湖北省武汉市汉阳区2019-2020学年七年级下学期期中数学试题(word无答案)

合集下载

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷
7.【答案】D
【解析】解:交换命题 A 的题设和结论,得到的新命题是内错角相等,两直线平行是真 命题,不合题意; 交换命题 B 的题设和结论,得到的新命题是若 a=b 时,则 a2=b2,是真命题,不合题意; 交换命题 C 的题设和结论,得到的新命题是对顶角相等是真命题,不合题意; 交换命题 D 的题设和结论,得到的新命题是无理数是无限小数,假命题,符合题意, 故选:D. 写出原命题的逆命题,根据相关的性质、定义判断即可. 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命 题的真假关键是要熟悉课本中的性质定理.
8.【答案】A
【解析】解:由题意,得 ,
解得

(b-a)2017=(-1)2017=-1, 故选:A. 根据非负数的性质,可得 a,b 的值,根据 本题考查了解二元一次方程组,利用非负数的性质的出关于 a,b 的方程组是解题关键.
9.【答案】D
【解析】解:线段 MN 是由线段 EF 经过平移得到的,点 E(-1,3)的对应点 M(2,5 ),故各对应点之间的关系是横坐标加 3,纵坐标加 2, ∴点 N 的横坐标为:-3+3=0;点 N 的纵坐标为-2+2=0; 即点 N 的坐标是(0,0). 故选:D. 各对应点之间的关系是横坐标加 3,纵坐标加 2,那么让点 F 的横坐标加 3,纵坐标加 2 即为点 N 的坐标. 本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同 ,解决本题的关键是找到各对应点之间的变化规律.
3.【答案】C
【解析】【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行,据 此解答即可. 本题考查了平行线和相交线.注意:同一平面内的两条直线,不排除重合的现象. 【解答】在同一个平面内,两条直线平行或相交. 观察选项,C 选项符合题意. 故选:C.

湖北省武汉市汉阳区2019-2020学年七年级下学期期中数学试题

湖北省武汉市汉阳区2019-2020学年七年级下学期期中数学试题
C.2是整数,属于有理数;
D. 是分数,属于有理数;
故选:A.
【点睛】
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
2.B
【解析】
【分析】
小明用手盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.
【详解】
小明用手盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,
湖北省武汉市汉阳区2019-2020学年七年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
1.下列实数中,是无理数的是( )
A. B.3.14C.2D.
2.如图,小明用手盖住的点的坐标可能为( )
A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)
又∵∠AEG=∠HFD,
∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=.
∴//FH().
∴∠G=∠H.().
20.如图,直线DE经过A点,DE∥BC.
(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;
(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.
21.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),将△ABC作同样的平移得到△A1B1C1.
14.40
【解析】
【分析】
直接利用平角的定义得出:∠COE=80°,∠EOD=100°,进而结合角平分线的定义得出∠AOC=∠BOD,进而得出答案.

湖北省武汉市汉阳区2019年七年级下期中数学试卷(含答案解析)

湖北省武汉市汉阳区2019年七年级下期中数学试卷(含答案解析)

2018-2019学年湖北省武汉市汉阳区七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为()A.3 B.C.D.±32.(3分)下列实数是无理数的是()A.3.14159 B.C.D.3.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C D.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣38.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10°B.20°C.30°D.50°10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标.12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为平方米.15.(3分)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若=a,则a=.16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=.三、解答题(共8题,共72分)17.(8分)计算:﹣+|1﹣|.18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB()∴∠1=()∴EC∥BF()∴∠B=∠AEC()又∵∠B=∠C(已知)∴∠AEC=()∴()∴∠A=∠D()22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为,又由203<19000<303,猜想19683的立方根十位数为,验证得19683的立方根是(2)请你根据(1)中小明的方法,完成如下填空:①=;②=;③=.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.(1)直接写出点C的坐标;(2)直接写出点E的坐标;(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为()A.3 B.C.D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.(3分)下列实数是无理数的是()A.3.14159 B.C.D.【解答】解:=﹣3,无理数为:.故选:C.3.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选:B.4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)【解答】解:以“将”位于点(1,﹣2)为基准点,则“炮”位于点(1﹣3,﹣2+3),即为(﹣2,1).故选:B.7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【解答】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是真命题;交换命题D的题设和结论,得到的新命题是若a﹣3=b﹣3,则a=b是真命题,故选:C.8.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.【解答】解:原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有B符合.故选:B.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10°B.20°C.30°D.50°【解答】解:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG﹣∠G=50°﹣30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选:B.10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5【解答】解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选:C.二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标(1,0).【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是0或1.【解答】解:∵算术平方根与立方根都等于它本身的数是0和1.故填0和1.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为6.【解答】解:∵<<,∴3<<4,∴的整数部分为:a=3,小数部分为:b=﹣3,∴a2+b﹣=32+﹣3﹣=6.故答案为:6.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为435平方米.【解答】解:由图象可得,这块草地的绿地面积为:(30﹣1)×(16﹣1)=435.故答案为:435.15.(3分)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若=a,则a=155.【解答】解:=11×14+1=154+1=155.故答案为:155.16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=142°.【解答】解:延长AB交l2于点E,∵∠α=∠β,∴AB∥DC,∴∠3+∠2=180°,∵l1∥l2,∴∠1=∠3=38°,∴∠2=180°﹣38°=142°,故答案为:142°.三、解答题(共8题,共72分)17.(8分)计算:﹣+|1﹣|.【解答】解:原式=5﹣4+﹣1=.18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.【解答】解:(1)3x2=27∴x2=9,∴x=±3.(2)∵2(x﹣1)3+16=0,∴(x﹣1)3=﹣8,∴x﹣1=﹣2∴x=﹣1.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.【解答】解:如图所示,∵∠1=58°,∠2=58°,∴∠1=∠2=58°,∴a∥b,∴∠5=∠3=70°,∴∠4=180°﹣∠5=110°.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.【解答】解:(1)如图所示:点C即为所求;(2)如图所示:PD即为所求;则CP与PD互相垂直.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换)∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠A=∠D(两直线平行,内错角相等)【解答】证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等),又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等),故答案为:对顶角相等,∠AGB,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C,等量代换,AB∥CD,内错角相等,两直线平行,两直线平行,内错角相等.22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)请你根据(1)中小明的方法,完成如下填空:①=49;②=﹣75;③=0.81.【解答】解:(1)先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)①=49;②=﹣75;③=0.81.故答案为:(1)7,2,27;(2)49,﹣72,0.81.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.(1)直接写出点C的坐标(﹣3,2);(2)直接写出点E的坐标(﹣2,0);(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.【解答】解:(1)∵a=+﹣3,∴b=2,a=﹣3,∵点C的坐标为(a,b),∴点C的坐标为:(﹣3,2);故答案为:(﹣3,2);(2)∵点B在y轴上,点C的坐标为:(﹣3,2),∴B点向左平移了3个单位长度,∴A(1,0),向左平移3个单位得到:(﹣2,0)∴点E的坐标为:(﹣2,0);故答案为:(﹣2,0);(3)x+y=z.证明如下:如图,过点P作PN∥CD,∴∠CBP=∠BPN又∵BC∥AE,∴PN∥AE∴∠EAP=∠APN∴∠CBP+∠EAP=∠BPN+∠APN=∠APB,即x+y=z.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).【解答】解:(1)∵AB∥DC,=S△ABC,S△ADC=S△BDC,∴S△ABD=S△BOC.∴S△AOD(2)∵点A(﹣2,3),B(2,1),∴直线AB的解析式为y=﹣x+2,∴C(0,2)=×2×2=2,S△BOC=×2×2=2,∴S△AOC,(3)连接CD,过点O作OE∥CD交AB于点E,连接DE,则DE就是所作的线.。

2019-2020学年度七下数学期中考试试题(含答案解析)

2019-2020学年度七下数学期中考试试题(含答案解析)

2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。

湖北省武昌区C组联盟2019-2020年七年级数学下期中测验试题

湖北省武昌区C组联盟2019-2020年七年级数学下期中测验试题

湖北省武昌区C 组联盟2019-2020年七年级数学下期中测验试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案前面的英文字母填写在表格内.1. 点P (-1,2)在第( )象限A .一B .二C .三D .四2.下列说法正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .014.3=-π3.到x 轴的距离为3的点的坐标可能是( )A .(3,1)B .(-3,1)C .(1,-3)D .(3,2)4.如图(1),点E 在BC 的延长线上,不能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠B=∠DCED .∠D+∠DAB=180°5若式子3-x 在实数范围内有意义,则x 的取值范围是( )A .x >3 B. x <3C. x ≠3D. x ≥36. 如图(2),AB ∥DC ,∠1=110°,则∠A 的度数为( )A .110°B .80°C .70°D .60°7.过A (6,-3)和B (-6,-3)两点的直线一定( )A .垂直于x 轴 B.与y 轴相交但不平行于x 轴C .平行于x 轴 D.与x 轴、y 轴都不平行8.已知414.12≈,不用计算器可直接求值的式子是( )A .20B .2.0C .2000D .2009.如图,CD ∥AB,OE 平分∠AOD,OF ⊥OE,OG ⊥CD,∠D=50°,则下列结论:①∠AOE=65°;②OF 平分∠BOD;③∠GOE=∠DOF;④∠GOE=25°.其中正确的是( )A.①②③B.①②④C.②③④D.①②③④10.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则图中满足条件的点C 个数是( )A 、2B 、3C 、4D 、5二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷指定的位置.11.4的算术平方根是 , 是9的平方根,364=12.39的小数部分是13.某数的平方根是x —2与x+4,则这个数是14.若x 轴上的P 点到y 轴距离为3,则P 点的坐标为15.如图,同学们上体育课时,老师测量学生的跳远成绩,其测量的主要依据是16.观察下列各式的规律:①322322+=; ②833833+=;③15441544+=,… 若a a 10101010+=,则a=第15题图三.解答题(共72分)17. (8分)计算:(1)已知()112=-x ,求x.(2))313(3+18. (8分)如图,AB 交CD 于O ,OE ⊥AB.(1)若∠EOD=20°,求∠AOC 的度数;(2)若∠AOC :∠BOC=1:2,求∠EOD 的度数19.(6分)完成正确的证明如图,已知AB ∥CD ,求证:∠BED=∠B+∠D证明:过E 点作EF ∥AB∴∠1= ( )AB ∥CD (已知)∴EF ∥CD ( )∴∠2= ( )又∠BED=∠1+∠2∴∠BED=∠B+∠D ( )20.(8分)如图,在△ABC 中,CD ⊥AB 于D, FG ⊥AB 于G,ED ∥BC.求证:∠1=∠2.21.(10分)如图,已知△ABC 的三个顶点的坐标分别为A (—2,3),B (—6,0),C(—1,0).(1)请直接写出点A 关于y 轴对称的点D 的坐标;(2)将△ABC 向右平移3个单位长度,向下平移1个单位长度,画出△111C B A ,并写出点1A 、1B 、1C 的坐标;(3)请直接写出由(2)中△111C B A 的三个顶点1A 、1B 、1C 为顶点的平行四边形的第四个顶点1D 的坐标.22.(10分)已知a 、b 、c 满足b c c b c a b a -+-=+-+-+142求c b a ++的平方根23.(10分)如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2)(1)求ABCO S 四边形;(2)求ABC S ∆;(3)在x 轴上是否存在一点P ,使PAB P ∆=10,若存在,请求点P 坐标。

湖北省2019-2020学年下学期初中七年级期中考试数学试卷

湖北省2019-2020学年下学期初中七年级期中考试数学试卷

湖北省枣阳市2019-2020学年下学期初中七年级期中考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.41的算术平方根是 A.21 B.21- C.21± D.1612.下面四个图形中,∠1与∠2是对顶角的是3.如图所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看做由“基本图案”经过平移得到的是4.如图,已知直线a 、b 被直线c 所截,那么∠1的同位角是A .∠2 B. ∠3 C.∠4 D. ∠55.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成A.(5,4)B.(4,5)C.(3,4)D.(4,3) 6.下列结论正确的是A.64的立方根是4±B.81-没有立方根C.立方根等于本身的的数是0D.332727-=- 7.下列各数中,界于6和7之间的数是 A.28 B.43 C.58 D.3398.线段EF 是由线段PQ 平移得到的,点P (-1,4)的对应点为E (4,7),则点Q (-3,1)的对应点F 的坐标为A.(-8,-2)B.(-2,2)C.(2,4)D.(-6,-1)9.若方程6=+ny mx 的两个解是⎩⎨⎧==,1,1y x ⎩⎨⎧-==,1,2y x 则n m -的值为 A.2 B.-2 C.0 D.-410.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦, 3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为A.⎩⎨⎧=+=+10033100y x y xB.⎩⎨⎧=+=+1003100y x y xC.⎪⎩⎪⎨⎧=+=+100313100y x y x D.⎩⎨⎧=+=+1003100y x y x 二、填空题:(本大题共6个小题,每小题3分,共18分)11. 在0,3.14159,3π,2,161-,722,39,23,0.•7中,其中有 个是无理数.12.小丽从家到河边提水,为了节省时间,她选择了家与河岸垂直的路线,理由是 . 13.已知1=x ,8-=y 是方程13-=-y mx 的解,则m 的值是 .14.方程组⎩⎨⎧=+=5,3y x x 的解是 .15.点A (13-a ,a 61-)在y 轴上,则点A 的坐标为 . 16.实数与数轴上的点是 的关系.17.把命题“同角的补角相等”改写成“如果……,那么……”的形式为. 18.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠EOC=35°,则∠AOD 的度数为 .19.若642=x ,则3x = .20.若方程组⎩⎨⎧=+=+my x m y x 162,10的解满足2=-y x ,则=m .三、解答题:(每小题6分,共60分)解答应写出文字说明、证明过程或演算步骤. 21.一个正数x 的平方根是32-a 与a -5,求a 和x 的值.22.如图,这是某市部分简图(图中小正方形的边长代表1km 长).以火车站为坐标原点建立平面直角坐标系.(1)在图中画出平面直角坐标系; (2)分别写出各地的坐标.23.解三元一次方程组⎪⎩⎪⎨⎧=++=++=+-.60525,324,0c b a c b a c b a24.在如图所示平面直角坐标系中,已知A (-2,2),B (-3,-2),C (3,-2).(1)在图中画出△ABC ;(2)将△ABC 先向上平移4个单位长,再向右平移2个单位长得到△A 1B 1C 1,写出点A 1,B 1,C 1的坐标; (3)求△A 1B 1C 1的面积.25.完成下面的证明.(1)如图(1),AB ∥CD ,CB ∥DE.求证:∠B+∠D=180°. 证明:∵AB ∥CD ,∴∠B= ① ( ② ); ∵CB ∥DE ,∴∠C+∠D=180°( ③ ). ∴∠B+∠D=180°.(2)如图(2),∠ABC=∠A′B′C′,BD ,B′D′分别是∠ABC ,∠A′B′C′的平分线.求证∠1=∠2. 证明:∵BD , B′D′分别是∠ABC ,∠A′B′C′的平分线,∴∠1=21∠ABC ,∠2= ④ ( ⑤ ). 又∠ABC=∠A′B′C′,∴21∠ABC=21∠A′B′C′.∴∠1=∠2( ⑥ ).26.如图,已知AB ⊥BC ,BC ⊥CD ,BE ∥CF ,∠ABE=50°,求∠FCD 的度数.27.如图,AD ∥BC ,∠CDE=∠E ,试判断∠A 与∠C 之间的关系,并说明理由.由于甲看错了方程①中的a 得到方程组的解为⎩⎨⎧-=-=;1,3y x 乙看错了方程②中的b 得到方程组的解为⎩⎨⎧==.4,5y x 假如二人的计算过程没有错误,求原方程组正确的解.29. 2台大收割机和5台小收割机同时工作2 h 共收割小麦3.6hm 2,3台大收割机和2台小收割机同时工作5 h 共收割小麦8 hm 2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?30.小林在某商店购买商品A 、B 共三次,只有一次购买时,商品A 、B 同时打折(折扣相同),其余两次均按标价购买.三次购买商品A 、B 的数量和费用如下表:购买商品A 的数量/个 购买商品B 的数量/个 购买总费用/元第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物981062(1)小林以折扣价购买商品A 、B 是第 次购物; (2)求出商品A 、B 的标价;(3)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?湖北省枣阳市2016-2017学年下学期初中七年级期中考试数学试卷参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 A C B A D D B C A C 11.4 12.垂线段最短13.-3 14.⎩⎨⎧==.2,3yx15.(0,-1)16.一一对应17.如果两个角是同一个角的补角,那么这两个角相等。

湖北省武汉市2019-2020学年七年级下学期期中数学试卷B

湖北省武汉市2019-2020学年七年级下学期期中数学试卷B

2019-2020学年湖北省武汉市七年级(下)期中数学试卷B题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 下列说法错误的是( )A. 1的平方根是1B. −1的立方根是−1C. √2是2的平方根D. −√3是√(−3)2的平方根2. 下列不等式变形正确的是( )A. 由3x −1>2得3x >1B. 由−3x <6得x <−2C. 由y7>0得y >7D. 由4x >3得x >343. 下列实数中√5,3.14,0.2020020002…,227,1.56⋅⋅,π,无理数有( )A. 2个B. 3个C. 4个D. 5个4. 如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为点O ,∠EOD =30º,则∠BOC =( )A. 150ºB. 140ºC. 130ºD. 120º5. 已知不等式组{x −3>0x +1⩾0,其解集在数轴上表示正确的是( )A.B.C.D.6. 若点P(2−a,3a +6)到两坐标轴的距离相等,则点P 的坐标是( )A. (3,3)B. (3,−3)C. (6,−6)D. (3,3)或(6,−6)7.《孙子算经》中有一道题,原文是:“今有木,不知长短引绳度之,余绳四尺五寸;屈绳量之,不足一尺.术长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A. {y=x+4.512y=x+1B. {y=x+4.512y=x−1C. {y=4.5−x12y=x+1D. {y=x−4.512y=x−18.下列命题中是真命题的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③若a//b,b//c,则a//c;④过直线外一点有且只有一条直线与已知直线平行;⑤三条直线两两相交,总有三个交点.A. 1个B. 2个C. 3个D. 4个9.如图,点A(1,0)第一次跳动至点A1(−1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(−2,2),第四次跳动至点A4(3,2),……,依此规律跳动下去,点A第2018次跳动至点A2018的坐标是()A. (−1009,1009)B. (1010,1009)C. (−1011,1011)D. (1011,1010),10.如图,BD//AC,AD与BC交于点E,如果∠BCA=50°,∠D=30°,那么∠DEC等于()A. 75°B. 80°C. 100°D. 120°二、填空题(本大题共6小题,共18.0分)11.若m是√64的立方根,则m+3=______12.已知满足不等式3(x−2)+5<4(x−1)+6的最小整数解是方程2x−ax=3的解,则a的值为.13.如图,已知AB//DE,∠ABC=75°,∠CDE=125°,则∠BCD的度数为______ .14.已知x是√10的整数部分,y是√10的小数部分,则(y−√10)x−1的平方根为________15.如图,在平面直角坐标系中,若▱ABCD的顶点A,B,C的坐标分别是(2,3),(1,−1),(7,−1),则点D的坐标是______.16.如果不等式组{x<3a+2x<a−4的解集是x<a−4,则a的取值范围是______.三、计算题(本大题共3小题,共30.0分)17.解不等式组:{4x−8<2(x−1), x+102>3x.18.已知x,y为有理数,现规定一种新运算※:x※y=3y−6x+2①求2※3的值②求12※23※(−2)的值19.如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+√b−2=0,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.(3)若过B作BD//AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图②,求∠AED的度数.四、解答题(本大题共5小题,共44.0分)3+(−1)201820.计算:√9−|−3|+√(−3)2−√1821.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=90°,∠EGC=90°______∴∠ADC=∠EGC(等量代换)∴AD//EG______∴∠1=∠3______∠2=∠E______又∵∠E=∠3(已知)∴∠1=∠2______∴AD平分∠BAC______ .22.如图,已知AB//CD,AD//BC,求证:∠A=∠C.23.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(−2,1),B(−3,−2),C(1,−2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为______、______、______;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.24.用1块A型钢板可制成2块C型钢板、3块D型钢板;用1块B型钢板可制成l块C型钢板、4块D型钢板,某工厂现需14块C型钢板、36块D型钢板,可恰好用A型钢板、B型钢板各多少块⋅(1)根据题意,甲和乙两同学分别列出的方程组如下:甲:{2x+y=14,3x+4y=36;乙:{x+y=14,32x+4y=36.根据两位同学所列的方程组,请你分别指出未知数x,y表示的意义.甲:x表示________________,y表示________________;乙:x表示________________,y表示________________.(2)求A型钢板、B型钢板各多少块.(写出完整的解答过程)答案和解析1.【答案】A【解析】【分析】此题考查了平方根,以及立方根,熟练掌握各自的定义是解本题的关键.分别根据算术平方根的定义,立方根的定义和平方根的定义进行判断即可.【解答】解:A.1的平方根是±1,故本选项说法错误,符合题意;B.−1的立方根是−1,故本选项说法正确,不符合题意;C.√2是2的平方根,故本选项说法正确,不符合题意;D. ∵√(−3)2=√9=3,−√3是3的平方根,故本选项说法正确,不符合题意.故选A.2.【答案】D【解析】【分析】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.根据不等式的性质进行一一判断.【解答】解:A.在不等式3x−1>2的两边同时加上1,不等式仍成立,即3x>3,故本选项错误;B.在不等式−3x<6的两边除以−3,不等号方向改变,即x>−2,故本选项错误;>0的两边同时乘以7,不等式仍成立,即y>0,故本选项错误;C.在不等式y7D.由4x>3的两边同时除以4,不等式仍成立,即x>3,故本选项正确.4故选D.3.【答案】B【解析】解:√5,0.2020020002…,π是无理数,共3个.3.14,227,1.56⋅⋅是有理数,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】D【解析】【分析】本题主要考查了垂线的定义,对顶角相等,邻补角互补的性质,是基础题,准确识图是解题的关键.根据垂直的定义可得∠BOE=90°,然后列式计算即可求出∠BOD,再根据邻补角互补求出∠BOC即可.【解答】解:∵EO⊥AB,∴∠BOE=90°,∵∠EOD=30°,∴∠BOD=90°−∠EOD=90°−30°=60°,∴∠BOC=180°−∠BOD=180°−60°=120°,故选D.5.【答案】B【解析】解:{x−3>0 ①x+1≥0 ②∵解不等式①得:x>3,解不等式②得:x≥−1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.6.【答案】D【解析】【分析】本题考查了点的坐标,利用到坐标轴的距离相等得出横坐标相等或互为相反数是解题关键.根据到坐标轴的距离相等,可得横坐标相等或互为相反数,可得方程,根据解方程,可得答案.【解答】解:由点P(2−a,3a+6)到两坐标轴的距离相等,得2−a=3a+6,解得a=−1,P点的坐标为(3,3)2−a+3a+6=0,解得a=−4,点P的坐标为(6,−6).故选D.7.【答案】B【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,{y=x+4.5 12y=x−1,故选B.8.【答案】B【解析】解:①两直线平行,同位角相等,故错误,是假命题;②在同一平面内,过一点有且只有一条直线与已知直线垂直,故错误,是假命题;③若a//b,b//c,则a//c,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,正确,为真命题;⑤三条直线两两相交,总有三个或一个交点,故错误,为假命题;故选:B.根据平行线的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,在同一个平面内,过直线外一点有且只有一条直线与已知直线平行.9.【答案】B【解析】【分析】本题主要考查的是点的坐标的确定,图形规律问题的有关知识,根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第2018次跳动至点的坐标是(1010,1009).故选B.10.【答案】B【解析】【分析】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质。

2019-2020学年湖北省鄂州市七年级下学期期中数学试卷 (Word 解析版)

2019-2020学年湖北省鄂州市七年级下学期期中数学试卷 (Word 解析版)

2019-2020学年七年级第二学期期中数学试卷一、选择题1.求的值是()A.B.2C.22D.2.在平面直角坐标系中,点(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各数中是无理数的是()A.3.14B.﹣C.D.4.如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角5.如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是()A.线段AB B.线段AC C.线段BC D.无法确定6.在式子x+6y=9,x+=2,3x﹣y+2z=0,xy+x+1=0,5x=y中,二元一次方程有()A.1个B.2个C.3个D.4个7.在平面直角坐标系中,点C在x轴上方且在y轴左侧,距离x轴为3个单位长度,则点C的坐标可能为()A.(3,﹣2)B.(﹣3,4)C.(5,3)D.(﹣3,3)8.如图,AB∥EF,∠ABP=∠ABC,∠EFP=∠EFC,已知∠FCD=60°,则∠P的度数为()A.60°B.80°C.90°D.100°9.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.同旁内角互补C.点到直线的距离就是这点到这条直线所作的垂线段D.实数与数轴上的点一一对应10.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)二、填空题(共6小题,每小题3分,满分18分)11.已知∠1的对顶角为123°,则∠1的邻补角度数为.12.已知,则.13.a为任意实数,则+=.14.如图,把边长为4cm的正方形ABCD先向右平移1cm再向上平移1cm得到正方形EFGH,则阴影部分的面积为cm2.15.把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD 的度数为.16.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足.三、解答题(共8小题,满分72分)17.计算.(1)+﹣+|﹣|﹣2+3;(2)﹣2﹣|﹣3|+|2﹣|;(3)(x﹣1)3﹣32=0.18.完成下列推理填空:如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,求证:∠GDC=∠B.证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(),∴(),又∵∠2+∠3=180°(已知),∴∠1=∠3(),∴AB∥(),∴∠GDC=∠B().19.解下列方程组:(1);(2).20.实数a,b在数轴上的位置如图所示,化简:|a﹣b|﹣﹣.21.某工厂要新建一个800平方米的长方形场地,且其长、宽的比为5:2.(1)求这个长方形场地的长和宽为多少米?(2)某个正方形场地的周围有一圈金属栅栏围墙,如果把原来面积为900平方米的正方形场地的栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?(提示:4×4=80)22.如图,P(x0,y0)为△ABC内任意一点,若将△ABC作平移变换,使A点落在B点的位置上,已知A(3,4);B(﹣2,2);C(2,﹣2).(1)请直接写出B点、C点、P点的对应点B1、C1、P1的坐标;(2)求S△AOC.23.如图所示,将△ABC沿直线BC方向平移△DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.(1)求证:∠AGE=∠GAD+∠ABC;(2)若EDF=∠DAG,∠CAG+∠CEG=180°,判断AG与DE的位置关系,并证明你的结论.24.如图,已知平面直角坐标系中,点A(a,0)、B(0,b),a、b满足﹣+=0.(1)求△AOB的面积;(2)将线段AB经过水平、竖直方向平移后得到线段A′B′,已知直线A′B′经过点C(4,0),A′的横坐标为5.①求线段AB平移过程中扫过的面积;②请说明线段AB的平移方式,并说明理由;③线段A′B'上一点P(m,n),直接写出m、n之间的数量关系:.参考答案一、选择题(共10小题,每小题3分,满分30分)1.求的值是()A.B.2C.22D.【分析】根据题目中的式子可以计算出正确的结果,本题得以解决.解:==2,故选:B.【点评】本题考查算术平方根,解答本题的关键是明确算术平方根的含义.2.在平面直角坐标系中,点(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.解:点(3,﹣2)所在象限是第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列各数中是无理数的是()A.3.14B.﹣C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解:A.3.14是有限小数,属于有理数;B.是分数,属于有理数;C.是整数,属于有理数;D.是无理数.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.同时要熟记sin30°的值和任何不等于0的数的零次幂都等于1.4.如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角,进而得出答案.解:∠1和∠2是一对内错角,故选:B.【点评】此题主要考查了内错角,关键是掌握内错角定义.5.如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是()A.线段AB B.线段AC C.线段BC D.无法确定【分析】直接利用点到直线的距离定义得出答案.解:如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是:线段BC.故选:C.【点评】此题主要考查了点到之间的距离,正确把握相关定义是解题关键.6.在式子x+6y=9,x+=2,3x﹣y+2z=0,xy+x+1=0,5x=y中,二元一次方程有()A.1个B.2个C.3个D.4个【分析】直接利用二元一次方程的定义分别判断得出答案.【解答】解x+6y=9,x+=2,3x﹣y+2z=0,xy+x+1=0,5x=y,二元一次方程有x+6y=9,5x=y,共2个.故选:B.【点评】此题主要考查了二元一次方程的定义,二元一次方程的定义是含有两个未知数且未知数的次数都为1.7.在平面直角坐标系中,点C在x轴上方且在y轴左侧,距离x轴为3个单位长度,则点C的坐标可能为()A.(3,﹣2)B.(﹣3,4)C.(5,3)D.(﹣3,3)【分析】首先根据题意确定点所在象限,然后再根据距离x轴为3个单位长度可得答案.解:∵点C在x轴上方且在y轴左侧,∴点C在第二象限,∴横坐标为负数,纵坐标为正数,∵距离x轴为3个单位长度,∴点C的纵坐标为3,故选:D.【点评】此题主要考查了点的坐标,关键是掌握四个象限在坐标系中的位置和每个象限内点的坐标符号.8.如图,AB∥EF,∠ABP=∠ABC,∠EFP=∠EFC,已知∠FCD=60°,则∠P的度数为()A.60°B.80°C.90°D.100°【分析】过C作CQ∥AB,利用平行线的性质和判定进行解答即可.解:过C作CQ∥AB,∵AB∥EF,∴AB∥EF∥CQ,∴∠ABC+∠BCQ=180°,∠EFC+∠FCQ=180°,∴∠ABC+∠BCF+∠EFC=360°,∵∠FCD=60°,∴∠BCF=120°,∴∠ABC+∠EFC=360°﹣120°=240°,∵,∠ABP=∠ABC,∠EFP=∠EFC,∴∠ABP+∠PFE=80°,∴∠P=80°,故选:B.【点评】此题考查平行线的性质,关键是利用平行线的性质和判定进行解答.9.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.同旁内角互补C.点到直线的距离就是这点到这条直线所作的垂线段D.实数与数轴上的点一一对应【分析】直接利用点到直线的距离以及实数与数轴、平行公理及推论分别分析得出答案.解:A、在同一平面内,过一点有且只有一条直线与已知直线平行,故此选项错误;B、两直线平行,同旁内角互补,故此选项错误;C、点到直线的距离就是这点到这条直线所作的垂线段的长,故此选项错误;D、实数与数轴上的点一一对应,正确.故选:D.【点评】此题主要考查了点到直线的距离以及实数与数轴、平行公理及推论等知识,正确掌握相关定义是解题关键.10.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)【分析】计算点P走一个半圆的时间,确定第2019秒点P的位置.解:点运动一个半圆用时为秒∵2019=1009×2+1∴2019秒时,P在第1010个的半圆的中点处∴点P坐标为(2019,﹣1)故选:C.【点评】本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.二、填空题(共6小题,每小题3分,满分18分)11.已知∠1的对顶角为123°,则∠1的邻补角度数为57°.【分析】直接利用对顶角的定义得出∠1的度数,再利用邻补角的定义得出答案.解:∵∠1的对顶角为123°,∴∠1=123°,则∠1的邻补角度数为:180°﹣123°=57°.故答案为:57°.【点评】此题主要考查了对顶角、邻补角,正确把握相关定义是解题关键.12.已知,则 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.解:∵,∴====1.01;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.13.a为任意实数,则+=0.【分析】直接利用立方根的性质化简得出答案.解:原式=﹣=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.如图,把边长为4cm的正方形ABCD先向右平移1cm再向上平移1cm得到正方形EFGH,则阴影部分的面积为9cm2.【分析】根据平移的性质,阴影部分为正方形形,边长为3cm,然后根据矩形面积公式求解.解:阴影部分的面积=(4﹣1)×(4﹣1)=9(cm2).故答案为:9.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD 的度数为64°.【分析】直接利用平行线的性质以及折叠的性质得出∠C′EG=64°,进而得出答案.解:∵EF是折痕,∠EFB=32°,AC′∥BD′,∴∠C′EF=∠GEG=32°,∴∠C′EG=64°,∵CE∥FD,∴∠D′FD=∠EGB=64°.故答案为:64°.【点评】此题主要考查了平行线的性质以及折叠的性质,正确把握平行线的性质是解题关键.16.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足a=3b.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故答案为:a=3b.【点评】此题考查了整式的混合运算的应用,弄清题意是解本题的关键.三、解答题(共8小题,满分72分)17.计算.(1)+﹣+|﹣|﹣2+3;(2)﹣2﹣|﹣3|+|2﹣|;(3)(x﹣1)3﹣32=0.【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值;(3)原式整理后,利用平方根定义开方即可求出解.解:(1)原式=×0.3+×0.4﹣0.1+0.5﹣2+3=0.1+0.05﹣0.1+0.5+=0.55+;(2)原式=﹣2﹣3++﹣2=﹣5;(3)方程整理得:(x﹣1)3=64,开立方得:x﹣1=4,解得:x=5.【点评】此题考查了实数的运算,立方根,熟练掌握各自的性质是解本题的关键.18.完成下列推理填空:如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,求证:∠GDC=∠B.证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一直线的两条直线平行),∴∠2+∠1=180°(两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3(同角的补角相等),∴AB∥DG(内错角相等,两直线平行),∴∠GDC=∠B(两直线平行,同位角相等).【分析】求出AD∥EF,根据平行线的性质得出∠2+∠1=180°,求出∠1=∠3,根据平行线的判定得出DG∥AB,根据平行线的性质得出∠GDC=∠B即可.【解答】证明:∵AD⊥BC,EF⊥BC(已知)∴AD∥EF(垂直于同一直线的两条直线平行)∴∠2+∠1=180°(两直线平行,同旁内角互补)又∵∠2+∠3=180°(已知)∴∠1=∠3 (同角的补角相等)∴AB∥DG(内错角相等,两直线平行)∴∠GDC=∠B(两直线平行,同位角相等)故答案为:垂直于同一直线的两条直线平行;∠2+∠1=180°,两直线平行,同旁内角互补,同角的补角相等,DG,内错角相等,两直线平行,两直线平行,同位角相等【点评】本题考查了平行线的性质和判定,垂直定义,补角定义的应用,能综合运用定理进行推理是解此题的关键.19.解下列方程组:(1);(2).【分析】(1)根据二元一次方程组的解法即可求出答案.(2)根据二元一次方程的解法即可求出答案.解:(1),∴①×2得:10x﹣4y=18③,②×5得:10x+25y=105④,∴29y=87,∴y=3,将y=3代入①得:5x﹣6=9,∴5x=15,∴x=3,∴方程组的解为.(2)原方程化为,∴①×2得:6x﹣8y=0③,③﹣④得:6x=3,∴x=,将x=代入①得:=4y,∴y=,∴方程组的解为.【点评】本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.20.实数a,b在数轴上的位置如图所示,化简:|a﹣b|﹣﹣.【分析】根据数轴得到b<0<a,根据二次根式的性质化简即可.解:由数轴可知,b<0<a,∴a﹣b>0,则|a﹣b|﹣﹣=a﹣b﹣a+b=0.【点评】本题考查的是二次根式的化简、数轴的定义,掌握二次根式的性质、数轴的定义是解题的关键.21.某工厂要新建一个800平方米的长方形场地,且其长、宽的比为5:2.(1)求这个长方形场地的长和宽为多少米?(2)某个正方形场地的周围有一圈金属栅栏围墙,如果把原来面积为900平方米的正方形场地的栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?(提示:4×4=80)【分析】(1)根据长宽的比例设长为5x米,宽为2x米,由长方形的面积得5x•2x=800,利用算术平方根的定义求出x的值,从而得出答案;(2)先根据正方形的面积求出正方形的边长,继而得出其周长,即栅栏的长度,再求出长方形的周长,比较大小即可得出答案.解:(1)设长方形场地的长为5x米,宽为2x米,根据题意知,5x•2x=800,解得x=4或x=﹣4(舍去),∴这个长方形场地的长为20米,宽为8米;(2)栅栏围墙不够用,因为正方形场地的面积为900平方米,所以正方形场地的边长为30米,则正方形的周长,即栅栏的长度为120米,长方形场地的周长为2×(20+8)=56(米),∵56>120,∴栅栏围墙不够用.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根的定义,并根据题意求出正方形和长方形相关边的长度.22.如图,P(x0,y0)为△ABC内任意一点,若将△ABC作平移变换,使A点落在B点的位置上,已知A(3,4);B(﹣2,2);C(2,﹣2).(1)请直接写出B点、C点、P点的对应点B1、C1、P1的坐标;(2)求S△AOC.【分析】(1)由点A及其对应点的坐标得出平移的方向和距离,根据平移变换点的坐标变化规律可得;(2)利用割补法求解可得.解:(1)由点A(3,4)平移后的对应点的坐标为(﹣2,2),所以需将△ABC向左平移5个单位、向下平移2个单位,则点B(﹣2,2)的对应点B1的坐标为(﹣7,0),点C(2,﹣2)的对应点C1的坐标为(﹣3,﹣4),点P(x0,y0)的对应点P1的坐标为(x0﹣5,y0﹣2);(2)如图所示,过点A作AD⊥y轴于点D,过点C作CE⊥y轴,则AD=3、CE=2、OD=4、OE=2,∴S△AOC=×(2+3)×6﹣×3×4﹣×2×2=15﹣6﹣2=7.【点评】此题主要考查了坐标与图形的变化﹣平移,关键是掌握作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点的坐标.23.如图所示,将△ABC沿直线BC方向平移△DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.(1)求证:∠AGE=∠GAD+∠ABC;(2)若EDF=∠DAG,∠CAG+∠CEG=180°,判断AG与DE的位置关系,并证明你的结论.【分析】(1)利用平移的性质得到AB与DE平行且相等,得到四边形ABED为平行四边形,利用平行四边形的性质得到对角相等,利用外角性质即可得证;(2)AG垂直与DE,理由为:由平移的性质得到∠EDF=∠BAC,根据∠EDF=∠DAG,等量代换得到∠BAC=∠DAG,由AB与DE平行,利用两直线平行同旁内角互补得到一对角互补,等量代换得到∠ABC=∠CAG,利用等式的性质及平行线的性质即可得证.解:(1)由平移的性质得:△ABC≌△DEF,∴AB=DE,AB∥DE,∴四边形ABED为平行四边形,∴AD∥BF,∠ADG=∠ABC,∴∠ADG=∠DEF,∴∠ABC=∠DEF=∠ADG,∵∠AGE为△ADG的外角,∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;(2)AG⊥DE,理由为:由平移的性质得到∠EDF=∠BAC,∵∠EDF=∠DAG,∴∠BAC=∠DAG,∵AB∥DE,∴∠ABC+∠BEG=180°,∵∠CAG+∠CEG=180°,∴∠ABC=∠CAG,∵MN∥BC,∴∠ABC=∠MAB,∴∠MAB=∠CAG,∵∠MAB+∠BAC+∠CAG+∠DAG=180°,∴∠CAG+∠BAC=90°,即∠BAG=90°,∵AB∥DE,∴∠BAG+∠AGD=90°,则AG⊥DE.【点评】此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.24.如图,已知平面直角坐标系中,点A(a,0)、B(0,b),a、b满足﹣+=0.(1)求△AOB的面积;(2)将线段AB经过水平、竖直方向平移后得到线段A′B′,已知直线A′B′经过点C(4,0),A′的横坐标为5.①求线段AB平移过程中扫过的面积;②请说明线段AB的平移方式,并说明理由;③线段A′B'上一点P(m,n),直接写出m、n之间的数量关系:2m﹣n=8.【分析】(1)用非负数的性质求出a,b的值,则A,B的坐标可求出,由三角形的面积公式求解即可;(2)①连接A'B,CB,作A'D⊥x轴于点D,作B'E⊥x轴于点E,由三角形A'BA的面积求出A'D=2,则A'(5,2),求出四边形ABB'A'的面积即可;②由A′的坐标为(5,2),可得出答案;③过B'作B'F⊥x轴于点F,连接PF,由三角形B'CF面积可求出答案.解:(1)∵﹣+=0.∴,∴b=4,∴a=﹣2,∴A(﹣2,0),B(0,4),∴S△AOB=×2×4=4;(2)①如图1,连接A'B,CB,作A'D⊥x轴于点D,作B'E⊥x轴于点E,∵AB∥A'B',∴S△A'BA=S△ABC=×4×(4+2)=12,又∵S△A'BA=S△ABO+S梯形A'BOD﹣S△AA'D,∴12=4+(A'D+4)×5﹣(5+2)×A'D,∴A'D=2,∴A'(5,2),∵B(0,4),A(﹣2,0),AB平移后得到线段A′B′,∴B'(7,6),∵S四边形ABB'E=S△AOB+S梯形B'BOE=×(4+6)×7=4+35=39.∴S四边形AA'B'B=S四边形ABB'E﹣S△AA'C﹣S△CB'E=39﹣×3×6,=24.即线段AB平移过程中扫过的面积为24.②∵A′(5,2)经A(﹣2,0)平移得到,∴线段AB向右平移7个单位,再向上平移2个单位得到线段A′B′.③2m﹣n=8.如图2,过B'作B'F⊥x轴于点F,连接PF,∵C(4,0),B'(7,6),P(m,n),∴S△B'CF=×3×6=9,∵S△B'CF=S△PCF+S△B'PF=×6×(7﹣m),∴×6×(7﹣m)=9,∴2m﹣n=8.【点评】本题是三角形综合题,考查了三角形的面积,平移变换,坐标与图形的性质,非负数的性质等知识,解题的关键是正确作出辅助线,熟练运用平移的性质解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省武汉市汉阳区2019-2020学年七年级下学期期中数学试题一、单选题
(★) 1. 下列实数中,是无理数的是()
A.B.3.14C.2D.
(★) 2. 如图,小明用手盖住的点的坐标可能为()
A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)
(★) 3. 点P为直线l外一点,点A,B,C为直线l上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离()
A.等于4cm B.等于3cm C.小于3cm D.不大于3cm
(★) 4. 如图,点E在BC的延长线上,下列条件能判定AB∥CD的是()
A.∠1=∠2B.∠3=∠4
C.∠DAB+∠B=180°D.∠D=∠5
(★) 5. 将一直角三角板与两边平行的纸条如图放置,若∠1=55°,则∠2的大小是()
A.25°B.30°C.35°D.45°
(★) 6. 下列命题中,
(1)如果直线a∥b,b∥c,那么a∥c;
(2)相等的角是对顶角;
(3)两条直线被第三条直线所截,内错角相等.其中真命题的个数是()
A.1个B.2个C.3个D.无
(★★) 7. 小明家位于公园的正西100米处,从小明家出发向北走200米就到小华家.若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建立平面直角坐标系,规定一个单位
长度代表1米长,则公园的坐标是()
A.(﹣200,100)B.(200,﹣100)
C.(﹣100,200)D.(100,﹣200)
(★★) 8. 二元一次方程3x+2y=15的正整数解的对数是()
A.1对B.2对C.3对D.4对
(★★) 9. 如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是()
A.360°B.540°C.720°D.900°
(★★) 10. 如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左
边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)()
A.ab B.(a﹣2)b C.a(b﹣2)D.(a﹣2)(b﹣2)二、填空题
(★) 11. 100的算术平方根是_____.
(★) 12. 与最接近的整数是_____.
(★) 13. 点P(m﹣1,m+3)在平面直角坐标系的x轴上,则P点坐标是_____.
(★★) 14. 如图,直线 AB, CD交于点 O, OA平分∠ EOC,∠ EOC∶∠ EOD=4∶5,则∠ BOD=______度.
(★) 15. 如图,已知DE∥BC,∠EDB比∠B的两倍小15°,则∠B=_____.
(★★★★) 16. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可
得第2020个点的坐标是_____.
三、解答题
(★★) 17. 计算与解方程:
(1)计算﹣+|1﹣|;
(2)解方程:25x 2=36.
(★★) 18. 解二元一次方程组:
(1);
(2).
(★) 19. 填空,完成下列证明过程,并在括号中注明理由.
如图,已知∠ BEF+∠ EFD=180°,∠ AEG=∠ HFD,求证:∠ G=∠ H.
解:∵∠ BEF+∠ EFD=180°,(已知).
∴ AB// ().
∴ =∠ EFD().
又∵∠ AEG=∠ HFD,
∴∠ AEF﹣∠ AEG=∠ EFD﹣∠ HFD,即∠ GEF=.
∴ // FH().
∴∠ G=∠ H.().
(★) 20. 如图,直线DE经过A点,DE∥BC.
(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;
(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.
(★★) 21. 如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣
1).△ABC中任意一点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),将△ABC作同样的平移得到△A 1B 1C 1.
(1)请画出△A 1B 1C 1并写出点A 1,B 1,C 1的坐标;
(2)求△A 1B 1C 1的面积;
(3)若点P在y轴上,且△A 1B 1P的面积是1,请直接写出点P的坐
标.
(★★) 22. 如图,AB∥CD.
(1)如图①,若∠CMN=90°,点B在射线MN上,∠ABM=120°,求∠C的度数;
(2)如图②,若∠CMN=150°,请直接写出∠ABM与∠C的数量关
系.
(★★) 23. 操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.
(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B
的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.
(2)如图,在平面直角坐标系中,对正方形ABDC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′D′C′及其内部的点,其中点A,B的对应点分别为A′,B′,已知正方形ABDC内部的一个点F经过上述操作后得到的对应点F′与点F重合,请求出点F的坐
标.
(★★★★) 24. 如图,以直角三角形AOB的直角顶点O为原点,以OB,OA所在直线为x轴
和y轴建立平面直角坐标系,点A(0,a),B(b,0)满足+|b﹣4|=0.
(1)直接写出A点的坐标为;B点的坐标为.
(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方向以1个
单位长度每秒的速度匀速移动,N点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点N到达A点整个运动随之结束.AB的中点C的坐标是(2,4),设运动时间为t(t>0)秒,是否存在这样的t,使,的面积相等?若存在,请求出t的值;若不存在,请说
明理由.
(3)如图②,点D是线段AB上一点,满足∠DOB=∠DBO,点F是线段OA上一动点,连
BF交OD于点G,当点F在线段OA上运动的过程中,的值是否会发生变化?
若不变,请求出它的值;若变化,请说明理由.。

相关文档
最新文档