《复变函数与积分变换》期末考试试卷A及答案详解

合集下载

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变函数与积分变换2014-2015_1_A_参考答案

复变函数与积分变换2014-2015_1_A_参考答案

+
4
,求其
Laplace
逆变换
L−1
[
F
(s)]。
解:由 ,因此 F
(s)
=
(s
(s +1) + 2 +1)[(s +1)2 +
3]
2
L−1
[
F
(
s)]
=
e−t

L−1
s s(s
+2 2 + 3)
=
e−t

L−1
2 3

1 s
+
1 3
s2
3 +
3

2⋅ 3
s2
s +
3
= e−t [2 + 3 sin( 3t) − 2 cos( 3t)] 3
=
z −2 1⋅1−
1
1 z −1
=

2
n=0
(z −1)−n−1
=
−1
2 (z −1)n
n=−∞
因此, 。 ∑ f
(z)
=
z
1 −1
+
−2
2
n=−∞
(
z
−1)n
六、〖12 分〗利用 Laplace 变换求解微分初值问题:

y′′′ + y′′(0)
6 y′′ + 12 y′ + 8y = t = y′(0) = 0, y(0) = 1
点,记 。于是, 。因此,实 z0 = 2
R = min{ z1 − z0 , z2 − z0 , zy − z0 | y >1} = 5

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。

2.设y 是实数,则sin(iy)的模为________。

3.设a>0,则Lna=________。

4.记号Res z=af(z)表示________。

5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。

6.方程z=t+i t(t 是实参数)给出的曲线为________。

7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。

8.cosz 在z=0的幂级数展式为________。

二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。

每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。

( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。

( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。

( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。

2.试证:复平面上三点a+bi,0,1-a +bi 共直线。

3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。

4.说明函数f(z)=|z|在z 平面上任何点都不解析。

5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。

云南师范大学《复变函数与积分变换》期末试卷-A卷及答案

云南师范大学《复变函数与积分变换》期末试卷-A卷及答案

云南师范大学2007 --2008 学年下学期统一考试__复变函数与积分变换__试卷学院 物电 班级__06 __专业 电子类 学号__ __姓名__ ___考试方式:闭卷 考试时间:120 分钟 试卷编号:A 卷 题号一 二 三 四 总分 评卷人得分 评卷人一.单项选择题(本大题共5题,每题2分,共10分)请在每小题的括号中填上正确的答案。

选项中只有一个答案是正确的,多选或不选均不得分1.设y e y x V ax sin ),(=是调和函数,则常数=a ( )A.0B.1C.2D.32.设i iz z z f 48)(3++=,则=-'),1(i f ( )A.-2iB.2iC.-2D.23.设C 为正向圆周0)(a >=-a a z ,则积分⎰-C a z dz 22=( ) A.ai2π- B. a i π- C. a i 2π D. ai π 4.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( ) A.0B.πiC.2πiD.6πi 5.f(z)=211z +在z=1处的泰勒展开式的收敛半径为( ) A.23 B.1C.2D.3 得分 评卷人二、填空题(本大题共10个题,每题3分,共30分)请在每小题的空格中填上正确的答案。

填错、不填均无分。

1、FT 解决的问题主要是: _____ ______.2、傅立叶级数中系数n a 、n b 和n c 之间的关系为__________________________.3、)(t f 的傅立叶积分公式为:____ ________.4、)(t f 的傅立叶变换为__ _____________.5、幂级数50n n nz +∞=∑的收敛半径为________________.6、函数21()1f z z =+的幂级数展开式为______________________________. 7、积分==⎰∞∞-ωπωd e t f t i 21)( . 8、.=)(at δ ____ ___________。

《复变函数与积分变换》期末考试试卷含答案

《复变函数与积分变换》期末考试试卷含答案

一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ); 2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3. 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f . (A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

《复变函数与积分变换》期末考试试卷A及答案详解(可打印修改)

《复变函数与积分变换》期末考试试卷A及答案详解(可打印修改)

给出 C-R 条件 6 分,正确求导给 2 分,结果正确 2 分。
(2).计算
C
(z
ez 1)2
z
dz
其中
C
是正向圆周:
解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算, 仅给出用前者计算过程
因为函数
f
(z)
(z
ez 1)2
z
在复平面内只有两个奇点
z1
0, z 2
1,分别以
z15
(3).
dz
z 3 (1 z 2 )2 (2 z 4 )3
解:设 f (z) 在有限复平面内所有奇点均在: z 3 内,由留数定理
z15
dz 2i Re s[ f (z), ]
z 3 (1 z 2 )2 (2 z 4 )3
-----(5 分)
2i Re s[ f (1) 1 ] z z2
f (1) 1
( 1 )15 z
1
z z 2 (1 1 )2 (2 (1 )4 )3 z 2
z2
z
----(8 分)
1 f( )
1
1
有唯一的孤立奇点z 0,
z z 2 z(1 z 2 )2 (2z 4 1)3
lim lim Re s[ f
1 ()
1
,0]
1 zf ( )
1
1
1
z z2
z 0
(4) z 2,3,4L ,为f (z)的三级极点;

f
(z)
z(z2
1)(z 2)3 (z (sin z)3
3)2
的奇点为z
k, k
0,1,2,3,L

(1) z k,k 0,1,2,3,L 。。 sinz。 3 0。。。。。。

复变函数与积分变换A 期末试卷(北京航空航天大学)

复变函数与积分变换A 期末试卷(北京航空航天大学)

2010 —2011 学年第一学期考试统一用答题册题号一二三四五六七八总分成绩阅卷人考试课程复变函数与积分变换A班级学号姓名成绩2011 年 1月 8 日(试题共5页)一、选择题(每题3分,共24分) 1.一个复数乘以i -,则( )(A )复数的模不变,辐角减少π/2 (B )复数的模不变,辐角增加π/2。

(C )复数的模增加,辐角减少π/2。

(D )复数的模减少,辐角增加π/2。

2.设C 为正向圆周21=z ,则=+---⎰z z z z z C d 10621sin)2(23 ( ) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π- 3.设)(z f 和)(z g 均为整函数,下列命题错误的是( )(A ))(3z f 是整函数 (B ))()(z g z f 是整函数 (C ))()(z g z f 是整函数 (D ))2(2+z g 是整函数 4. 若,,2,1,3,2,1,0,2⎩⎨⎧--===n n c n n n 则双边幂级数∑+∞-∞=-n n n z c )2(的收敛域为( )(A )21||31<<z (B )21|2|31<-<z (C )3||2<<z (D )3|2|2<-<z 5.若0z z =是函数)(z f 的m 级零点,则0z 是)(2z f 的( )(A )m 级零点 (B )m 2级零点 (C )m 级极点 (D )m 2级极点6.设0=z 为函数zz e zsin 1--的m 级极点,那么=m ( )(A )5 (B )4 (C)3 (D )27.∞=z 是函数ziz z ++232的( )(A )可去奇点 (B )一级极点 (C )二级极点 (D )本性奇点 8. 积分⎰+∞-03d 2sin t t te t 的值为( )(A )16912(B) 16912- (C) 0 (D) 不存在二、填空题(每题3分,共24分)1.假设21,z z 非零,则||||||||2121z z z z +=+的充分必要条件是21,z z 具有相同的 . 2. 已知一元二次方程求根公式在复数域内仍成立。

2020-2021大学《复变函数与积分变换》期末课程考试试卷A(含答案)

2020-2021大学《复变函数与积分变换》期末课程考试试卷A(含答案)

2020-2021大学《复变函数与积分变换》期末课程考试试卷A考试时间: 类型:闭卷 时间:120分钟 总分:100分 专业:信工一、填空题(3'824'⨯=)1、幂级数()1nn i ∞=+∑的敛散性是____________(绝对收敛、条件收敛、发散)。

2、i 22+的三角形式____________________。

3、z=0是f(z)=[ln(l+z)]/z 的奇点,其类型为_____4、11z -在z=0处的幂级数是_______。

5、0z=为函数()81cos zf z z -=的_____阶极点;在该点处的留数为_____6、ln(1)=_______。

7、25_____(2)zz e z ==-⎰。

8、21nn z n∞=∑的收敛半径为_______。

二、选择题 (3'515'⨯=)1、不等式4z arg 4π<<π-所表示的区域为( ) A.角形区域 B.圆环内部 C.圆的内部 D.椭圆内部2. 复数 8i z -= 的辐角主值 =z arg ( )(A) 2π ; (B)π; (C) 0; (D) 2π3. 设v(x ,y)=e ax siny 是调和函数,则常数a 可以取下列哪个值( ) (A )0 (B )1(C )2 (D )3 4. 0=z 是函数 zzz f sin )(=的 ( ) (A) 本性奇点; (B) 一级极点; (C) 零点 ; (D) 可去奇点5、下列积分值不为零的是 ( ) A 、z-1=22z+3)dz ⎰( B 、 z z-1=2e dz ⎰C 、z =1sin z dz z ⎰D 、z =1coszdz z⎰三、解答题(共7题,共计61分)1、(8分)已知f(z)=u+iv 是解析函数,且v=2xy 、f(1)=2, 求f(z)2、(1)(8分)计算积分(1)423z =5dz(z 2)(z-2)+⎰(2)(6分)21(21)(3)z z dz z z z =++-⎰院系: 专业班级: 姓名: 学号:装 订 线 内 不 准 答 题装 订 线3、(8分)设f(z)=x 3– 3xy 2+ i (3x 2y – y 3),问)(z f 在何处可导?何处解析?并在可导处求出导数值.4、(10分) (1)将函数()1(1)(2)f z z z =--在圆环2z <<+∞内展开为Laurent 级数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

«复变函数与积分变换»期末试题(A )答案及评分标准«复变函数与积分变换»期末试题(A )一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ );3. 211)(z z f +=,=)0()5(f( 0 );4.0=z 是 4sin z z z -的(一级)极点;5. z z f 1)(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在( C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析, 则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).(A) 的可去奇点;为z1sin ∞ (B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ; (3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz z z f ++= 0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z ⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。

为)(z f ∞备注:给出全部奇点给5分 ,其他酌情给分。

四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数;(1)110<-<z ,(2)10<<z ,(3)∞<<z 1解:(1)当110<-<z])11(1[)1(1)1(1)(2'+---=-=z z z z z f 而])1()1([])11(1['--='+-∑∞=n n n z z ∑∞=---=01)1()1(n n n z n∑∞=-+--=021)1()1()(n n n z n z f -------6分(2)当10<<z)1(1)1(1)(22z z z z z f --=-==∑∞=-021n nz z ∑∞=--=02n n z -------10分(3)当∞<<z 1)11(1)1(1)(32zz z z z f -=-=∑∑∞=+∞===03031)1(1)(n n n n z z zz f ------14分 每步可以酌情给分。

五.(本题10分)用Laplace 变换求解常微分方程定解问题:⎩⎨⎧='===+'-''-1)0(1)0()(4)(5)(y y e x y x y x y x解:对)(x y 的Laplace变换记做)(s L ,依据Laplace 变换性质有11)(4)1)((51)(2+=+----s s L s sL s s L s …(5分) 整理得)4(151)1(65)1(101 11)4(151)1(61)1(101 11)4)(1)(1(1)(-+-++=-+-+--+=-+--+=s s s s s s s s s s s s L …(7分) xx x e e e x y 415165101)(++=- …(10分) 六、(6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos 解:)()(0>=-+∞∞--⎰βωβω dt ee F tti --------3分)()(00>+=-+∞-∞--⎰⎰βωβωβω dt e e dt e eF t t i tti)()()(00>+=⎰⎰+∞+-∞--βωβωβ dt e dt et i ti)()()(00>+--=+∞+-∞--βωβωβωβωβ i e i e t i t i)()(021122>+=++-=βωββωβωβω i i F ------4分)()()(021>=⎰+∞∞-βωωπω d F e t f ti - -------5分 )(022122>+=⎰+∞∞-βωωββπω d e ti )()sin (cos 0122>++=⎰+∞∞-βωωωωββπ d t i t )(sin cos 0222022>+++=⎰⎰+∞∞-+∞βωωβωβπωωβωπβd ti d t)(cos )(02022>+=⎰+∞βωωβωπβd tt f , -------6分te d t ββπωωβω-+∞=+⎰2022cos «复变函数与积分变换»期末试题(B)一.填空题(每小题3分,共计15分)二.1.21i-的幅角是( );2.)(i Ln +-的主值是( ); 3.a=( ),)2(2)(2222y xy ax i y xy x z f +++-+=在复平面内处处解析.4.0=z 是 3sin zzz -的( )极点;5. z z f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A )x y iv u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )y x iu u z f +=')(.2.C 是正向圆周2=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )13-z ; (B )13-z z; (C )2)1(3-z z ; (D )2)1(3-z . 3.如果级数∑∞=1n n n z c 在i z 2=点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2-=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果0)(=⎰Cdz z f ,其中C 复平面内正向封闭曲线, 则)(z f 在C 所围成的区域内一定解析;(C )函数)(z f 在0z 点解析的充分必要条件是它在该点的邻域内一定可以展开成为0z z -的幂级数,而且展开式是唯一的;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A )、lnz 是复平面上的多值函数; cosz )B (、是无界函数;z sin )C (、 是复平面上的有界函数;(D )、z e 是周期函数.三.按要求完成下列各题(每小题8分,共计50分)(1)设)))((),()(y g x i y x u z f ++=2是解析函数,且00=)(f ,求)(),,(),(z f y x u y g .(2).计算⎰-+C z i z z zd ))(1(22.其中C 是正向圆周2=z ; (3).计算⎰-Cz z e z z d )1(12,其中C 是正向圆周2=z ; (4).利用留数计算⎰--C z z z d )2)(1(12.其中C 是正向圆周3=z ;(5)函数33221)(sin ))(()(z z z z z f π+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 四、(本题12分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数;(1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题8分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题简答及评分标准(B )一.填空题(每小题3分,共计15分)1.21i-的幅角是( ,2,10,24±±=+-k k ππ );2.)1(i Ln --的主值是(42ln 21πi - );3. 211)(z z f +=,=)0()7(f ( 0 );4.3sin )(z z z z f -=,=]0),([Re z f s ( 0 ) ;5. 21)(z z f =,=∞]),([Re z f s ( 0 );二.选择题(每小题3分,共计15分)1----5 A A C C C三.按要求完成下列各题(每小题10分,共计40分)(1)求d c b a ,,,使)()(2222y dxy cx i by axy x z f +++++=是解析函数,解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

相关文档
最新文档