为.16.化简: a+1+a ( a+1) +a (a+1) 2 + +a ( a+1)99=.三.解答题(共 6 小题,满分 52 分)17.因式分解:( 1)﹣ 2ax 2+8ay 2;( 2) 4m 2﹣ n 2+6n ﹣ 9.18.利用因式分解计算: 22 ﹣315 2.999 +999+68519.若已知 x+y = 3, xy =1,试求( 1)(x ﹣ y ) 2的值( 2) x 3 y+xy 3 的值.20.观察下面的分解因式过程,说说你发现了什么.例:把多项式 am+an+bm+bn 分解因式解法 1: am+an+bm+bn =( am+an )+(bm+bn )= a ( m+n )+b (m+n )=( m+n )(a+b )解法 2: am+an+bm+bn =( am+bm )+( an+bn )= m ( a+b ) +n ( a+b )=( a+b )(m+n )根据你的发现,把下面的多项式分解因式:( 1)mx ﹣ my+nx ﹣ ny ;( 2) 2a+4b ﹣ 3ma ﹣ 6mb .21.因式分解与整式乘法是方向相反的变形.∵( x+4)( x+2)= x 2+6 x+8∴ x 2+6x+8=( x+4)( x+2)由此可见 x 2+6x+8 是可以因式分解成( x+4)( x+2)的,爱研究问题的小明同学经过认真思考,找到了 x 2+6x+8 的因式分解方法如下:x 2+6x+8 = x 2+6x+32﹣ 32+8 =( x+3) 2﹣ 1=( x+3+1 )( x+3﹣ 1)=( x+4)( x+2)根据你对以上内容的理解,解答下列问题:( 1)小明同学在对 2 进行因式分解的过程中,在2 的后面加 2,其目的是构 x +6x+8 x +6x 3成完全平方式,请在下面两个多项式的后面分别加上适当的数,使这成为完全平方式,并将添加后的多项式写成平方的形式.① x 2+4x+ =( )2;② x 2﹣ 8x+=()2( 2)请模仿小明的方法,尝试对多项式x 2+10x ﹣ 24 进行因式分解.22.材料阅读:若一个整数能表示成 2 2a +b ( a 、 b 是正整数)的形式,则称这个数为“完美数”.例如:因为 13=32+22,所以 13 是“完美数” ;22 2 222也是“完美数”.再如:因为 a +2ab+2b =( a+b ) +b ( a 、b 是正整数),所以 a +2ab+2 b( 1)请你写出一个大于 20 小于 30 的“完美数” ,并判断 53 是否为“完美数” ;( 2)试判断( x 2+9y 2)(? 4y 2+x 2)(x 、 y 是正整数)是否为“完美数” ,并说明理由.参考答案一.选择题1.【解答】解: ② x 2﹣ 4y 2, ③ ﹣ x 2+1 能用平方差公式分解因式,故选: B .2.【解答】解: A 、是多项式乘法,不是因式分解,错误;B 、右边不是整式的积的形式,实际上本题不能分解,错误;C 、是多项式乘法,不是因式分解,错误;D 、是平方差公式,分解正确.故选: D .3.【解答】解: a 4﹣ 2a 2b 2+b 4,=( a 2﹣b 2) 2,=( a+b ) 2( a ﹣b ) 2.故选: D .4.【解答】解:已知等式整理得:( a 2﹣ 6a+9) +( b 2﹣8b+16) +(c 2﹣ 10c+25)= 0,即( a222﹣ 3) +( b ﹣ 4) +( c ﹣ 5) = 0,∴ a ﹣ 3= 0, b ﹣4= 0, c ﹣5= 0,解得: a = 3, b = 4, c = 5,∵ 32+42=52,∴△ ABC 为直角三角形,故选: B .5.【解答】解: ( x ﹣ 2)( x+b )= x 2+(﹣ 2+b ) x ﹣ 2b ,∵ x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),∴﹣ a =﹣ 2+b ,﹣ 2b =﹣ 1,∴ a = , b = ,∴ a+b =2,故选: D .6.【解答】解:∵﹣ a 2+a ﹣ =﹣( a ﹣ ) 2,∴多项式﹣ a 2+a ﹣ 的值不可能是正数.故选: C .7.【解答】解: (﹣ 2) 100101 100 100+(﹣ 2) =(﹣ 2) ×( 1﹣ 2)=﹣ 2 .故选: B .8.【解答】解:∵ a ﹣ b = 5,c ﹣b = 10∴ a ﹣ c =﹣ 5a 2+b 2+c 2﹣ab ﹣ bc ﹣ ac = [( a ﹣ b )2+( b ﹣ c )2+( a ﹣ c )2]= × [52+(﹣ 10)2+(﹣ 5)2]=75故选: C . 二.填空题9.【解答】解: a 3+2a 2+a = a ( a 2+2a+1 ) = a ( a+1) 2,故答案为: a ( a+1)210.【解答】解:由题意可得: am+bm+cm = m ( a+b+c ). 故答案为: am+bm+cm =m (a+b+c ).11.【解答】解:原式= x ( x 4﹣ 4)= x ( x 2+2)(x 2﹣ 2)= x (x 2+2)( x+ )( x ﹣ ),故答案为: x ( x 2+2)( x+ )( x ﹣ )12.【解答】解:已知等式整理得:x 2+mx+9=( ax+b ) 2,可得 m =± 2× 3× 1,则 m =± 6.故答案为:± 6.213.【解答】解:∵( 3x+2 )( x ﹣1)= 3x ﹣x ﹣2,∴ 3x 2﹣ mx+n =3x 2﹣ x ﹣ 2,∴ m = 1, n =﹣ 2,∴ mn =﹣ 2,故答案为:﹣ 2.14.【解答】解:由题意得: a+b = 8, ab = 15,则原式= ab ( a+b )= 120,故答案为: 12015.【解答】解:∵ a 2+a ﹣ 3= 0,∴ a 2= 3﹣ a ,∴ a 3= a?a 2= a ( 3﹣ a )= 3a ﹣ a 2= 3a ﹣( 3﹣ a )= 4a ﹣3,32∴ a +3a ﹣ a+4= 4a ﹣ 3+3( 3﹣ a )﹣ a+4= 10.故答案为 10.16.【解答】解:原式=( a+1) [1+ a+a ( a+1) +a ( a+1) 2+ +a ( a+1 )98]=( a+1) 2[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )97]=( a+1) 3[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )96]==( a+1) 100.100故答案为:( a+1) .2217.【解答】解: ( 1)原式=﹣ 2a ( x ﹣4y )( 2)原式= 4m 2﹣( n 2﹣ 6n+9)= 4m 2﹣( n ﹣3)2=( 2m+n ﹣3)( 2m ﹣ n+3 ).18.【解答】解: 9992+999+685 2﹣ 3152= 999×( 999+1) +( 685﹣ 315)×( 685+315)= 999× 1000+370× 1000= 999000+370000= 1369000.19.【解答】解: ( 1)∵ x+y = 3,xy = 1;∴( x ﹣y ) 2=( x+y )2﹣ 4xy = 9﹣ 4= 5;( 2)∵ x+y = 3, xy = 1,∴ x 3y+xy 3= xy[( x+y ) 2﹣ 2xy] = 9﹣2= 7.20.【解答】解( 1)原式= m ( x ﹣ y )+n ( x ﹣ y )=( x ﹣y )( m+n );( 2)原式= 2(a+2 b )﹣ 3m (a+2b )=( a+2b )( 2﹣3m ).21.【解答】解: ( 1) ① x 2+4x+22=( x+2) 2;故答案为: 22, x+2;② x 2﹣ 8x+16=( x ﹣ 4) 2故答案为: 42, x ﹣ 4;( 2) x 2+10x ﹣ 24= x 2+10x+52﹣ 52﹣ 24=( x+5) 2﹣ 49=( x+12)( x ﹣ 2).2 222.【解答】解: ( 1) 25= 4 +3,∵ 53=49+4 = 72+22,∴ 53 是“完美数” ;( 2)(x 2+9y 2)(? 4y 2+x 2)是“完美数” ,22 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2理由:∵( x +9 y )(? 4y +x )= 4x y +36y +x +9x y = 13x y +36y +x =( 6y +x ) +x y ,∴( x 2+9y 2)(? 4y 2+x 2)是“完美数” .。
北师大八年级数学下册第四章因式分解单元测试卷.docx

初中数学试卷鼎尚图文**整理制作八年级下册第四章因式分解单元测试卷(满分:100分) 一、 选择题(每题3分,共36分)1、下列各式从左到右的变形中,是因式分解的是( ) A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(2、一个多项式因式分解的结果是)2)(2(33b b -+,那么这个多项式是( )A 、46-bB 、64b -C 、46+bD 、46--b3、下列各式是完全平方式的是( )A 、412+-x x B 、21x +C 、1++xy xD 、122-+x x4、下列各式可以用完全平方公式分解因式的是( ) A 、2242b ab a +- B 、4142+-m m C 、269y y +- D 、222y xy x -- 5、把代数式244ax ax a -+分解因式,下列结果中正确的是( ) A .2(2)a x -B .2(2)a x +C .2(4)a x -D .(2)(2)a x x +- 6、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -7、下列多项式中,含有因式)1(+y 的多项式是( )A 、2232x xy y --B 、22)1()1(--+y y C 、)1()1(22--+y y D 、1)1(2)1(2++++y y8、分解因式14-x 得( ) A 、)1)(1(22-+x xB 、22)1()1(-+x x C 、)1)(1)(1(2++-x x xD 、3)1)(1(+-x x9、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c bB 、2,6=-=c bC 、4,6-=-=c bD 、6,4-=-=c b10、若代数式x 2+kxy+9y 2是完全平方式,则k 的值是( )A 、3 ;B 、±3;C 、 6 ;D 、±611、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。
北师大八年级数学下册第四章 因式分解单元测试题

初中数学试卷第四章 因式分解单元测试题一、选择题:(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列从左边到右边的变形,是因式分解的是( )A.29)3)(3(x x x -=+- ;B.))((23n m n m m mn m -+=-; C.)1)(3()3)(1(+--=-+y y y y ; D.z yz z y z z y yz +-=+-)2(2242; 2、多项式3222315520m n m n m n +-的公因式是( )A.5mn ;B.225m n ;C.25m n ;D.25mn ; 3、下列多项式中能用平方差公式分解因式的是( )A.22)(b a -+;B.mn m 2052-;C.22y x --; D.92+-x ; 4、下列整式中能直接运用完全平方公式分解因式的为( ) A .x 2﹣1 B .x 2+2x+1 C .x 2+3x+2 D .x 2+y 25、下列多项式能分解因式的是 ( )A.a 2-b ; B.a 2+1; C.a 2+ab+b 2; D.a 2-4a+4; 6、下列各式中不是完全平方式的是( )A.21664m m -+;B.2242025m mn n ++;C.2224m n mn -+;D.221124964mn m n ++;7、把多项式)2()2(2a m a m -+-分解因式等于( )A.))(2(2m m a +-;B.))(2(2m m a --; C.m(a-2)(m-1); D.m(a-2)(m+1);8、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A.1,3-==c b ;B.2,6=-=c b ;C.4,6-=-=c b ;D.6,4-=-=c b 9、如果2592++kx x 是一个完全平方式,那么k 的值是( )A. 15 ;B. ±5;C. 30;D. ±30; 10、两个连续奇数的平方差是( )A.16的倍数B.8的倍数C.12的倍数D.6的倍数11、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.))((22b a b a b a -+=-B.2222)(b ab a b a ++=+C.2222)(b ab a b a +-=-D.)(2b a a ab a -=-12、已知△ABC 的三边a,b,c ,满足,022=-+-bc ac b a 则△ABC 的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 二、填空题(每题3分,共12分) 题号 13 14 15 16 答案13、24m 2n +18n 的公因式是________________; 14、若22210b a b b a -+-+==,则。
北师大版八年级数学下册第四章 因式分解单元测试题含答案

北师大版八年级数学下册第四章因式分解单元测试题含答案一、选择题(本大题共 8 小题,每小题 4 分,共 32 分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列各式因式分解正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2-4xy+9y2=(2x-3y)2C.2x2-8y2=2(x+4y)(x-4y)D.x(x-y)+y(y-x)=(x-y)(x+y)3.如果多项式 4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c C.2a+b-c B.2a-b-c D.2a+b+c4.若a2+8ab+m2 是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b 5.对于任何整数m,多项式(4m+5)2-9 一定能()A.被 8 整除B.被m整除C.被m-91 整除D.被 2m-1 整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3B.2C.1D.-17.已知 3a=3b-4,则代数式 3a2-6ab+3b2-4 的值为()44A.3B.-3C.2D.38.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2 的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)9.因式分解:m2n+2mn2+n3=________.10.因式分解:16x4-y4=____________________.11.请在二项式x2-□y2 中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去四个半径为r的小圆,当R=7.2 cm,r=1.4 cm 时,剩余部分的面积约是________cm (π 取 3.14,结果精确到个位).213.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图 1,已知边长为a,b的长方形,若它的周长为 24,面积为 32,则a2b+ab2 的值为________.图 1三、解答题(本大题共 5 小题,共 44 分) 15.(9 分)将下列各式因式分解:(1)2x3y-2xy3;(2)x3y-10x2y+25xy;(3)(a-b)(3a+b)2+(a+3b)2(b-a).11122216.(7 分)给出三个多项式:x2+2x-1,x2+4x+1,x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8 分)已知|m+4|与 n2-2n+1 的值互为相反数,把多项式(x2+4y2)-(mxy+n)因式分解.18.(10 分)如图 2①所示是一个长为 2m,宽为 2n 的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图 2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含 m,n 的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:已知实数 a,b 满足 a+b=6,ab=5,求 a-b 的值.19.(10 分)阅读材料:对于多项式 x +2ax+a 可以直接用公式法分解为(x+a) 的形式.但对于多项式222x2+2ax-3a2 就不能直接用公式法了,我们可以根据多项式的特点,在 x2+2ax-3a2 中先加上一项 a ,再减去 a 这项,使整个式子的值不变.22解题过程如下:x2+2ax-3a2=x +2ax-3a +a -a (第一步)2222=x +2ax+a -a -3a (第二步)2222=(x+a) -(2a) (第三步)22=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)从第三步到第四步用到的是哪种因式分解的方法:________________;(2)请你参照上述方法把 m2-6mn+8n2 因式分解.答案1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 218.解:(1)(m+n)2-4mn(m-n)2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).答案1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b ) =8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0, { m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).。
北师大版八年级下数学第四章《因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 因式分解
一、单选题
1.下列各式中,从左到右的变形是因式分解的是( )
A .2a 2﹣2a+1=2a (a ﹣1)+1
B .(x+y )(x ﹣y )=x 2﹣y 2
C .x 2﹣6x+5=(x ﹣5)(x ﹣1)
D .x 2+y 2=(x ﹣y )2+2x 2.如果()()21427x mx x x +-=+-,那么m 的值为( ).
A .9
B .9-
C .5-
D .5
3.多项式a 2-9与a 2-3a 的公因式是( )
A .a +3
B .a -3
C .a +1
D .a -1
4.下列分解因式正确的是( )
A .24(4)x x x x -+=-+
B .2()x xy x x x y ++=+
C .2()()()x x y y y x x y -+-=-
D .244(2)(2)x x x x -+=+-
5.把下列各式分解因式后结果为(2)(2)x y x y --+的多项式是( )
A .24x y -
B .224x y -
C .22+4x y -
D .224x y -- 6.下列各式可以用完全平方公式分解因式的是( )
A .296y y -+
B .2144m m -+
C .2224a ab b -+
D .222x xy y -- 7.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x +y ,a +b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字;益、爱、我、广、游、美.现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( )
A .我爱美
B .广益游
C .爱我广益
D .美我广益 8.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( ) A .直角三角形
B .等腰三角形或直角三角形
C .等腰三角形
D .等腰直角三角形
9.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )
A .2
B .4
C .6
D .8
10.若△ABC 的边长为 a 、b 、c ,且满足 a 2+b 2+c 2=ab+bc+ca ,则△ABC 的形状是( ) A .等腰三角形
B .等边三角形
C .任意三角形
D .不能确定
二、填空题
11.写出多项式22x y -与多项式2x xy +的一个公因式______________
12.因式分解:9x 2y ﹣y =_____.
13.已知1a ,则20132012201122a a a +-=________________.
14.任何一个正整数n 都可以进行这样的分解:n =s ×t (s ,t 是正整数,且s ≤t ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =、例如18可以分解成1×18,2×9,3×6这三种,这时就有()311862
F ==.给出下列关于F (n )的说法:(1)()122F =
;(2)()3248F =;(3)F (27)=3;(4)若n 是一个整数的平方,则F (n )=1.其中正确说法的有_____.
三、解答题
15.把下列各式分解因式:
(1)2312x x -;
(2)234x y y -;
(3)3223242a b a b ab ++.
16.下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.
解:设x 2-4x=y ,
原式=(y+2)(y+6)+4 (第一步)
=y 2+8y+16 (第二步)
=(y+4)2(第三步)
=(x 2-4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的______.
A .提取公因式
B .平方差公式
C .两数和的完全平方公式
D .两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.
(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x+2)+1进行因式分解.
17.如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:()3
333211,2631,=--=-所以2,26均为“麻辣数”.注:立方差公式()()3322a b a b a ab b -=-++
(1)请判断98和169是否为“麻辣数”,并说明理由;
(2)请求出在不超过2016的自然数中,所有的“麻辣数”之和为多少?写出完整的求解过程. 18.阅读材料:常用的分解因式方法有提公因式、公式法等,但有的多项式只有上述方法就无法分解,如x 2﹣4y 2+2x ﹣4y ,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:
x 2﹣4y 2+2x ﹣4y
=(x 2﹣4y 2)+(2x ﹣4y )
=(x+2y )(x ﹣2y )+2(x ﹣2y )
=(x ﹣2y )(x+2y+2)
这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:
(1)分解因式:x 2﹣6xy+9y 2﹣3x+9y
(2)△ABC 的三边a ,b ,c 满足a 2﹣b 2﹣ac+bc =0,判断△ABC 的形状
答案
1.C
2.C
3.B
4.C
5.C
6.A
7.C
8.B
9.B
10.B
11.x y +
12.y (3x+1)(3x ﹣1)
13.0
14.2
15.解:(1)原式3(4)x x =-;
(2)原式()224(2)(2)y x y y x y x y =-=+-;
(3)原式()222222()ab a ab b ab a b =++=+
16.(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式; 故选:C ;
(2)该同学因式分解的结果不彻底,
原式=(x 2-4x+4)2=(x-2)4;
故答案为:不彻底,(x-2)4;
(3)(x 2-2x )(x 2-2x+2)+1
=(x 2-2x )2+2(x 2-2x )+1
=(x 2-2x+1)2
=(x-1)4.
17.设k 为整数,则2k+1、2k-1为两个连续奇数,
设M 为“麻辣数”,
则M=(2k+1)3-(2k-1)3
=[(2k+1)-(2k-1)][(2k+1)2+(2k+1)(2k-1)+(2k-1)2]
=24k 2+2;
(1)98是麻辣数,169不是麻辣数,理由如下: 当M=98时,24k 2+2=98,
因为k 为自然数,所以k=2,
此时2k+1=5,2k-1=3,
即98=53-33,
故98是麻辣数;
当M=169时,即24k 2+2=169,
因为24k 2+2是偶数,而169是奇数,所以k 的值不是整数, 故169不是麻辣数;
(2)令M≤2016,则24k 2+2≤2016,
解得k 2≤100712
<84, 故k 2=0,1,4,9,16,25,36,49,64,81,
故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×
10=6860. 18.解:(1)226939x xy y x y -+-+
()
2269(39)x xy y x y =-+--
()()2333x y x y =--- ()()333x y x y =---;
(2)∵220a b ac bc --+=,
∴()()220a b ac bc ---=,
∴()()()0a b a b c a b +---=,
∴()()0a b a b c +-⎡⎤⎣⎦-=,
∵,,a b c 是三角形ABC ∆的三边,
∴()0a b c +->,
∴0a b -=,得a b =, ∴ABC ∆是等腰三角形。