勾股定理的综合应用经典例题

合集下载

勾股定理经典例题含答案(2)(K12教育文档)

勾股定理经典例题含答案(2)(K12教育文档)

勾股定理经典例题含答案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(勾股定理经典例题含答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为勾股定理经典例题含答案(2)(word版可编辑修改)的全部内容。

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方.如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一.勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,。

勾股定理的实际应用【十二大题型】(学生版)

勾股定理的实际应用【十二大题型】(学生版)

勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB=65cm,拉杆最大伸长距离BC=35cm,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A处,点A到地面的距离AD=3cm,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm到A′处,求拉杆把手C离地面的距离(假设C点的位置保持不变).【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.62(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤21(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).1(2023春·河南信阳·八年级统考期末)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.2(2023春·河南洛阳·八年级校联考期中)如图,海上救援船要从距离海岸8海里的A点位置到海岸BD的M处携带救援设备,然后到距离海岸16海里处的C点处对故障船实施救援.已知BD间的距离为18海里,为使救援船尽快赶到故障船实施救援,救援设备被放置在恰当位置.(1)试在图中确定点M的位置;(2)若救援船的速度是20节(1节=1海里/小时),求这艘救援船最快多长时间到达故障船?3(2023春·全国·八年级期末)我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西n°.(1)求甲巡逻艇的航行方向(用含n的式子表示)(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【题型8求河宽】1(2023春·广东广州·八年级校考期中)如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A、B、C三点,且A、D、E、C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,求池塘的宽度DE.1(2023春·八年级课时练习)如图所示,湖的两岸有两点A,B,在与AB成直角的BC方向上的点C处测得AC=50米,BC=40米.求:(1)A,B两点间的距离;(2)点B到直线AC的距离.2(2023春·河南洛阳·八年级统考期末)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?3(2023春·河南南阳·八年级统考期末)如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C移动到点E,同时小船从点A移动到点B,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC BC+CE(填“>”“<”“=”);(2)若CF=5米,AF=12米,AB=4米,求男孩需向右移动的距离CE(结果保留根号).【题型9求台阶上地毯长度】1(2023春·山西吕梁·八年级统考期中)如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m21(2023春·八年级课时练习)如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?2(2023春·山东济南·八年级济南外国语学校校考期中)如图,是一个三级台阶,它的每一级的长,宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物,请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是()A.12B.13C.14D.153(2023春·重庆忠县·八年级统考期末)如图是某幼儿园楼梯的截面图,拟在楼梯上铺设防撞地段,若防撞地毯每平方米售价为40元,楼梯宽为2米,则幼儿园购买防撞地毯至少需要元.【题型10判断汽车是否超速】1(2023春·山西忻州·八年级统考期中)某城市规定小汽车在街道上的行驶速度不得超过70千米/时,一辆小汽车在一条城市街道上直行,某一时刻刚好行驶到路对面“车速检测仪A”正前方30米C处,过了2秒后,测得小汽车位置B与“车速检测仪A”之间的距离为50米,这辆小汽车超速了吗?请说明理由.1(2023春·江苏扬州·八年级校考期中)“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过60千米/时.这时一辆小汽车在一条城市街道直路上行驶,某一时刻刚好行驶到路对面车速检测仪A正前方50米C处,过了8秒后,测得小汽车位置B与车速检测仪A之间的距离为130米,这辆小汽车超速了吗?请说明理由.2(2023春·内蒙古巴彦淖尔·八年级校考阶段练习)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?3(2023春·山东济南·八年级统考期末)如图,A中学位于南北向公路l的一侧,门前有两条长度均为100米的小路通往公路l,与公路l交于B,C两点,且B,C相距120米.(1)现在想修一条从公路l到A中学的新路AD(点D在l上),使得学生从公路l走到学校路程最短,应该如何修路(请在图中画出)?新路AD长度是多少?(2)为了行车安全,在公路l上的点B和点E处设置了一组区间测速装置,其中点E在点B的北侧,且距A中学170米.一辆车经过BE区间用时5秒,若公路l限速为60km/h(约16.7m/s),请判断该车是否超速,并说明理由.【题型11选址使到两地距离相等】1(2023春·八年级课时练习)如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定1(2023春·辽宁丹东·八年级校考阶段练习)如图,在一颗树上10米高的D处有两只猴子,其中一只猴子沿树爬下,走到离树20米处的池塘B处,另一只猴子爬到树顶A处直跃向池塘的B处,如果两只猴子所经过的路程相等,试问这颗树有多高?2(2023春·山西朔州·八年级统考期末)根据山西省教育厅“2023年度基础教育领域重点工作推进会”要求,扎实推进建设100所公办幼儿园任务落实,某地计划要在如图所示的直线AB上,新建一所幼儿园,该区域有两个小区所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA =1.5km,DB=1.0km求该幼儿园E应该建在距点A为多少km处,可以使两个小区到幼儿园的距离相等.3(2023春·河南洛阳·八年级统考期末)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离(结果保留整数).【题型12求最短路径】1(2023春·辽宁沈阳·八年级校考期末)如图,长方体的长为2,宽为1,高为3,一只蚂蚁从点A出发,沿长方体的外表面到点B处觅食,则它爬行的最短路程为()A.14B.18C.20D.261(2023春·河南郑州·八年级河南省实验中学校考期末)如图,一大楼的外墙面ADEF与地面ABCD 垂直,点P在墙面上,若PA=AB=10米,点P到AD的距离是8米,有一只蚂蚁要从点P爬到点B,它的最短行程是( )米.A.20B.85C.24D.6102(2023春·山西太原·八年级校考期末)如图,圆柱形容器的高17cm,底面周长是24cm,在外侧底面S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.20cmB.83cmC.433cmD.24cm3(2023春·河南郑州·八年级校联考期末)在一张长AB=13cm,宽AD=8cm的长方形纸片上,如图放置一根直棱柱的木块,它的底面为正方形,它的侧棱平行且大于纸片的宽AD,一只蚂蚁从点A处到点C 处走的最短路程是17cm,则该四棱柱的底面边长是cm.。

勾股定理及逆定理的综合应用试题

勾股定理及逆定理的综合应用试题

勾股定理及逆定理的综合应用一、勾股定理的逆定理逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边。

逆定理说明:①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

②在运用这一定理时,可用两小边的平方和22+与较长边的平方2c作比较,若它们a b相等时,以a,b,c为三边的三角形是直角三角形;若222+<时,以a,b,c为三边a b c的三角形是钝角三角形;若222+>时,以a,b,c为三边的三角形是锐角三角形。

a b c二、实际应用定理中的注意问题1. 定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三a b c边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为a c b斜边;2. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。

三、勾股定理逆定理的几种典型应用总结:1. 理解勾股定理与勾股定理逆定理之间的关系;2. 掌握好数形结合的思想及方程思想的应用。

例题1 如图,△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A. 15B. 16C. 17D. 18解析:延长AD至E使ED=AD,利用好“AD是中线”这个条件,再根据题中数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了。

答案:解:延长AD 至E ,使DE=AD ;连接B E , ∵AD=8.5,∴AE=2×8.5=17, 在△ADC 和△EDB 中,AD =DE ∵∠ADC =∠EDB BD =CD ,∴△ADC≌△EDB(S AS ),∴BE=AC=8,BE 2+AB 2=82+152=289,AE 2=172=289, ∴∠ABE=90°,∵在Rt△BED 中,BD 是中线, ∴BD=21AE=8.5,∴BC=2BD=2×8.5=17。

(文末带答案)八年级数学勾股定理经典大题例题

(文末带答案)八年级数学勾股定理经典大题例题

(每日一练)(文末带答案)八年级数学勾股定理经典大题例题单选题1、若△ABC三边长a,b,c满足√a+b−25+|b−a−1|+(c−5)2=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,,则BC的长是()折痕现交于点F,已知EF=32A.3√2B.3√2C.3D.3√323、如图,在△ABC中,点D是线段AB上的一点,过点D作DE∥AC交BC于点E,将△BDE沿DE翻折,得到△B'DE,若点C恰好在线段B'D上,若∠BCD=90°,DC:CB'=3:2,AB=16√2,则CE的长度为()A.2√2B.4C.3√2D.64、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A .B .C .D .5、如图,在Rt △ABC 中,∠ACB =90°,BC =3,AB =5,角平分线CD 交AB 于点D ,则点D 到AC 的距离是( )A .127B .2C .157D .3 6、如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )A .3B .4C .5D .67、有一个直角三角形的两边长分别为3和4,则第三边的长为( )A .5B .√7C .√5D .5或√78、已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A .24cm 2B .36cm 2C .48cm 2D .60cm 2填空题9、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.则旗杆的高度______.10、如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为____.11、如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.12、正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为________.13、已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____.解答题14、如图,把一块直角三角形(△ABC,∠ACB=90°)土地划出一个三角形(△ADC)后,测得CD=3米,AD=4米,BC=12米,AB=13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.15、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止己有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中b>a,点E在线段AC上,点B、D在边AC两侧,试证明:a2+b2=c2.(文末带答案)八年级数学勾股定理_007参考答案1、答案:C解析:根据非负数的性质求得a、b、c的值,再根据勾股定理的逆定理即可解答.解:∵√a+b−25+|b-a-1|+(c-5)2=0,∴a+b-25=0,b-a-1=0,c-5=0,∴a=12,b=13,c=5,∵a2+c2=b2=169,∴△ABC是直角三角形.故选C.小提示:本题考查了非负数的性质及勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决问题的关键.2、答案:B解析:折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知AB,所以AB=AC,的长可求,再利∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=12用勾股定理即可求出BC的长.解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,且∠AFB=90°,∴EF=12AB,∵EF=32,∴AB=2EF=32×2=3,在ΔRtABC中, AB=AC,AB=3,∴BC=√AB2+AC2=√32+32=3√2,故选B.小提示:本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.3、答案:C解析:设DC=3x,CB′=2x,则DB'=5x,由折叠的性质得出DB=DB',∠BDE=∠B'DE,BE=B'E,由勾股定理求出BC =8√2,设CE=a,则BE=8√2﹣a=B'E,由勾股定理得出方程求出a的值,则可得出答案.解:设DC=3x,CB'=2x,则DB'=5x,∵将△BDE沿DE翻折,得到△B'DE,∴DB'=DB,∠BDE=∠B'DE,BE=B'E,∵DE∥AC,∴∠A=∠BDE,∠ACD=∠CDE,∴∠A=∠ACD,∴CD=AD=3x,∴AB=AD+DB=8x=16√2,∴x=2√2,∴CD=6√2,BD=10√2,B'C=4√2,∴BC=√BD2−CD2=8√2,设CE=a,则BE=8√2﹣a=B'E,∵CE2+B'C2=B'E2,∴a2+32=(8√2﹣a)2,解得a=3√2,∴CE=3√2,故选:C.小提示:本题考查了折叠的性质,勾股定理,平行线的性质,等腰三角形的性质与判定,熟练掌握折叠的性质是解题的关键.4、答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D.解: A、两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab+12ab+12c2=12(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积,故4×12ab+c2=(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积,4×12a(a+b)+b2=c2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、四个小图形面积和等于大正方形面积,2ab+a2+b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.5、答案:A解析:作DE⊥AC于E,作DF⊥BC于F,根据勾股定理可求AC,根据角平分线的性质可得DE=DF,再根据三角形面积公式即可求解.解:作DE⊥AC于E,作DF⊥BC于F,在Rt△ACB中,AC=√AB2−BC2=√52−32=4,∵CD是角平分线,∴DE=DF,∴12AC⋅DE+12BC⋅DF=12AC⋅BC,即12×4×DE+12×3×DE=12×4×3,解得DE=127.故点D到AC的距离是127.故选:A.小提示:本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等.6、答案:B解析:试题分析:设CH=x,因为BE:EC=2:1,BC=9,所以,EC=3,由折叠知,EH=DH=9-x,在Rt△ECH中,由勾股定理,得:(9−x)2=32+x2,解得:x=4,即CH=4考点:(1)图形的折叠;(2)勾股定理7、答案:D解析:分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可.解:当4是直角边时,斜边=√32+42=5;当4是斜边时,另一条直角边=√42−32=√7;故选:D.小提示:本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8、答案:A解析:根据∠C=90°确定直角边为a、b,对式子a+b=14两边平方,再根据勾股定理得到ab的值,即可求解.解:根据∠C=90°确定直角边为a、b,∴a2+b2=c2=100∵a+b=14∴(a+b)2=142,即a2+2ab+b2=196∴2ab=96∴S△ABC=1ab=24cm22故选A小提示:此题考查了勾股定理的应用,涉及了完全平方公式,解题的关键是根据所给式子确定ab的值.9、答案:12米解析:设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.解:设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.所以答案是:12米.小提示:本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解.10、答案:45°解析:利用勾股定理可求出AB2,AC2,BC2的长,进而可得出AB2=AC2+BC2,AC=BC,利用勾股定理的逆定理可得出△ABC 为等腰直角三角形,再利用等腰直角三角形的性质,可得出∠ABC=45°.解:连接AC,根据题意,可知:BC2=12+22=5,AC2=12+22=5,AB2=12+32=10.∴AB2=AC2+BC2,AC=BC,∴△ABC为等腰直角三角形,∴∠ABC=45°.所以答案是:45°.小提示:本题考查了勾股定理的逆定理、勾股定理以及等腰直角三角形的性质,利用勾股定理的逆定理及AC=BC,找出△ABC为等腰直角三角形是解题的关键.11、答案:29解析:如图(见解析),先根据正方形的面积公式可得AB2=30,BC2=16,CD2=17,再利用勾股定理可得AD2的值,由此即可得出答案.如图,连接AC,由题意得:AB2=30,BC2=16,CD2=17,∵在△ABC中,∠ABC=90°,∴AC2=AB2+BC2=46,∵在△ACD中,∠ADC=90°,∴AD2=AC2−CD2=29,则正方形丁的面积为AD2=29,所以答案是:29.小提示:本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.12、答案:2√5或52或√652 解析:分情况讨论:(1)当PB 为腰时,若P 为顶点,则E 点与C 点重合,如图1所示:∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P 是AD 的中点,∴AP=DP=2,根据勾股定理得:BP=√AB 2+AP 2=√42+22=2√5;若B 为顶点,则根据PB=BE′得,E′为CD 中点,此时腰长PB=2√5;(2)当PB 为底边时,E 在BP 的垂直平分线上,与正方形的边交于两点,即为点E ;①当E 在AB 上时,如图2所示:则BM=12BP=√5,∵∠BME=∠A=90°,∠MEB=∠ABP ,∴△BME ∽△BAP ,∴BE BP =BM BA ,即2√5=√54,∴BE=52;②当E 在CD 上时,如图3所示:设CE=x ,则DE=4−x ,根据勾股定理得:BE 2=BC 2+CE 2,PE 2=DP 2+DE 2,∴42+x 2=22+(4−x)2,解得:x=12,∴CE=12,∴BE=√BC 2+CE 2 =√42+(12)2=√652;综上所述:腰长为:2√5,或52,或√652; 故答案为2√5,或52,或√652. 点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.13、答案:4.8cm.解析:根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.∵直角三角形的两条直角边分别为6cm ,8cm ,∴斜边为√62+82 =10(cm),设斜边上的高为h ,则直角三角形的面积为12×6×8=12×10h , 解得:h=4.8cm ,这个直角三角形斜边上的高为4.8cm.故答案为4.8cm.小提示:此题考查勾股定理,解题关键在于列出方程.14、答案:(1)见解析;(2)24解析:(1)根据勾股定理求出AC 的长,再根据勾股定理的逆定理证明∠ADC=90°;(2)利用△ABC 的面积减去△ACD 的面积即可.解:(1)∵∠ACB=90°,BC=12,AB=13,∴AC=√AB2−BC2=5,∵32+42=52,即AD2+CD2=AC2,∴∠ADC=90°;(2)S阴影=S△ABC-S△ACD=1 2×AC×BC−12×CD×AD=1 2×5×12−12×3×4=24.小提示:本题考查的是勾股定理在实际生活中的应用以及勾股定理的逆定理,有利于培养学生生活联系实际的能力.15、答案:见解析.解析:首先连结BD,作DF⊥BC延长线于F,则AE=b−a,根据RtΔABC≅RtΔDAE,易证∠DAB=90°,再根据S四边形ADFB =SΔADE+SΔABC+S四边形DFCE,S四边形ADFB=SΔADB+SΔDFB,两者相等,整理即可得证.证明:连结BD,作DF⊥BC延长线于F,则AE=b−aS四边形ADFB =SΔADE+SΔABC+S四边形DFCE=12ab+12ab+(b−a)⋅b =ab+b2−ab=b2∵RtΔABC≅RtΔDAE ∴AB=AD=c∴∠ADE=∠BAC∵∠ADE+∠DAE=90°∴∠BAC+∠DAE=90°即∠DAB=90°,∴AD⊥AB∴S四边形ADFB=SΔADB+SΔDFB=12c2+12(a+b)⋅(b−a) =12c2+12b2−12a2即有:b2=12c2+12b2−12a2∴a2+b2=c2小提示:本题考查了勾股定理的证明,用两种方法表示出四边形ADFB的面积是解本题的关键.。

(完整word版)勾股定理经典例题含答案资料

(完整word版)勾股定理经典例题含答案资料

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.“勾三,股四,弦五"是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a。

思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4。

类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长。

勾股定理经典例题含答案

勾股定理经典例题含答案

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

“勾三,股四,弦五”是勾股定理的一个最着名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13,CD=12∴AC2=AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB=4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P.求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

(完整版)勾股定理典型例题详解及练习(附答案)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是()A.CD、EF、GHC. AB、CD GHB.AB、EF、GHD. AB、CD EF愿路分乐屮1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠2)解題思器;可利用勾脸定理直接求出各边长,再试行判断•』解答过整屮在取DEAF中,Af=l, AE=2,根据勾股定理,得昇EF = Q抡於十£尸° = Q +F二艮同理HE = 2百* QH. = 1 CD = 2^5计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. *縮題后KJ思专:*1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形・因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口*2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜迫而“固执”地运用公式川二/十就其实,同样是S6"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过程.a4•在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初例玉如圏,有一块直角三角形®椀屈U,两直角迫4CM5沁丸m・现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、*C/) "禎B. 3cm G-Icnin題童分析,本题着查勾股定理的应用刎:)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ・进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸九4解龜后的思琴尸勾股定理说到底是一个等式,而含有未知数的等式就是方程。

(完整版)勾股定理经典题目及答案

(完整版)勾股定理经典题目及答案

勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

②如果k 是大于1的奇数,那么k, ,是一组勾股数。

212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。

122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的应用
授课题目(教学章节或教学主题):
勾股定理在三角形中的应用
重点难点
1、 勾股定理的理解;
2、 勾股定理在三角形中的应用。

知识点一:勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果用a,b 和c 分别表示直角三角形的两直角
边和斜边,那么222a b c +=。

经典例题:
如右图:图形A 的面积是 。

变式练习:
1、已知直角三角形的三边长为6、8、x ,x 为斜边,则以x 为边的正方形的面积为____ 。

2、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A .25
B .14
C .7
D .7或25
3、如图中阴影部分是一个正方形,如果正方形的面积为256厘米2,则X 的长为多少厘米?
144225A
知识点二:勾股定理在直角三角形中的应用
勾股定理在三角形中的应用:在直角三角形中,已知两边运用勾股定理求第三边;同时在等腰直角三角形中,已知一边运用等腰三角形性质和勾股定理求另外两边长。

经典例题:
1、如图,从电线杆离地面9米处向地面拉一条长15米的缆绳,
这条缆绳在地面的固定点距离电线杆底部为米。

2、如图,在等腰直角△ABC中,AD是斜边BC上的高,AB=4,
则AD2= 。

变式练习:
1、将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面
的长为hcm,则h的取值范围是()
A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24
2、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,
使点B与点D重合,折痕为EF,则△ABE的面积为()
A.6cm2 B.8cm2
C.10cm2 D.12c m2
3、小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则
AB米。

________
4、如图,在一个高为3米,长为5米的楼梯表面铺地毯,
则地毯长度为米。

5、如图,一个三级台阶,它的每一级的长、宽和高分别
为20、3、2,A 和B是这个台阶两个相对的端点,A点
有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台
阶面爬到B点最短路程是。

6、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,
如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?
7、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树
上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它几秒能赶回巢中?
课后小结:
自我评价:。

相关文档
最新文档