北师大版七年级上册数学《期中检测卷》附答案

合集下载

北师大版七年级数学上册期中试卷及答案

北师大版七年级数学上册期中试卷及答案

北师大版七年级数学上册期中试卷及答案Revised on July 13, 2021 at 16:25 pm北师大版七年级上数学期中考试试题全卷满分:100分.考试时间:90分钟 ..一.填空题每空1分;共30分 1.有理数-4;500;0;-2.67;543中;整数是___________;负整数是______;正分数是_______. 2. -61的相反数是___________;倒数是____________;绝对值是_________. 3.观察右图;用“>”或“<”填空.1a ____b 2c ____0 3-a ___3c 4c a +___04.平方为0.81的数是______;立方得64-的数是______..5.在()36-中;底数是______;指数是______;322y x -的系数是______..6.长方体是由______个面围成;圆柱是由______个面围成;圆锥是由_______个面围成.7.八棱柱有______个顶点;______条棱;________个面. 8.表面能展成如图所示的平面图形的几何体是:9.一辆货车从家乐福出发;向东走了4千米到达小彬家;继续走了2.5千米到达小钰家;又向西走了12.5千米到达小明家;最后回到家乐福.1小明家距小彬家___________千米;2货车一共行驶了______________千米.10.电表的计数器上先后两次读数之差;就是这段时间内的用电量;某家庭6月1日0时电表显示的读数是121度;6月7日24时电表显示的读数是163度.从电表显示的读数中;估计这个家庭六月份的总用电量是. 11.如图是2003年11月份的日历;请.12.一辆公共汽车有56个座位;空车出发;第一站上2位乘客;第二站上4位乘客;第三站上6位乘客;依次下去;第n 站上_________位乘客;_______站以后车上坐满乘客. 二.选择题:每小题2分;共20分.每小题只有一个正确的选项符合题意1.长方体的截面中;边数最多的多边形是 A .四边形 B.五边形 C.六边形 D.七边形2.下面平面图形经过折叠不能围成正方体的是 A. B. C. D.3.下面各正多面体的每个面是同一种图形的是 ① 正四面体 ② 正六面体 ③ 正八面体 ④ 正十二面体 ⑤ 正二十面体A. ①②③B. ①③④C. ①③⑤D. ①④⑤4.一个数的相反数比它的本身小;则这个数是 A. 正数 B. 负数 C.正数和零 D.负数和零5.若a 是有理数;则下列各式一定成立的有1. 22a a =-)(2.22)(a a -=-3.33a a =-)( 4. 33||a a =- A. 1个 B. 2个 C. 3个 D.4个 6.下面各种说法中正确的是A. 被减数一定大于差B.两数的和一定大于每一个加数C.积一定比每一个因数大D. 两数相等;它们的绝对值一定相等 7.百位数字是a;十位数字是b;个位数字是c;这个三位数是 A .abc B. a+b+c C.100a+10b+c; D. 100c+10b+a8.下列计算中;正确的是 A.224=-a a B.2243a a a =+ C. 2222a a a -=-- D.a a a =-229.已知大家以相同的效率做某件工作;a 人做b 天可以完工;若增加c 人;则提前完工的天数为 A.b c a ab -+ B. b c a b -+ C. c a ab b +- D.ca bb +- 10.若,,00<<ab a 则|9||3|---+-b a a b 的值为A.6B. -6C. 12D.1222++-b a三. 解答题要写出解答步骤.共50分1.计算共28分.其中1 2 3 4小题各3分;5 6 7 8题各4分. 1.-12+15-|-7-8|2.-3×-9--5 (3).121433265÷-+-)( 4.1÷-3 ×-31(5)232326922113)()()(-÷-⨯--- 6 }31]404324{[22)()()(-÷⋅-+-÷⨯-(7))()(22222y xy x y xy x +--++ 83]3227[9222-----)(a a a a a 2.5分先化简;2213322222----+b a b a ab b a )()(再求值;其中22=-=b a , 3.4分图中是由几个小立方块搭成的几何体的俯视图;小正方形中的数字表示在该位置的小立方块的个数;请画出这个几何体的主视图和左视图.4. 4分某人用400元购买了8套儿童服装;如果以每套儿童服装55元的价格为标准;超出的记作正数;不足的记作负数;记录如下: +2 ; -3 ;+2; +1; -2; -1; 0; -2 单位:元 (1)当他卖完这八套儿童服装后是盈利还是亏损 (2)盈利或亏损了多少钱5.4分小强买了张50元的乘车IC 卡;如果他乘车的次数用m 表示;则记录他每次乘车后的余额n 元如下表:次数 m 余额 n 元 1 50-0.8 2 50-1.6 3 50-2.4 450-3.2… … (1)写出乘车的次数m 表示余额n 的关系式.(2)利用上述关系式计算小强乘了13次车还剩下多少元(3)小强最多能乘几次车6.5分用长度相等的小棒按下面方式搭图形(1)图1;图2;图3的小棒根数分别是多少根(2)一、 填空题1.-4;500;0 ; -4;435 2. 61; -6; 61; 3. < < > <4.±0.9 -4 5. -6 3 32- 6. 6 3 2 7. 16 24 108.五棱柱 圆柱 圆锥 9. 10 25 10. 180 11.a+d=b+c 12. 2n 7 二、 选择题1——5 CBCAA 6——10 DCCCB 三、 解答题1.1-12 2 32 3 -11 491 5415- 6-18.873xy 83442--a a 2.-713.4.1盈利 237元 5.1n =50-0.8m 239.6元 362次6.图112根 图222根 图3 42根主视图左视图1 23七年级第一学期期中考试数学试题一、填空题:每题3分;共30分1. 321-的倒数是 ;321-的相反数是 ;321-的绝对值是 ..2. 若n y x 32与y x m 5-是同类项;则m= ; n= ..3. 根据规律填上合适的数:1 -9;-6;-3; ; 3 ;2 1;8;27;64; ;216..4. 代数式c b a 3231-的系数是 ;代数式1-2x 是 、 这二项的和..5. 现有3;4;-6;10四个数;用混合运算使其结果为24;_____________=24.. 6.猜谜语:“横看是圆;侧看是圆;远看是圆;近看是圆;高看是圆;低看是 圆;上看;下看;左看;右看都是圆..”谜底是 ..不是圆7. 对正有理数a ;b ;定义运算★如下:a ★b ba ab+=;则3★4= .. 8.下图A 是一组立方块;请在括号中填出B 、C 图各是什么视图:9.在我校举行的运动会上;小勇和小刚都进入了一百米决赛;小勇用了x 秒;小刚用了y 秒;小勇获得了一百米决赛的冠军..小刚比小勇多用了 秒..10.你喜欢吃拉面吗 拉面馆的师傅;用一根很粗的面条;把两头捏合在一起拉伸;再捏合;再拉伸;反复几次;就把这根很粗的面条拉成了许多细的面条;如下面草图所示..这样捏合到第 次后可拉出128根细面条.. 第一次捏合 第二次捏合 第三次捏合二、选择题..每题2分;共24分每题只有一个正确答案;请你把它的序号填在括号中..1.下面图形是棱柱的是 2.图中不是正方体展开图的是 3.下列式子中;正确的是A .∣-5∣ =5B .-∣-5∣ = 5C .∣-0.5∣ =21- D .-∣- 21∣ =21 4.下列各对数中;数值相等的是 A .23和32B. -22和-22C .2和|-2| D.322和3225.下列各对式子是同类项的是A . 4x 2y 与4y 2x B.2abc 与2ab C.a3- 与-3a D.-x 3y 2与21y 2x3 6.当a=21-时;代数式1-3a 2的值是 A . 21- B.431 C.41 D.412-7.某天上午6:00柳江河水位为80.4米;到上午11:30分水位上涨了5.3米;到下午6:00水位下跌了0.9米..到下午6:00水位为 米.. A76 B84.8 C85.8 D86.6 8.2-的相反数是A .21-B .2-C .21D .29.下面几何体的截面图可能是圆的是 A. 正方体 B. 圆锥 C. 长方体 D. 棱柱 10. 如图;把一条绳子折成3折;用剪刀从中剪断;得到 条绳子 A.3 B.4 C.5 D.611.据xx 晚报;最近一段时间;英国不少地区出现“鼠丁兴旺”;1998年英国老鼠约4800万只;目前老鼠总数约增加了25%;比英国人口还多200万;问日前英国人口总数约是:A .6200万 B.1000万 C.1400万 D.5800万 12.观察下列算式:,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律;你认为202的末位数字是 . A. 2 B. 4 C. 6 D. 8三、计算题..1—5每题5分;6题6分;共31分1 -36 ×41-32 21÷-5×-51327÷-22+-4--1 4-2142×75)3(091)1(2002-⨯⨯÷-6先化简;再求值a+a-6b+a+6b+ b;其中a=32;b=-1四、解答下列各题..1.6分柳州市家庭电话月租费为18元;市内通话费平均每次为0.2元..若芸芸家上个月共打出市内电话a 次;那么上个月芸芸家应付费多少 若你家上个月共打出市内电话70次;那么你家应付费多少2.6分我校有三个年级;其中初三年级有2x+3y 名学生;初二年级有4x+2y 名学生;初一年级有x+4y 名学生..请你算一算;我校共有多少名学生 3.作图题..8分如图;这是一个由小正方体搭成的几何体的俯视图;小正方形中的数字表示在该位置的小正方体的个数..请你画出该几何体的主视图和左视图每图4分4.8分“十.一”黄金周期间;某风景区在7天假期中每天旅游的人数变化如下七天内游客人数最多的一天有 万人;游客人数最少的一天是第天..5.7分如下图;将一张正方形纸片;剪成四个大小形状一样的小正方形;然后将其中的一个小正方形再按同样的方法剪成四个小正方形;再将其中的一个小正方形剪成四个小正方形;如此循环进行下去; 1填表:2如果剪n 次;共剪出多少个小正方形 3如果剪了100次;共剪出多少个小正方形4观察图形;你还能得出什么规律2004—2005学年第一学期初一期中考试数学试题答案一、 填空题1、53-;321;321 2、m=3;n=1 3、10 21254、31-;1;-2x 5、3×4-6+10 6、球7、7128、B :主视图 C :俯视图 9、y-x 10、7二、 选择题1、A 2、B 3、A 4、C 5、D 6、C 7、B 8、B 9、B 10、B 11、D 12、C 三、 计算题 115 2251 327 4346- 5063a+b ;1 四、 解答题1、18+0.2a 元; 32元.2、7x+9y3、主视图俯视图4、1 2 第七天5、1 2 3n+1 (3) 301(4)边长的规律;面积的规律等都可以.竹林中学2005—2006学年度第一学期中测试数学试题初一一、选择题每题2分;共20分:1、在–1;–2;1;2四个数中;最大的一个数是 ..A –1B –2C 1D 22、有理数31的相反数是 ..A 31B 31- C 3 D –3 3、计算|2|-的值是 ..A –2B 21- C 21D 24、有理数–3的倒数是 ..A –3B 31- C 3 D 315、计算20032004(1)(1)-+-的值为 .. A 2- B 2 C 0 D 16、下列计算中;不正确的是 ..A 2)4()6(=-+-B 5)4(9-=---C 1349=+-D 1349-=-- 7、方程 3x -5 = 7+2 x 移项后得 ..A 3x -2 x = 7-5 B3x +2 x = 7-5 C3x +2 x = 7+5 D3x -2 x = 7+5 8、方程 x -a = 7 的解是x =2;则a = ..A 1B -1C 5D -5 9、如果a a =||;那么a 是 ..A0 B0和1 C 正数 D 非负数10、如果两个有理数的积是正数;和也是正数;那么这两个有理数 .. A 同号;且均为负数 B 异号;且正数的绝对值比负数的绝对值大 C 同号;且均为正数 D 异号;且负数的绝对值比正数的绝对值大 二、填空题每空1分;共20分:11、如果向银行存入人民币20元记作+20元;那么从银行取出人民币32.2元记作______元..12、在有理数中;最小的正整数是 ;最大的负整数是 .. 13、35的底数是 ;指数是 ..14、三个连续的自然数;中间的一个为x ;则第一个为 ;第三个为 ..15、代数式32156x xy y -+中共有 项;16xy -的系数是 .. 16、在代数式2245362x x x +-+-中;24x 和 是同类项;2-和 也是同类项..17、去括号:=-+)(b a ;=+-)(b a ..18、若y x n 21与m y x 3是同类项;则=m ;=n .. 19、在所有的有理数中;绝对值最小的是 ..20、在数轴上;与原点的距离等于10的数有 个;它们是 ..21、按所列数的规律填上适当的数:3;2;5;4;7;6;9; ..22、请结合生活实际说明代数式2x 所代表的意义 ..三、解答题:共60分;要求步骤完整23、计算1—2题;每题2分;3—6题;每题4分;共20分:1(7)(10)-++ 2(8)(1)---33419--+ 4377()604126+-⨯ 5()2223-+- 6227(28)75-⨯--÷+ 24、化简与求值每题5分;共10分:1把代数式222(29)3(54)a b a b ++--化简合并同类项..2先化简合并同类项;后求值x x x x 45222++-;其中3-=x ..25、解下列方程1、2题;每题2分;3—6题;每题4分;共20分:1129x -= 2316x -=316239x -= 46958x x +=+58124(57)x x +=-+ 6131(21)134x x x ---=- 26、列方程解应用题每题5分;共10分:1在我们常用的日历中;如果用正方形圈出某月日历上的4个数的和是108;那么这4天分别是几号2把底面直径为2cm;高为10cm 的细长圆柱形钢质零件;锻压成直径为4cm 的矮胖圆柱形零件;求这个零件的高是多少期中测试数学试题答 案一、1、D2、B3、D4、B5、C6、A7、D8、D9、D10、C二、11、-32.2; 12、1;-1; 13、5、3; 14、1x -;1x +; 15、3;16-; 16、23x -;517、,a b a b ---; 18、1,3m n ==; 19、0; 20、2;10、-10; 21、8;22、略..三、23、 377(4)()604126377606060241264535701101+-⨯'=⨯+⨯-⨯'=+-'= 或377(4)()6041269714()60212121216016101+-⨯'=+-⨯'=⨯'=24、25、26、1解:设最小的数为x;则其余3个数是x+1;x+7;x+8;根据题意得……1分178108x x x x ++++++= (2)分23x =…………………………………………1分答或则;……:———23号、24号、30号、31号..………1分2解:设这个零件的高是x cm ; 根据题意得………………………1分2102x ππ= (2)分2.5x cm = (1)分答:这个零件的高是2.5cm..……………………………1分。

北师大版七年级上册数学期中试卷带答案

北师大版七年级上册数学期中试卷带答案

北师大版七年级上册数学期中考试试题一、单选题1.我国是一个干旱缺水严重的国家.我国的淡水资源总量为28000亿立方米,占全球水资源的6%,仅次于巴西、俄罗斯和加拿大.用科学记数法表示28000亿是( ) A .42.810⨯B .32810⨯C .112810⨯D .122.810⨯2.下列代数式书写规范的是( ) A .28x yB .213bC .a a a ⋅⋅D .2m n ÷3.下列各组数中,互为相反数的是( ) A .5+与|5|-B .(5)++与(5)--C .(5)+-与|5|-+D .|5|--与(5)--4.下列运算正确的是( ) A .113()422---= B .044-=- C .34()143⨯-= D .2(6)3-÷-=5.下图是一个由多个相同小正方体堆积而成的几何体从上面看得到的形状图,图中所示数字为该位置小正方体的个数,则从正面看得到的形状图是( )A .B .C .D .6.若M=4x 2-5x+11,N=3x 2-5x+10,则M 和N 的大小关系是( ) A .M >NB .M=NC .M <ND .无法确定7.下列计算正确的是( ) A .32 5a b ab +=B .225 32xy xy -=C .()88x x --=--D .()3327--=8.下列说法正确的是( ) A .单项式是整式,整式也是单项式 B .多项式 2 63x x -+的项分别是2 ,6,3x x C .单项式312x y π的系数是12π,次数是4D .54与5x 是同类项9.下列说法:①a 为任意有理数, 2a 总是正数;②如果0a a +=,则a 是负数;③单项式3 4a b -是四次单项式;④代数式3,,35t a b x +都是整式;⑤2,,26aa π都是单项式;⑥多项式2 4x xy y -++是五次四项式.其中正确的有( )A .4个B .3个C .2个D .1个10.已知代数式229a b -=,则24 210a b -++的值是( ) A .9B .8C .-8D .-911.若单项式24m a b +与单项式1n ab -的和是单项式,则m n += ( ) A .-2B .2C .1D .-112.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .22个B .19个C .16个D .13个13.观察下列算式: 1234567 3 3 39 327 381 3243 3729 32187=======用你所发现规律写出20193的末位数字是( ) A .3B .9C .7D .114.()222729 1x ax y bx x y +-+--+-的值与x 的取值无关,则a b +-的值为( ) A .-2 B .1C .3D .-1二、填空题15.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b+aB .baC .100b+aD .b+10a16.若a ,b 互为相反数,m ,n 互为倒数,则(a +b )×mn﹣2mn +2=_____.17.小明与小刚规定了一种新运算*:若a 、b 是有理数,则*32a b a b =-。

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、﹣5的相反数是()A.﹣5B.5C.D.﹣2、如果向北走5米记作+5米,那么﹣7米表示()A.向东走7米B.向南走7米C.向西走7米D.向北走7米3、袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克4、如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A.B.C.D.5、下列平面图形不能够围成正方体的是()A.B.C.D.6、下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=17、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±48、一个两位数,十位数字是a,十位数字比个位数字小2,这个两位数是()A.a(a+2)B.10a(a+2)C.10a+(a+2)D.10a+(a﹣2)9、已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202110、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.11、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定12、高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3;②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2≤x<3;④当﹣1⩽x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,满分18分)13、比较大小:(填>,=,<).14、如果3x2y m与﹣2x n﹣1y3是同类项,那么m+n=.15、若等式|x﹣2|+(y+1)2=0成立,那么y x的值为.16、一个多项式加上x2﹣2y2等于3x2+y2,则这个多项式是;17、下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.18、如图,5个棱长为1cm的正方体摆在桌子上,为了美观,将这个几何体的所有露出部分(不包含底面)都喷涂油漆,若喷涂1cm2需要油漆0.2克,则喷涂这个几何体需要克油漆.最新北师大版七年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2);20、如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21、化简与计算:(1)化简:3(2a2﹣4b)﹣2(a2﹣4b);(2)先化简再求值:2(a2b+ab2)﹣2(a2b﹣1)+2ab2﹣2,其中a=﹣2,b=2.22、已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.(1)若A+B的值与x无关,求a b.(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.23、某县教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.如表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日+9+10﹣10+13﹣20+8与标准的差(分钟)(1)星期五婷婷读了分钟;(2)她读得最多的一天比最少的一天多了分钟;(3)求她这周平均每天读书的时间.24、有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.25、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价80元,厂方在开展“双11”促销活动期间,可以同时向客户提供两种优惠方案,方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款,现某客户要到该服装厂购买西装20套,领带x条(x超过20).(1)若该客户按方案①购买,需付款元(用含x化简后的式子表示);若该客户按方案②购买,需付款元(用含x化简后的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,请给出一种更为省钱的购买方案,并计算出所需的钱数.26、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣2和﹣6的两点之间的距离是.③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.参考答案1-12:BBCABB DCACBA13、<14、6 15、1 16、2x2+3y2 17、(7n+1 18、3.219、(1)原式=﹣42(2)原式=120、解:如图所示:21、(1)原式=4a2﹣4b (2)原式=﹣3222、解:(1)、﹣27(2)、1623、解:(1)、28;(2)、23;(3)、她这周平均每天读书的时间为34分钟.24、解:(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=a.25、解:(1)答案为:(10400+80x);(10800+72x);(2)按方案①购买较为合算;(3)更为省钱的购买方案为:先按方案①购买20套西装,则领带赠送20条,再按方案②购买剩余的10条领带,共需花费12720元.26、解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|=a+4+3﹣a=7;=5+0+2=7,③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小理由是:a=1时,正好是3与﹣4两点间的距离.。

最新北师大版七年级上学期数学期中考试试卷(附答案答卷)

最新北师大版七年级上学期数学期中考试试卷(附答案答卷)

最新北师大版七年级上学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、8的相反数是()A.B.C.﹣8D.82、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元3、某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.﹣9℃4、开州区大约有1680000人口,1680000用科学记数法表示,正确的是()A.168×104B.16.8×105C.1.68×104D.1.68×1065、下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a36、下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.7、下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|8、下列说法正确的是()A.﹣15ab的系数是15 B.的系数是C.4a2b2的次数是4D.a4﹣2a3b2+b2的次数是49、当x=1时,整式ax3+bx﹣1的值等于10,那么当x=﹣1时,整式ax3+bx﹣1的值为()A.﹣10B.10C.﹣12D.1210、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形的图形需要11根火柴;图③搭3个六边形的图形需要16根火柴;…;按此规律,搭369个六边形的图形需要的火柴数是()A.2214B.2213C.1848D.1846二、填空题(每小题3分,满分18分)11、如果单项式3x m y与﹣5x3y n﹣1是同类项,那么m n的值是.12、比较大小:(填“>”或“<”)13、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种生活现象可以反映的数学原理是.14、在数轴上点P表示的数是﹣2,将点P沿数轴移动4个单位长度后所得的点A表示的数是.15、已知a,b互为相反数,c,d互为倒数,|m﹣3|+|2n﹣4|=0,x的绝对值为2,则的值为.16、已知a、b、c为实数,且abc>0,则+=.最新北师大新版七年级上学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:32÷(﹣1)2+5×(﹣2)+|﹣4|.18、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=2,y=﹣3.19、如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,求2x﹣y+z的值.20、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21、有理数a<0,b>0,c>0,且|b|<|a|<|c|.(1)在数轴上将a,b,c三个数填在相应的括号中;(2)化简:|2a﹣b|+|c﹣b|﹣2|a﹣c|.22、已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B 的值.23、某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米收费1.3元;超过5千米,每千米收费2.4元.(不足1千米的按1千米计算)(1)若某人乘坐了2千米的路程,则他应支付的费用为,乘坐了4千米的路程,则他应支付的费用为,乘坐了8千米的路程,则他应支付的费用为;(2)若某人乘坐了x(x>5的整数)千米的路程,则他应支付的费用为多少?(3)若某人乘坐了14.2千米的路程,请聪明的你为他算一算需准备多少车费?24、先阅读并填空,再解答问题:我们知道,,,那么:(1)用含有n的式子表示你发现的规律:;(2)计算:;(请写出解题过程)(3)计算:.(请写出解题过程)25、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b﹣2|=0,A、B之间的距离记为|AB|=|a﹣b|或|b﹣a|,请回答问题:(1)直接写出a,b,|AB|的值,a=,b=,|AB|=.(2)设点P在数轴上对应的数为x,若|x﹣3|=5,则x=.(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣1,动点P表示的数为x.①若点P在点M、N之间,则|x+1|+|x﹣4|=;②若|x+1|+|x﹣4|=10,则x=;③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?最新北师大版七年级上学期数学期中考试参考答案11、9 12、> 13、点动成线 14、﹣6或2 15、21或﹣19 16、4或0三、解答题17、318、﹣2119、020、解:(1)答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:21、解:(a<0<b<c,如图,(2)﹣c.22、解:(1)a=﹣2,b=1 (2)﹣19.23、解:(1)10元,11.3元,19.8元;(2)(2.4x+0.6)元;(3)需准备36.6元车费.24、解:(1)(2);(3).25、解:(1)﹣3,2,5.(2)8或﹣2.(3)①、答案为:5;②、答案为:﹣3.5或6.5;③经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.。

北师大七年级上册数学期中试卷【含答案】

北师大七年级上册数学期中试卷【含答案】

北师大七年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 有理数中,绝对值最小的数是?A. -1B. 0C. 1D. 23. 已知三角形ABC中,∠A=90°,AB=3cm,BC=4cm,那么AC的长度是?A. 1cmB. 2cmC. 5cmD. 6cm4. 一个等差数列的前三项分别是2,5,8,那么第四项是?A. 9B. 10C. 11D. 125. 若x²=16,则x可以是?A. 2B. -2C. 4D. -4二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。

()7. 等边三角形的三条边都相等。

()8. 0是最小的自然数。

()9. 1的立方根是1。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 一个等差数列的第5项是17,公差是3,那么第1项是______。

12. 若|x|=5,那么x可以是______或______。

13. 4.5的分数形式是______。

14. 已知三角形ABC中,∠A=30°,∠B=60°,那么∠C=______°。

15. 2的平方根是______。

四、简答题(每题2分,共10分)16. 解释等差数列的定义。

17. 简述勾股定理的内容。

18. 解释有理数的概念。

19. 描述因式分解的基本步骤。

20. 什么是绝对值?给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长是10cm,宽是5cm,求其面积。

22. 已知一个等差数列的第1项是3,公差是2,求第6项。

23. 解方程:2x + 5 = 15。

24. 计算下列各式的值:(-3)² + (4)²。

25. 一个等腰三角形的底边长是8cm,腰长是5cm,求其周长。

六、分析题(每题5分,共10分)26. 有一堆石头,每次拿走一半再放回一颗,问剩下几颗石头?27. 小明从家到学校有两条路可走,一条是直线路线,另一条是绕道路线。

北师大版七年级上册数学《期中检测试卷》含答案

北师大版七年级上册数学《期中检测试卷》含答案

北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A. b a a b ->>->B. a a b b >->>-C. b a b a >>->-D. b a a b -<<-<3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯5. 下列图形中是正方体表面展开图的是( )A. B.C. D.6. 单项式25x y-的系数和次数分别是( )A.1 5 -,2 B. -1,3 C.15-,3 D. -1,27. 如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是().A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18. 下列计算正确的是()A. 22232x y yx x y-= B. 532y y-= C. 277a a a+= D. 325a b ab+=9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n个图案中有白色砖()块A. 42n+ B. 64n+ C. 6n D. 24n+10. 下列结论中正确的是()A. 100101(1)(1)1-+-=- B. 若n为正整数,则2(1)1n-=C. 若||||a b=,则a b= D. 15(3)53-÷⨯+=-二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.13. 若m n、满足221|(2)|0m n++-=,则n m=__________.14. 已知x y,互为相反数且均不为0,a b,互为倒数,m是最大的负整数.则代数式2019x y xabm y+-+的值为__________.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯- 16. (1)化简:2222(324)(343)x xy y xy y x +---+.(2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题: (1)用含x 的代数式表示应付的车费; (2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少? 20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a xx b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款. 学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算? (2)若只在一家商店购买,请用含x代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱购买方案并求出最少的花费是多少. 28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ;②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A b a a b ->>-> B. a a b b >->>- C. b a b a >>->- D. b a a b -<<-<【答案】D 【解析】 【分析】根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,进而可得出结论. 【详解】解:∵由图可知,a <0<b ,|a|<|b|=b , ∴b >-a >a >-b . 故选:D .【点睛】本题考查的是有理数的大小比较,数轴上右边的点表示的数总比左边的大是解答此题的关键. 3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米【答案】D 【解析】 【分析】根据正负数的性质,判断最符合标准的即可. 【详解】∵0.20.30.50.6-<<<- ∴-0.2毫米最符合标准 故答案为:D .【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯【答案】B 【解析】 【分析】根据科学记数法的定义以及性质进行表示即可. 【详解】28000万82.810=⨯ 故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键. 5. 下列图形中是正方体表面展开图的是( )A. B.C. D.【答案】C 【解析】【分析】根据正方体表面的十一种展开图的性质进行判断即可. 【详解】A. 不属于正方体表面展开图,错误; B. 不属于正方体表面展开图,错误; C. 属于正方体表面展开图,正确; D. 不属于正方体表面展开图,错误; 故答案为:C .【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2 B. -1,3C. 15-,3D. -1,2【答案】C 【解析】 【分析】根据单项式的定义以及性质来判断系数和次数即可. 【详解】系数和次数分别是15-,3 故答案为:C .【点睛】本题考查了单项式的系数和次数问题,掌握单项式的定义以及性质是解题的关键. 7. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2 B. m =-1,n =2C. m =-2,n =2D. m =2,n =-1【答案】B 【解析】试题分析:本题考查同类项的定义,单项式x 2y m+2与x n y 的和仍然是一个单项式,意思是x 2y m+2与x n y 是同类项,根据同类项中相同字母的指数相同得出. 解:由同类项定义, 可知2=n,m+2=1, 解得m=﹣1,n=2. 故选B .考点:同类项.8. 下列计算正确的是( )A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=【答案】A 【解析】 【分析】根据整式的加减法法则对各项进行运算即可. 【详解】A. 22232x y yx x y -=,正确; B. 532y y y -=,错误; C. 78a a a +=,错误; D. 3232a b a b +=+,错误; 故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +【答案】A 【解析】 【分析】根据图形的规律可得第n 个图案中有白色砖块的数量应是差为4的等差数列,求出代数式即可. 【详解】第1个图案中有白色砖6块 第2个图案中有白色砖10块 第3个图案中有白色砖14块 故第n 个图案中有白色砖24n +块 故答案为:A .【点睛】本题考查了图形的规律题,掌握图形的规律求出代数式是解题的关键.10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=- B. 若n 为正整数,则2(1)1n -= C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-【答案】B 【解析】 【分析】根据幂的运算法则、绝对值的性质、实数的混合运算法则对各项进行计算即可. 【详解】A. ()100101(1)(1)110-+-=+-=,错误;B. 若n 为正整数,则2(1)1n -=,正确;C. 若||||a b =,则a b =±,错误;D. 15(3)453-÷⨯+=-,错误; 故答案为:B .【点睛】本题考查了实数的运算问题,掌握幂的运算法则、绝对值的性质、实数的混合运算法则是解题的关键.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.【答案】 (1). 8- (2). 2- 【解析】 【分析】直接算减法即可;先算乘方,再算除法即可. 【详解】538--=-28(2)2-÷-=-故答案为:8-,2-.【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键. 12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.【答案】38【解析】【分析】根据题意可知,该程序计算是先乘以4,再减去2,若结果大于10,则就是所求,若小于等于10,则重新进行计算.【详解】输入x=3,∴3x-2=3×4-2=10,所以应将10再重新输入计算程序进行计算,即10×4-2=38,故答案为38.【点睛】本题考查了程序运算,代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.13. 若m n 、满足221|(2)|0m n ++-=,则n m =__________. 【答案】14【解析】【分析】根据绝对值和平方的非负性,求出mn 、的值,再代入求解即可. 【详解】∵221|(2)|0m n ++-= ∴21020m n +=⎧⎨-=⎩解得1,22m n =-= 将1,22m n =-=代入n m 中 21124n m ⎛⎫=-= ⎪⎝⎭ 故答案为:14. 【点睛】本题考查了整式的运算,掌握绝对值和平方的非负性是解题的关键.14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y x ab m y+-+的值为__________.【答案】2020-【解析】【分析】 根据相反数和倒数的定义以及性质得0111x x y ab m y +==-==-,,,,再代入求解即可. 【详解】∵x y ,互为相反数且均不为0, ∴0,1x x y y+==- ∵a b ,互为倒数∴1ab =∵m 是最大的负整数∴1m =- 将0111x x y ab m y +==-==-,,,代入2019x y x ab m y+-+中 原式020191=2020---=故答案为:2020-. 【点睛】本题考查了整式的混合运算,掌握相反数和倒数的定义以及性质、最大的负整数是1-是解题的关键.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷- (3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯-【答案】(1)11 (2)28- (3)96.89- (4)12-【解析】【分析】(1)直接算加减法即可.(2)先算乘方,再算乘除法,最后算加法即可.(3)根据乘法分配律计算即可.(4)先算乘方,再算中括号内的乘法,再算中括号内的减法,再算乘法,最后算减法即可,.【详解】(1)20(14)(18)13+----11=(2)2210(2)8()3-⨯--÷- 10412=-⨯+4012=-+28=-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- 36296.89111111⎛⎫=⨯--- ⎪⎝⎭()96.891=⨯-96.89=-(4)2214[102(3)]2--⨯-⨯- 116[1029]2=--⨯-⨯ 116[1018]2=--⨯- 116[8]2=--⨯- 16+4=-12=-【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键.16. (1)化简:2222(324)(343)x xy y xy y x +---+. (2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.【答案】(1)xy - (2)7-【解析】【分析】(1)先去括号,再合并同类项即可.(2)先去小括号,再去中括号,最后算加减法即可化简,再代入求值即可.【详解】(1)2222(324)(343)x xy y xy y x +---+ 2222324343x xy y xy y x =+--+-xy =-.(2)362(31)(7)[]y x y x y --+-+-3662[2]7y x y x y =---++-355[4]y x y =---3+554+y x y =-8+45y x =-将23x y -=代入原式中原式()8+542544357y x x y =-=--+=-⨯+=-.【点睛】本题考查了整式的混合运算,掌握整式混合运算法则、合并同类项的方法是解题的关键. 17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.【答案】作图见解析【解析】【分析】根据几何体的三视图的性质,作出这个几何体的正视图和左视图即可.【详解】如图所示,即为所求.正视图左视图【点睛】本题考查了几何体的三视图问题,掌握几何体的三视图的性质是解题的关键.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?【答案】(1)西方向,2千米(2)180【解析】【分析】(1)把所有行驶记录相加,即可判断最后位置方向和距离.(2)把所有行驶记录的绝对值相加,再除以汽车行驶每千米的耗油量,即可求解.-+--+--++=-.【详解】(1)1098123767642∵约定向东为正,向西为负∴养护小组最后到达的地方在出发点的西方向,距出发点2千米.(2)10+9+8+12+3+7+6+7+6+41800.4=(升) 故这一天养护小组的汽车共耗油180升.【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题:(1)用含x 的代数式表示应付的车费;(2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少?【答案】(1)()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)11 (3)11 【解析】【分析】(1)根据题意,列出代数式即可;(2)将5x =代入方程求解即可;(3)将20y =代入方程求解即可.【详解】(1)设应付的车费为y 元,由题意得()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)∵53x =>∴()8 1.55311y =+⨯-=故他应付的车费为11元.(3)∵208>∴将20y =代入()8 1.53y x =+-中()208 1.53x =+-解得11x =故小明乘坐的路程是11km .【点睛】本题考查了一元一次方程的行程问题,掌握解一元一次方程的方法是解题的关键.20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?【答案】证明见解析【解析】【分析】先化简多项式,然后分别代入2a =-,3b =-和2a =,3b =-求原式的值,即可得证. 【详解】2222215[(31)2(4)]2a b ab a b a b ab -+--++ 222225[3128]a b ab a b a b ab =-+----225[9]a b a b =--2259a b a b =-+249a b =+当2a =-,3b =-时原式()()2423939=⨯-⨯-+=-当2a =,3b =-时原式()2423939=⨯⨯-+=- ∴小明做题时把2a =-错抄成2a =,但他最终求出的值也正确.【点睛】本题考查了多项式的计算问题,掌握化简多项式的方法、代入求值法是解题的关键.四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a x x b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.【答案】9【解析】【分析】根据多项式的定义以及性质求出,a b 的值,再代入求值即可.【详解】∵2324(2)25a x x b x x -+-+-+是关于x 的五次四项式∴2520a b -=⎧⎨+=⎩解得7,2a b ==-将7,2a b ==-代入-a b 中原式()729=--=故答案为:9.【点睛】本题考查了多项式的问题,掌握多项式的定义以及性质是解题的关键.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.【答案】 (1). 14 (2). 10【解析】【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______【答案】2-..【解析】【分析】首先认真分析找出规律,然后再代入数值计算.【详解】在1⊕x 中,1相当于a ,x 相当于b ,∵x=2,∴符合a<b 时的运算公式,∴(1⊕x )x=2.在3⊕x 中,3相当于a ,x 相当于b ,∵x=2,∴符合a ⩾b 时的运算公式,∴3⊕x=4.∴(1⊕x)−(3⊕x)=2−4=−2.【点睛】此题考查有理数的混合运算,掌握运算法则是解题关键24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.【答案】222a b c -+【解析】【分析】根据绝对值的性质以及数轴的性质进行计算即可.【详解】由数轴得0,0,0a c b c b a +>-<-> ∴a c b c b a ++---a c cb b a =++--+222a b c =-+故答案为:222a b c -+.【点睛】本题考查了绝对值的运算问题,掌握绝对值的性质以及数轴的性质是解题的关键.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.【答案】0【解析】【分析】根据绝对值的性质求出m 、n 的值,再代入求值即可.【详解】当0,0,0a b c >>>时,可得最大值=1+1+1+14a b c abc b a cm a c b +++== 当0,0,0a b c <<<时,可得最小值=11114a b c abc a b c a n bc+++----=-= ∴()20202020()440m n +=-=故答案为:0. 【点睛】本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.【答案】-216.【解析】试题分析:先化简()()423A A B A B ⎡⎤+--+⎣⎦可得34A B -,再把2222424,363A x xy y B x xy y =-+=-+代入34A B -可得其值为18xy ,再由23,16,0,x y xy ==<求得x 、y 的值,代入即可求值.试题解析:解:()()423A A B A B ⎡⎤+--+⎣⎦=423334A A B A B A B +---=-, 所以34A B -=22223(424)4(363)x xy y x xy y -+--+=222212612122412x xy y x xy y -+-+-=18xy ∵23,16,x y ==∴3,4,x y =±=±∵0,xy <∴x=3,y=-4或x=-3,y=4把x=3,y=-4代入,原式=183(4)216⨯⨯-=-;把x=-3,y=4代入,原式=18(3)4216⨯-⨯=-.考点:整式的加减混合运算.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款.学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算?(2)若只在一家商店购买,请用含x 的代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱的购买方案并求出最少的花费是多少.【答案】(1)若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【解析】【分析】(1)分别根据题意计算出若只在甲购买和若只在乙购买的花费,比较两个花费的大小,即可判断哪种方案更划算.(2)根据题意列出代数式表示即可.(3)设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元,可得方程y=165760x -+,再根据020x ≤≤,即可确定最省钱的购买方案.【详解】(1)若只在甲购买:()20020+6020405600⨯-⨯=(元)若只在乙购买:2002090+4060905760⨯⨯⨯⨯=%%(元)∵56005760<若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在甲购买: ()20020+2040403200x x ⨯-⨯=+若只在乙购买: 2002090+4090360036x x ⨯⨯⨯=+%%故若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)∵单买领带时,乙商店比甲商店便宜∴要想花费最少,在甲商店购买的西装套数等于领带的条数∴设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元 ()()2002009020409060y x x x =+⨯⨯-+⨯⨯-%%=165760x -+.∵020x ≤≤∴当20x 时,总花费y 有最小值最小值为162057605440-⨯+=故当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质以及最值问题是解题的关键.28. (1)探索材料1(填空): 数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ; ②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .【答案】(1)探索材料1(填空):3,46,3,,4x --,; (2)探索材料2(填空):①点A 和点B 之间;②点B 上;③点B 和点C 之间;(3)结论应用(填空):①7,34x -≤≤;②8,3-;③18,42x -≤≤.【解析】【分析】 (1)探索材料1(填空):根据给出的材料填写即可; (2)探索材料2(填空):分情况讨论点P 的位置,使点P 到其他点的距离之和最小;(3)结论应用(填空):根据探索材料2得出的结论填写即可.【详解】(1)探索材料1(填空):253-=,()314--=,()6363+=--,()44x x +=--故答案:3,46,3,,4x --,. (2)探索材料2(填空):①1)当点P 在点A 左边2PA PB PA AB +=+2)当点P 在点A 之间PA PB AB +=3)当点P 在点B 右边2PA PB PB AB +=+∴当点P 在点A 和点B 之间,才能使P 到A 的距离与P 到B 的距离之和最小②1)当点P 在点A 左边2PA PB PC PA PB AC ++=++2)当点P 在点A 和点B 之间PA PB PC AC BP ++=+3)当点P 在点B 和点C 之间PA PB PC AC BP ++=+4)当点P 在点C 右边2+PA PB PC PC PB AC ++=+∴最小值为AC BP +,当点P 在点B 上时,值最小为AC∴当点P 在点B 上时,才能使P 到A B C ,,三点的距离之和最小③1)当点P 在点A 左边42PA PB PC PD PA AB BC AD +++=+++2)当点P 在点A 和点B 之间2PA PB PC PD PB BC AD +++=++3)当点P 在点B 和点C 之间PA PB PC PD AD BC +++=+4)当点P 在点C 和点D 之间2PA PB PC PD PC BC AD +++=++5)当点P 在点D 右边42PA PB PC PD PD CD BC AD +++=+++∴当点P 在点B 和点C 之间时,才能使P 到A B C D ,,,四点的距离之和最小故答案为:①点A 和点B 之间;②点B 上;③点B 和点C 之间.(3)结论应用(填空):①由探索材料2得,当34x -≤≤时,|3||4|x x ++-有最小值,最小值为|3||4|347x x x x ++-=++-=②由探索材料2得,这是在求点x 到6,3,2--三个点的最小距离,∴当3x =-时,|632x x x ++++-|有最小值,最小值为|3303386325-++++-=+--+=| ③由探索材料2得,这是在求点x 到7,4,2,5--四个点的最小距离,∴当42x -≤≤时,7425||x x x x ++++-+-有最小值,最小值为7425|742|518x x x x x x x x ++++-+-=++++-+-=.故答案为:①7,34x -≤≤;②8,3-;③18,42x -≤≤.【点睛】本题考查了数轴上两点之间的距离最值问题,掌握数轴上两点之间的距离公式、绝对值的性质是解题的关键.。

北师大版七年级上册数学期中测试卷及答案

29.某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:
班级
1班
2班
3班
4班
实际购数量(本)
_____
33
_____
21
实际购数量与计划购数量的差值(本)
+12
_____
﹣8
﹣9
(1)完成表格;
(2)根据记录的数据可知4个班实际一共购书_____本?
A. B. C. D.【答案】C【解析】【分析】
根据平面图形的折叠以及立体图形的表面展开图的特点解题.
【详解】A、个方格中有“田”字的,不能组成正方体,故A错.
B、出现U字形,不能组成正方体,故B错.
C、可以组成正方体,故C正确.
D、有两个面重合,不能组成正方体,故D错.
故本题选C
【点睛】考查了展开图叠成几何体,空间观念要强。也可以记住正方体展开图的形式:一四一有6种,一三二有3种,二二二和三三各1种.
(3)书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届4个班实际购书最少花费多少元?
30.若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为39.
9.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()
A. B. C. D.
10.若一个多边形的对角线共有14条,则这个多边形的边数是( )

北师大版七年级上册数学期中考试试卷附答案

北师大版七年级上册数学期中考试试题一、选择题。

(每小题只有一个答案正确)1.12-的倒数是()A.B.C.12-D.122.中国人很早就开始使用负数,中国古代数学著作《九章算术》.如果收入120元记作+120元,那么-100元表示( )A.支出20元B.支出100元C.收入20元D.收入100元3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约45000000000千克,这个数据用科学记数法表示为()A.4.5×10 10千克B.45×10 9千克C.45×109千克D.0.45×1011千克4.下面几个几何体,从正面看到的形状是圆的是( )A.B.C.D.5.如图所示的是()的表面展开图.A.三棱锥B.三棱柱C.四棱柱D.四棱锥6.下列各图是正方体展开图的是()A.B.C.D.7.如图是一数值转换机,若输入的x 为5,则输出的结果为()A.21 B.﹣21 C.9 D.498.下列关于单项式-5xy2的说法中,正确的是()A .系数是-5,次数是3B .系数是-5,次数是2C .系数是5,次数是3D .系数是5,次数是2 9.下列各题运算正确的是( )A .2a+b=2abB .3x 2﹣x 2=2C .7mn ﹣7mn=0D .a+a=a 210.下列去括号正确的是( )A .a+(b+c)=a+b-cB .a+(b-c)=a+b+cC .a-(b+c)=a-b+cD .a-(b-c)=a-b+c 11.如果a+b=0,那么a 、b 两个有理数一定是( )A .都等于0B .一正一负C .互为相反数D .互为倒数 12.有一个两位数,个位数字是n ,十位数字是m ,则这个两位数可表示为( ) A .mn B .10m n + C .10n m + D .m n +13.下列说法不正确的是( )A .0 既不是正数,也不是负数B .0 的绝对值是 0C .一个有理数不是整数就是分数D .1 是绝对值最小的正数14.某商店举办促销活动,促销的方法是将原价x 元的衣服以()0.750x -元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去50元后再打7折B .原价打7折后再减去50元C .原价减去50元后再打3折D .原价打3折后再减去50元15.如图,边长为a 的正方形中阴影部分的面积为( )A .a 2﹣14πa 2B .14πa 2C .a 2﹣πa 2D .πa 2二、填空题16.比较大小:﹣5_____﹣1(用“>”或“<”或“=”填空).17.若单项式 3x 2y 与﹣5x m y n 是同类项,则 m ﹣n =_____.18.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 19.若|a ﹣2|﹢(b ﹢1)2=0,则 a ﹢b 的值是_____.20.多项式 x 2﹣2kxy ﹣3y 2﹢6xy ﹣1 化简后不含 xy 项,则 k =_____.21.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____.22.已知代数式x﹢2y 的值是3,则代数式2x﹢4y﹢1 的值是_____.23.某公式在销售一种智能机器人时发现,每月可售出200 个,当每个降价1 元时,可多销售出6 个,如果每个降价x 元,那么每月可售出机器人的个数是_______.24.已知有理数a,b,c 在数轴上的位置如图所示,则化简代数式|a﹣b|﹣|b﹣c|﹢|c﹣a|=_____.三、解答题25.有理数的运算:(1)12﹣(﹣8)+(﹣5)(2)(﹢4.3)﹣(﹣4)+(﹣2.3)﹣(﹢4)(3)253()24368-+-⨯(4)42()393÷-⨯(5)﹣12+14×(﹣2)3+(﹣3)226.整式的加减(1)化简:3a+2b﹣5a﹣b(2)化简:(5ab+3a2)+2(a2﹣2ab)(3)化简:并代入求值:5x2+(4y2﹣x2)﹣3(y2﹣7x2),其中x=﹣1,y=427.如图是小强用六块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.(用黑色签字笔画图)28.从2020 年开始,我市中考总分中要加大体育分值,某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140 元,跳绳每条定价30 元.现有A、B 两家网店均提供包邮服务,并提出了各自的优惠方案.A 网店:买一个足球送一条跳绳;B 网店:足球和跳绳都按定价的90%付款.已知要购买足球60 个,跳绳x 条(x>60)(1)若在A 网店购买,需付款元(用含x 的代数式表示);若在B 网店购买,需付款元(用含x 的代数式表示);(2)若x=100 时,通过计算说明此时在哪家网店购买较为合算?29.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达)(4)运用你所得到的公式计算:10.3×9.7.参考答案1.A【分析】根据倒数的概念求解即可.根据乘积等于1的两数互为倒数,可直接得到-1的倒数为.2故选A2.B【分析】根据收入表示正数,则负数表示支出,即可得出答案.【详解】∵收入120元记作+120元∴-100元表示支出100元故选B.【点睛】本题考查正数与负数,掌握正数与负数是一对相反意义的量是解题的关键.3.A【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:45000000000千克=4.5×1010千克.故选:A【点睛】本题考查用科学记数法表示绝对值大于10的数,一般形式为a×10n,其中1≤|a|<10,n为整数位数减1.4.B【分析】根据主视图是从正面看所得到的图形可直接选出答案.【详解】解:A. 从正面看到的形状是正方形,故错误;B. 从正面看到的形状是圆,故正确;C. 从正面看到的形状是三角形,故错误;D. 从正面看到的形状是长方形,故错误.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.5.B【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:根据展开图可知,侧面为三个长方形,底边为三角形,所以此表面展开图是三棱柱的展开图.故选:B.【点睛】本题考查几何体的展开图,解题的关键是掌握几何体展开图的还原.6.B【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【详解】A.“田”字型,不是正方体的展开图,故选项错误;B.是正方体的展开图,故选项正确;C.不是正方体的展开图,故选项错误;D.不是正方体的展开图,故选项错误.故选:B.【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B【分析】根据图示得出式子(x-2)×(-7),把x的值代入求出即可.【详解】解:根据图示得出式子(x-2)×(-7),因为x=5,所以输出的结果是(5-2)×(-7)=3×(-7)=-21.故选:B【点睛】本题考查了求代数式的值的应用,主要培养学生的观察能力和分析能力,能否根据程序图得出式子是解题关键.8.A【分析】根据单项式系数及次数的概念进行判断即可.【详解】根据单项式系数、次数的定义可知,单项式-5xy2的系数是-5,次数是3.故选:A.【点睛】本题考查了单项式,明确单项式系数、次数的定义是解题的关键.9.C【解析】试题分析:根据合并同类项法则依次分析各项即可得到结果.A.2a与b不是同类项,无法合并,B.,D.a+a=2a,故错误;C.7mn-7nm=0,本选项正确.考点:本题考查的是合并同类项点评:解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.10.D【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“-”,去括号后,括号里的各项符号发生改变,“-”遇“+”变“-”号,“-”遇“-”变“+”;据此判断.【详解】A、原式=a+b+c,故本选项不符合题意.B、原式=a+b-c,故本选项不符合题意.C、原式=a-b-c,故本选项不符合题意.D、原式=a-b+c,故本选项符合题意.故选D.【点睛】此题考查去括号的法则,解题关键在于掌握若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“-”,去括号后,括号里的各项符号发生改变.11.C【分析】根据有理数的加法,可得a、b的关系,可得答案.【详解】∵a+b=0,∴a、b是互为相反数.故选C【点睛】本题考查了相反数,互为相反数的两个数的和为0是解题关键.12.B【分析】因为m代表十位这个数字的大小,根据代数式的表示即可.【详解】解:m代表十位数字的大小,n代表个位数字的大小,所以这个两位数为10m+n 故选B【点睛】本题考查了用字母表示数及列代数式,解题的关键是掌握代数式的表达方式.13.D【分析】根据有理数的相关概念和分类逐项判断即可求解.【详解】解:A. 0 既不是正数,也不是负数,判断正确,不合题意;B. 0 的绝对值是0,判断正确,不合题意;C. 一个有理数不是整数就是分数,判断正确,不合题意;D. 没有绝对值最小的正数,判断错误,符合题意.故选:D【点睛】本题考查的是有理数的有关定义及分类,熟练掌握相关知识是解题的关键.14.B【分析】通过表达式()0.750x -判断商店的促销方法即可得解.【详解】由()0.750x -可知,按照先乘法后减法的顺序得原价先打七折,再减去50元,故选:B.【点睛】本题主要考查了整式表示的实际含义,根据题目分析表达式的实际意义是解决本题的关键. 15.A【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a 的圆的面积,本题得以解决.【详解】解:由图可得:正方形面积:2a ,圆的面积21a 4π, 阴影部分的面积为: 2a -21a 4π, 所以A 选项是正确的.【点睛】本题主要考查与圆相关不规则图形的阴影面积.16.<【分析】有理数比较大小的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】|-5|=5,|-1|=1,∵5>1,∴-5<-1.故答案为:<.【点睛】本题考查了有理数比较大小,熟练掌握比较大小的法则是解题的关键.17.1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,即可求出m,n的值.【详解】解:∵3x2y 与﹣5x m y n是同类项,∴m=2,n=1.∴m-n=2-1=1.故答案为:1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.18.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.19.1【分析】根据两个非负数的和为0,则这两个数都是0,得到关于a、b的式子,求出a、b即可求解.【详解】解:由题意得|a﹣2|=0,(b﹢1)2=0,所以a-2=0,b+1=0,所以a=2,b=-1,所以a+b=2+(-1)=1.故答案为:1【点睛】本题考查了绝对值以及偶次方的性质,根据题意正确得出a,b的值是解题关键.20.3【分析】根据合并同类项法则可得−2k+6=0,再解即可.【详解】解:由题意得:−2k+6=0,解得:k=3,故答案为:3.【点睛】此题主要考查了合并同类项,解题的关键是掌握合并同类项法则.21.-1或5【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.22.7【分析】把题中的代数式2x+4y+1变为x+2y的形式,然后利用“整体代入法”求代数式的值.【详解】解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1.则原式=2×3+1=7.故答案为:7.【点睛】本题考查了代数式求值,掌握整体代入的方法是解决问题的关键.23.(200+6x)【分析】根据题意,可以列出相应的代数式,本题得以解决.【详解】解:由题意可得,如果每个降价x元,那么每月可售出机器人的个数是(200+6x).故答案为:(200+6x).【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.24.2a-2b.【分析】根据a、b、c在数轴上的位置判断出a﹣b>0,b﹣c>0,c﹣a<0,然后对原式进行化简,最后合并同类项求解.【详解】解:由数轴可得,c<b<0<a,∴a﹣b>0,b﹣c>0,c﹣a<0,∴|a﹣b|﹣|b﹣c|﹢|c﹣a|=a-b-(b-c)+(a-c)= a-b-b+c+a-c=2a-2b.故答案为:2a-2b.【点睛】本题考查了整式的加减,解答本题的关键是掌握数轴的性质以及绝对值的化简.25.(1)15;(2)2;(3)﹣5;(4)﹣2;(5)-5.【分析】根据有理数的混合运算法则和运算律计算即可.【详解】解:(1)12﹣(﹣8)+(﹣5)=12+8-5=15;(2)(2)(﹢4.3)﹣(﹣4)+(﹣2.3)﹣(﹢4)=4.3+4-2.3-4=2;(3)253253()24=242424=16209=5 368368-+-⨯-⨯+⨯-⨯-+--;(4)4243()3=()3=2 9392÷-⨯⨯-⨯-;(5)﹣12+14×(﹣2)3+(﹣3)2=-12+14×(﹣8)+9=-12-2+9=-5.【点睛】本题考查了有理数的混合运算,有理数的混合运算顺序是“先做乘方,再做乘除,最后做加减,有括号的按括号指明的运算顺序运算”,在有理数的运算中,可以运用运算律简化运算.26.(1)﹣2a+b;(2)5a2+ab;(3)25x2+y2;41.【分析】(1)合并同类项即可;(2)先去括号,再合并同类项即可;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:(1)3a+2b﹣5a﹣b=-2a+b(2)(5ab+3a2)+2(a2﹣2ab)=5ab+3a2+2a2﹣4ab=ab+5a2(3)原式=5x2+4y2﹣x2﹣3y2+21x2=25x2+y2,当x=-1,y=4时,原式=25+16=41.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.答案见详解.【分析】观察立体图形画出三视图即可.【详解】如图:【点睛】此题考查立体图形的三视图,需要有空间感.28.(1)(6600﹢30x);(7560﹢27x);(2)当x=100 时,应选择在A 网店购买合算.【分析】(1)由题意先列出在A 店和网店B购买的代数式,并进行化简即可得出结果;(2)将x=100分别代入(1)中A店,B店的代数式中计算,则可得出结论.【详解】解:(1)根据题意,得:A 店购买可列式:60×140﹢(x﹣60)×30=(6600﹢30x)元;在网店B 购买可列式:(60×140﹢30x)×0.9=(7560﹢27x)元.故答案为:(6600﹢30x);(7560﹢27x).(2)当x=100 时,在A 网店购买需付款:6600﹢30×100=9600(元),在B 网店购买需付款:7560﹢27×100=10260(元),∵9600<10260,∴当x=100 时,应选择在 A 网店购买合算.【点睛】此题考查的是列代数式并求值,解答此类题的关键是弄清题意和找到对应的数量关系.29.(1)a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)99.91.【解析】试题分析:(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2;故答案为a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.考点:平方差公式的几何背景.。

最新北师大版七年级数学上册全章检测卷期中期末检测卷含答案解析及单元知识点总结和思维导图

第一章检测卷(总分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.下列几何体中,是圆柱的是()2.下列几何体没有曲面的是()A.圆锥B.圆柱C.球D.棱柱3.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是()4.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面,侧面均为长方形D.从正面、左面、上面看球体得到的图形均为同样大小的圆形5.如图,一个长方形绕轴l旋转一周得到的立体图形是()A.棱锥B.圆锥C.圆柱D.球第5题图第7题图6.如图是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是()7.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥8.下列展开图不能叠合成无盖正方体的是()9.如图,圆柱高为8,底面半径为2,若截面是长方形,则长方形的最大面积为() A.16 B.20 C.32 D.18第9题图第10题图10.一个几何体由几个大小相同的小正方体搭成,其从左面看和从上面看得到的图形如图所示,则搭成这个几何体的小正方体的个数是()A.3个B.4个C.5个D.6个二、填空题(每小题3分,共18分)11.夜晚的流星划过天空时留下一道明亮的光线,由此说明了____________的数学事实.12.下面的几何体中,属于柱体的有______;属于锥体的有_____;属于球体的有______.13.用一个平面去截正方体,截面__________是三角形(填“可能”或“不可能”).14.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于________.第14题图第16题图15.用平面去截一个几何体,如果得到的是长方形,那么所截的这个几何体可能是________________(至少填两种).16.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为__________.三、解答题(共72分)17.(8分)下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.18.(9分)由7个相同的小立方块搭成的几何体如图所示,请画出从正面、左面、上面看到的几何体的形状图.19.(10分)小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有________种添补的方法;(2)任意画出一种成功的设计图.20.(10分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.21.(12分)如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?22.(11分)用5个相同的正方体搭出如图所示的组合体.(1)分别画出从正面、左面、上面看这个组合体时看到的图形;(2)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同.你认为这个设想能实现吗?若能,画出添加正方体后,从上面看这个组合体时看到的图形;若不能,说明理由.23.(12分)如图所示,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x=________,y=________;(2)如果面“2”是右面,面“4”在后面,则上面是________(填“6”“10”“x”或“y”);(3)图①中,M,N为所在棱的中点,试在图②中找出点M,N的位置,并求出图②中三角形ABM的面积.参考答案与解析1.A 2.D 3.B 4.B 5.C 6.B 7.D 8.C 9.C10.B 解析:由图可知,底层有3个小正方体,第2层有1个小正方体.故搭成这个几何体的小正方体的个数是3+1=4(个).11.点动成线 12.①③⑤⑥ ④ ② 13.可能 14.24cm 3 15.圆柱、长方体(答案不唯一)16.4π或π 解析:(1)当底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;(2)当底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故其底面圆的面积为4π或π.17.解:如图所示.18.解:如图所示.19.解:(1)4(2)答案不唯一,如图.20.解:(1)长方体(2)由题可知,长方体的底面是边长为3cm 的正方形,高是4cm ,则这个几何体的体积是3×3×4=36(cm 3).答:这个几何体的体积是36cm 3.21.解:(1)甲三角形旋转一周可以形成一个圆锥体,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是3.14×62×10-13×3.14×62×10=753.6(立方厘米).22.解:(1)画出的图形如图①所示.(2)能实现.(6分)添加正方体后从上面看到的图形如图②所示,有两种情况.23.解:(1)12 8 (2)6(3)有两种情况.如图甲,三角形ABM 的面积为12×10×5=25.如图乙,三角形ABM 的面积为12×(10+10+5)×10=125.∴三角形ABM 的面积为25或125.第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

七年级上学期数学期中考试试卷含答案(北师大版)

北京大学附中七年级(上册)期中数学试卷一、选择题(本题共10小题,每小题只有一个选项符合题意,每小题3分,共30分)1.(3分)有理数的相反数是()A.B.3C.﹣3D.﹣2.(3分)在有理数﹣3,﹣2,0,1中最大的一个有理数是()A.﹣3B.﹣2C.0D.13.(3分)下列各式中,去括号正确的是()A.a+(2b﹣3c+d)=a﹣2b+3c﹣dB.a﹣(2b﹣3c+d)=a﹣2b﹣3c+dC.a﹣(2b﹣3c+d)=a﹣2b+3c﹣dD.a﹣(2b﹣3c+d)=a﹣2b+3c+d4.(3分)2017年10月18日25日在北京胜利召开了“中国共产党第十九次代表大会”.截止到2017年10月18日25日晚6时,在百度上搜索关键词“十九大”,显示的搜索结果约为96500000条,将96500000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108D.0.965×1095.(3分)下列各式计算正确的是()A.a2+a2=2a4B.5m2﹣3m2=2C.﹣x2y+yx2=0D.4m2n﹣m2n=2mn6.(3分)单项式﹣的系数和次数分别是()A.﹣3和2B.﹣3和3C.﹣和2D.﹣和37.(3分)在下列各数﹣(+3),﹣22,(﹣2)2,(﹣1)2020,﹣|﹣5|中,负数有()A.2个B.3个C.4个D.5个8.(3分)下列各对数中,数值相等的是()A.(﹣2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)39.(3分)如图,点A和B表示的数分别为a和b,下列式子中,不正确的是()A.a>﹣b B.ab<0C.a﹣b>0D.a+b>010.(3分)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.字母a b c d e f g h i j k l m序号12345678910111213字母n o p q r s t u v w x y z序号14151617181920212223242526按上述规定,将明码“love”译成密码是()A.gawq B.shxc C.sdri D.love二、填空题(本题共8小题,每题2分,共16分)11.(2分)北大附中运动场跑道离底面的高度为3米,记为+3米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为米.12.(2分)﹣1的倒数是,绝对值等于10的数是.13.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为cm.(用含a的代数式表示)14.(2分)多项式3xy2﹣4x2y2z+12是次项式.15.(2分)若单项式﹣x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.16.(2分)数轴上与表示﹣3的点距离4个单位长度的点所表示的数为:.17.(2分)若a﹣2b=3,则2a﹣4b﹣5=.18.(2分)在有理数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=b2;当a<b 时,a⊕b=a.则当x=3时,(1⊕x)•x﹣(4⊕x)的值为.(“•”和“﹣”仍为有理数运算中的乘号和减号).三、解答题(本大题共8个小题,共54分)19.(12分)计算:(详细写出计算步骤).(1)(﹣81)÷×÷(﹣16).(2)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(5.2).(3)﹣32×(﹣)2+(++)×(﹣24).(4)(﹣2)4﹣[(﹣3)2﹣(1﹣25×)÷(﹣2)].20.(6分)解方程:(详细写出解答步骤).(1)﹣3x+5=2x﹣1.(2)4x﹣3(5﹣x)=6.21.(16分)化简(1)2x2y﹣2xy﹣4xy2+xy+4x2y﹣3xy2(2)﹣6ab2﹣[a2b+2(a2b﹣3ab2)](3)若A=x2﹣3x﹣1,B=x2﹣2x+1,求:当x=﹣2时,2A﹣3B的值.(4)已知a2+b2=6,ab=﹣2,求代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值.22.(4分)已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置:(2)在(1)的条件下,化简|a﹣b|﹣|b+c|+|c+a|.23.(4分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的和1+(﹣1)+2=2(﹣3)+(﹣4)+(﹣5)=﹣12积与和的商(﹣2)÷2=﹣1(2)请用你发现的规律求出图④中的数x和图⑤中的数y.24.(4分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?25.(4分)运算:(+3)*(+15)=+18,(﹣14)*(﹣7)=+21,(﹣12)*(+14)=﹣26,(+15)*(﹣17)=﹣32,0*(﹣15)=(﹣15)*0=+15,(+13)*0=0*(+13)=+13.(1)请你认真思考上述运算,归纳*运算的法则:两数进行*运算时,.特别地,0和任何数进行*运算,或任何数和0进行*运算,.(2)计算:(+11)*[0*(﹣12)].(3)是否存在有理数a、b,使得a*b=0?若存在,求出a、b的值;若不存在,说明理由.26.(4分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于按固定顺序的k个数:x1,x2,x3,L,x k,称为数列A K:x1,x2,x3,L,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+L+|x k﹣1﹣x k|.例如,若数列A3:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,﹣5,﹣2,求V(A3).(2)已知数列A5:x1,x2,x3,x k,x5中5个数均为非负数,且x1+x2+x3+x4+x5=1009,直接写出V(A5)的最大值和最小值.(3)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个整数,且x1=3,x4=5,V(A4)=4,直接写出所有可能的数列A4中至少两种.北京大学附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题只有一个选项符合题意,每小题3分,共30分)1.【解答】解:的相反数是﹣,故选:D.2.【解答】解:1>0>﹣2>﹣3,最大的是1,故选:D.3.【解答】解:A、a+(2b﹣3c+d)=a+2b﹣3c+d,错误;B、a﹣(2b﹣3c+d)=a﹣2b+3c﹣d,错误;C、正确;D、a﹣(2b﹣3c+d)=a﹣2b+3c﹣d,错误.故选:C.4.【解答】解:∵a×10n,(1≤|a|<10,n表示整数),∴96500000=9.65×107.故选:B.5.【解答】解:A、a2+a2=2a2,故选项错误;B、5m2﹣3m2=2m2,故选项错误;C、正确;D、4m2n﹣m2n=3m2n,故选项错误.故选:C.6.【解答】解:根据单项式定义得:单项式﹣的系数是﹣,次数是3.故选:D.7.【解答】解:﹣(+3)=﹣3,﹣22=﹣4,(﹣2)2=4,(﹣1)2020=1,﹣|﹣5|=﹣5,则负数有3个,故选:B.8.【解答】解:∵(﹣2)3=﹣8,(﹣3)2=9,故A中的两个数不相等;﹣32=﹣9.(﹣3)2=9,故B中的两个数不相等;﹣33=﹣27,(﹣3)3=﹣27,故C中的两个数相等;(﹣3×2)3=﹣216,﹣3×23=﹣24,故D中的两个数不相等.故选:C.9.【解答】解:如图所示:﹣1<a<0,1<b<2,A、a>﹣b,正确,不合题意;B、ab<0,正确,不合题意;C、a﹣b<0,故此选项错误,符合题意;D、a+b>0,正确,不合题意.故选:C.10.【解答】解:如l对应序号12为偶数,则密码对应序号为+13=19,对应s,以此类推,得“love”译成密码是shxc.故选:B.二、填空题(本题共8小题,每题2分,共16分)11.【解答】解:北大附中运动场跑道离底面的高度为3米,记为+3米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为﹣12米.故答案为:﹣12.12.【解答】解:﹣1=﹣的倒数为:﹣;绝对值等于10的数是:10.故答案为:﹣,±10.13.【解答】解:根据题意得,长方形的宽为(a+4)﹣(a+1)=3,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=(4a+16)cm.故答案为(4a+16).14.【解答】解:∵3xy2﹣4x2y2z+12中,﹣4x2y2z次数为5,∴该多项式为五次三项式.故答案为:五;三.15.【解答】解:∵单项式﹣x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣x2y a﹣2x b y5=﹣x2y5﹣2x2y5=﹣x2y5.故答案是:﹣x2y5.16.【解答】解:设该点表示的数为x,根据题意得:|﹣3﹣x|=4,解得:x=﹣7或x=1.故答案为:﹣7或1.17.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.18.【解答】解:当x=3时,(1⊕x)•x﹣(4⊕x)=1×3﹣32=3﹣9=﹣6.故答案为:﹣6.三、解答题(本大题共8个小题,共54分)19.【解答】解:(1)原式=81×××=1;(2)原式=﹣1.5﹣4.3+1.4+3.6+5.2=﹣5.8+5+5.2=﹣5.8+10.2=4.4;(3)原式=﹣9×﹣6﹣4﹣9=﹣1﹣6﹣4﹣9=﹣20;(4)原式=16﹣[9+(1﹣32×)×]=16﹣9﹣(﹣23)×=.20.【解答】解:(1)移项得:﹣3x﹣2x=﹣1﹣5,合并同类项得:﹣5x=﹣6,系数化为1得:x=,(2)去括号得:4x﹣15+3x=6,移项得:4x+3x=6+15,合并同类项得:7x=21,系数化为1得:x=3.21.【解答】解:(1)原式=6x2y﹣xy﹣7xy2;(2)原式=﹣6ab2﹣a2b﹣2a2b+6ab2=﹣3a2b;(3)∵A=x2﹣3x﹣1,B=x2﹣2x+1,∴2A﹣3B=2x2﹣6x﹣2﹣3x2+6x﹣3=﹣x2﹣5,当x=﹣2时,原式=﹣4﹣5=﹣9;(4)∵a2+b2=6,ab=﹣2,∴原式=4a2+3ab﹣b2﹣7a2+5ab﹣2b2=﹣3(a2+b2)+8ab=﹣18﹣16=﹣34.22.【解答】解:根据ab<0,>0,可知a,b异号,a,c同号.(1)∵|a|=﹣a,∴a<0,∴b>0,c<0,∵|c|>|b|>|a|,所以A、B、C在数轴上的标示如下图:(2)原式=﹣a+b﹣(﹣b﹣c)+(﹣c﹣a)=﹣a+b+b+c﹣c﹣a=2b﹣2a.23.【解答】解:(1)图②:(﹣60)÷(﹣12)=5,图③:(﹣2)×(﹣5)×17=170,(﹣2)+(﹣5)+17=10,170÷10=17.图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60(﹣2)×(﹣5)×17=170三个角上三个数的和1+(﹣1)+2=2(﹣3)+(﹣4)+(﹣5)=﹣12(﹣2)+(﹣5)+17=10积与和的商﹣2÷2=﹣1,(﹣60)÷(﹣12)=5,170÷10=17(2)图④:5×(﹣8)×(﹣9)=360,5+(﹣8)+(﹣9)=﹣12,x=360÷(﹣12)×2=﹣60,图⑤:1×3×(﹣6)=﹣18,1+3+(﹣6)=﹣2,y=﹣18÷(﹣2)×2=18.24.【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;(2)P点位置如图1所示;(3)如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2).25.【解答】解:(1)两数进行*运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,特别地,0和任何数进行*运算,或任何数和0进行☆运算,等于这个数的绝对值,故答案为:同号两数运算取正号,再把绝对值相加;异号两数运算取负号,再把绝对值相加;等于这个数的绝对值;(2)(+11)*[0*(﹣12)]=(+11)*(+12)=23,故答案为:=23;(3)∵a*b=0,∴0*0=0,∴a=b=0.26.【解答】解:(1)V(A3)=|3﹣(﹣5)|+|(﹣5)﹣(﹣2)|=8+3=11,(2)∵数列A5:x1,x2,x3,x k,x5中5个数均为非负数,∴x1≥|x1﹣x2|,x2≥|x2﹣x3|,x3≥|x3﹣x4|,x4≥|x4﹣x5|,x5≥0,∴0≤|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|≤x1+x2+x3+x4+x5,∴0≤V(A5)≤1009∴最大值为100,最小0.(3)V(A4)=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|=|3﹣x2|+|x2﹣x3|+|x3﹣5|=4,①当x2=2,x3=3时,V(A4)=|3﹣2|+|2﹣3|+|3﹣5|=4,②当x2=4,x3=3时,V(A4)=|3﹣4|+|4﹣3|+|3﹣5|=4,11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 若气温为零上10℃记作+10℃,则-3℃表示气温为( ) A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃2. 13-的绝对值是( ) A. 3B. 3-C.13D. 13-3. 一种面粉的质量标识为“20±0.25千克”,则下列面粉中合格的是( ) A. 19.70千克B. 20.30千克C. 19.80千克D. 20.51千克4. 我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A. -5℃B. 5℃C. 10℃D. 15℃5. 据统计,2014年的“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为( ) A. 4.73×108B. 4.73×109C. 4.73×1010D. 4.73×10116. 若|m -3|+(n +2) 2=0,则m +2n 的值为( ). A. -4B. - 1C. 0D. 47. 如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A. 传B. 统C. 文D. 化8. A 为数轴上一点,一只蚂蚁从A 点出发,爬了4个单位长度到了原点,则点A 表示的数是( ) A. 4B. 4-C. 8或8-D. 4或4-9. 在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是( ) A. 加号B. 减号C. 乘号D. 除号10. 下列各式中,正确的是()A. ﹣(2x+5)=2x+5B.﹣12(4x﹣2)=﹣2x+2C ﹣a+b=﹣(a﹣b) D. 2﹣3x=(3x+2)11. 如图,是由几个相同的大小的正方体搭成的几何体从不同方向看到的形状图,该几何体最多是用()个小正方体搭成的.A. 3B. 4C. 5D. 612. 下列各组数据中,结果相等的是()A. -12与(-1)2 B. -22与(-2)2 C. -|-2|与-(-2) D. (-3)3与-33 13. 希望工程义演出售两种票,成人票每张10元,儿童票每张6元,共卖出1000张票,如果成人票卖了x张,出售儿童票共收入的钱数为()A. (1000-x)元B. 6(1000-x)元C. 6x元D. 10(1000-x)元14. 定义新运算:a⊕b=ab﹣a,例如:3⊕2=3×2﹣3=3,则(﹣3)⊕4=()A. ﹣9B. 12C. ﹣15D. 415. 若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A. a<bB. ﹣a<bC. |a|<|b|D. ﹣a>﹣b16. 下列说法正确的是()个a、最大的负整数是-1 ;b、绝对值等于本身的数是正数;c、有理数分为正有理数、负有理数和零;d、数轴上表示-a的点一定在原点左边;e、在数轴上7与9之间的有理数是8.A. 2B. 3C. 4D. 5二、填空题(共三个小题,共10分)17. 若4a2b2n+1与a m b3是同类项,则m+n=_______.18. 如图,按照所示的顺序计算,规定第一次输入的数是10,如果输出的结果不大于100,那么把结果作为输入的数在进行第二次输入,直到符合要求为止.那么当第______次输入后,输出的数符合要求.19. 如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,…依此规律,第n 个图案有 ____________个三角形(用含n 的代数式表示);三、解答题20. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21. 计算:(1)-28-(-19)+(-24); (2)157()(12)2612-+-⨯-; (3)4211[2(3)](7)6--⨯--÷-. 22. 化简:(1)化简:-2a+(3a-1)-(a-5).(2)先化简,再求值:已知x 2-(2x-4y )+2(x 2-y ),其中x=-1,y=12. 23. 在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图所示,设点A ,B ,C 所对应数的和是p.(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO=28,求p. 24. 如图,四边形ABCD 和ECGF 都是正方形 (1)写出表示阴影部分面积代数式;(2)求a=4时,阴影部分的面积.25. 某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表: 与标准质量的差值(单位:克) −6 −2 0 1 3 4袋数143 4 5 3(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5g ,求该食品的抽样检测的合格率. 26. 小明在研究数学问题时发现一个有趣的现象:(1)请你用不同三位数(个位数字不能为0)再试试,写出你发现了什么有趣的现象. (2)用你所学过的知识解释其中的道理.答案与解析一、选择题1. 若气温为零上10℃记作+10℃,则-3℃表示气温为( ) A. 零上3℃ B. 零下3℃C. 零上7℃D. 零下7℃【答案】B 【解析】根据用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,故若气温为零上10℃记作+10℃,则−3℃表示气温为零下3℃. 故选B.2. 13-的绝对值是( ) A. 3 B. 3-C.13D. 13-【答案】C 【解析】 【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决. 【详解】在数轴上,点13-到原点的距离是13, 所以,13-的绝对值是13, 故选C .【点睛】错因分析 容易题,失分原因:未掌握绝对值的概念.3. 一种面粉的质量标识为“20±0.25千克”,则下列面粉中合格的是( ) A. 19.70千克 B. 20.30千克C. 19.80千克D. 20.51千克【答案】C 【解析】由20-0.25=19.75,20+0.25=20.25,∴面粉合格的范围是19.75千克~20.25千克,只有19.80在此范围内.故选C.点睛:此题需明确题中“±”的实际意义:+表示多,-表示少.4. 我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为A. -5℃B. 5℃C. 10℃D. 15℃【答案】D【解析】【详解】解:5−(−10) =5+10=15℃.故选D.5. 据统计,2014年的“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为()A. 4.73×108B. 4.73×109C. 4.73×1010D. 4.73×1011【答案】B【解析】47.3亿=4730000000=4.73×109,故选B.6. 若|m-3|+(n+2)2=0,则m+2n的值为().A. -4B. - 1C. 0D. 4【答案】B【解析】试题分析:∵|m-3|+(n+2)2=0,∴m-3=0且n+2=0,∴m=3,n=-2.则m+2n=3+2×(-2)=-1.故选B.考点:1.偶次方;2.绝对值.7. 如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A. 传B. 统C. 文D. 化【答案】C 【解析】试题分析:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选C . 考点:专题:正方体相对两个面上的文字.8. A 为数轴上一点,一只蚂蚁从A 点出发,爬了4个单位长度到了原点,则点A 表示的数是( ) A. 4 B. 4-C. 8或8-D. 4或4-【答案】D 【解析】 【分析】根据数轴的定义即可得. 【详解】设点A 表示的数为a 由数轴的定义,分以下两种情况: (1)点A 在原点的左侧 则04a -=,解得4a =- (2)点A 在原点的右侧 则04a -=,解得4a = 综上,点A 表示的数为4或4- 故选:D .【点睛】本题考查了数轴的定义,依据题意,正确分两种情况是解题关键. 9. 在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是( )A. 加号B. 减号C. 乘号D. 除号【答案】A【解析】(﹣2)+(﹣3)=﹣5;(﹣2)﹣(﹣3)=﹣2+3=1;(﹣2)×(﹣3)=6;(﹣2)÷(﹣3)=23,则在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是加号, 故选A.10. 下列各式中,正确的是()A. ﹣(2x+5)=2x+5B. ﹣12(4x﹣2)=﹣2x+2C. ﹣a+b=﹣(a﹣b)D. 2﹣3x=(3x+2)【答案】C【解析】A、原式=﹣2x﹣5,故A选项错误;B、原式=﹣2x+1,故B选项错误;C、原式=﹣(a﹣b),故C选项正确;D、原式=﹣(3x﹣2),故D选项错误,故选C.11. 如图,是由几个相同的大小的正方体搭成的几何体从不同方向看到的形状图,该几何体最多是用()个小正方体搭成的.A. 3B. 4C. 5D. 6【答案】B【解析】由三视图可得,需要的小正方体的数目:1+2+1=4.故答案为B.12. 下列各组数据中,结果相等的是()A. -12与(-1)2B. -22与(-2)2C. -|-2|与-(-2)D. (-3)3与-33【答案】D【解析】A.−12=−1,(−1)2=1,所以选项结果不相等;B. -22=-4,(-2)2=4,所以选项结果不相等;C. −|−2|=−2,−(−2)=2,所以选项结果不相等;D. (−3)3=−27,−33=−27,所以选项结果相等.故选D.13. 希望工程义演出售两种票,成人票每张10元,儿童票每张6元,共卖出1000张票,如果成人票卖了x张,出售儿童票共收入的钱数为()A. (1000-x)元 B. 6(1000-x)元 C. 6x元 D. 10(1000-x)元【答案】B【解析】成人票卖了x张,那么可知儿童票卖出(1000-x)张,因为每张儿童票价格是6元,所以儿童票共卖得的钱数是:6(1000-x)元.故选B.14. 定义新运算:a⊕b=ab﹣a,例如:3⊕2=3×2﹣3=3,则(﹣3)⊕4=()A. ﹣9B. 12C. ﹣15D. 4【答案】A【解析】根据题中的新定义得:(﹣3)⊕4=﹣12+3=﹣9, 故选 A.15. 若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A. a<bB. ﹣a<bC. |a|<|b|D. ﹣a>﹣b【答案】C【解析】根据数轴的特征∵b<a,∴选项A不正确;∵b<a<0,∴−a>0,∴−a>b,∴选项B不正确;∵b<a<0,∴|a|<|b|,∴选项C正确;∵b<a<0,∴−b>−a>0,∴选项D不正确.故选C.16. 下列说法正确的是()个a、最大的负整数是-1 ;b、绝对值等于本身的数是正数;c、有理数分为正有理数、负有理数和零;d、数轴上表示-a的点一定在原点左边;e、在数轴上7与9之间的有理数是8.A 2 B. 3 C. 4 D. 5【答案】A【解析】①最大的负整数是−1,故①正确;②绝对值等于本身的数是非负数,故②错误;③有理数分为正有理数、负有理数和零,故③正确;④数轴上表示−a的点可能在原点的左边、右边,故④错误;⑤在数轴上7与9之间的有理数有无数个,故⑤错误;故选A.点睛:本题考查了有理数,有理数是有限小数或无限不循环小数,注意绝对值等于它本身的数是非负数,绝对值等于它的相反数的数是非负数.二、填空题(共三个小题,共10分)17. 若4a2b2n+1与a m b3是同类项,则m+n=_______.【答案】3【解析】∵4a2b2n+1与a m b3是同类项,∴2213mn=⎧⎨+=⎩,∴21mn=⎧⎨=⎩,∴m+n=3,故答案为3.18. 如图,按照所示的顺序计算,规定第一次输入的数是10,如果输出的结果不大于100,那么把结果作为输入的数在进行第二次输入,直到符合要求为止.那么当第______次输入后,输出的数符合要求.【答案】4【解析】10×|-12|÷[-(−12)2]=20,20<100,故20×|-12|÷[-(−12)2]=40,40<100,故40×|-12|÷[-(−12)2]=80,80<100,故80×|-12|÷[-(−12)2]=160,∵160>100,停止.∴输出的次数为4.故答案为4.点睛:此题主要考查了有理数的混合运算,要熟练掌握,注意有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19. 如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,…依此规律,第n个图案有____________个三角形(用含n的代数式表示);【答案】(3n+1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形之间的运算规律,利用规律解决问题.三、解答题20. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【解析】【分析】由简单几何体的三视图的定义即可画出.【详解】从正面看:从左面看从上面看:【点睛】此题主要考查简单几何体的三视图,解题的关键是从各方向直接观察即可画出.21. 计算:(1)-28-(-19)+(-24); (2)157()(12)2612-+-⨯-; (3)4211[2(3)](7)6--⨯--÷-. 【答案】(1)-3;(2)3;(3) -76 【解析】试题分析:(1)原式利用减法法则变形,计算即可得出答案;(2)根据乘法分配律可以解答本题;(34)根据幂的乘方、有理数的乘除法和减法可以解答本题.试题解析:(1)原式=-28+19-24=-33;(2)原式=()()()1571212122612⎛⎫-⨯-+-⨯--⨯ ⎪⎝⎭=3; (3)原式=()11717676⎛⎫--⨯-⨯-=- ⎪⎝⎭. 22. 化简: (1)化简:-2a+(3a-1)-(a-5).(2)先化简,再求值:已知x 2-(2x-4y )+2(x 2-y ),其中x=-1,y=12. 【答案】(1)4;(2) x 2+2y 2.【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项,最后把x 、y 的值代入计算即可.试题解析:(1)原式=-2a+3a-1-a+5=4;(2)原式=x 2-2x+4y+2x 2-2y= x 2+2y,当x=-1,y=12时, 原式=()211222-+⨯=. 23. 在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图所示,设点A ,B ,C 所对应数的和是p.(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=28,求p.【答案】(1)C 表示1,A 表示−2,-1;A 表示−3,B 表示−1,-4;(2)−88.【解析】【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则C 表示1,A 表示−2,∴p=1+0−2=−1;若以C为原点,则A表示−3,B表示−1,∴p=−3−1+0=−4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示−28,B表示−29,A表示−31, ∴p=−31−29−28=−88.【点睛】此题考查数轴,两点间的距离,解题关键在于结合数轴进行计算.24. 如图,四边形ABCD和ECGF都是正方形(1)写出表示阴影部分面积的代数式;(2)求a=4时,阴影部分的面积.【答案】(1)22a−3a+18;(2)14【解析】【分析】(1)根据S阴影=S正方形ABCD+S正方形CEFG-S△ABD-S△BGF列式即可;(2)把a=4代入(1)中化简的结果计算即可. 【详解】解:(1)S阴影=S正方形ABCD+S正方形CEFG-S△ABD-S△BGF=a2+()226362a a--+2363182a a=+--=23182a a-+;(2)当a=4时, 原式=1634182-⨯+=14. 【点睛】本题考查了列代数式,求代数式的值及割补法求面积,根据S阴影=S正方形ABCD+S正方形CEFG-S△ABD-S△BGF 列出代数式是解答本题的关键.25. 某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) −6−20 1 3 4袋数 1 4 3 4 5 3(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5g,求该食品的抽样检测的合格率.【答案】(1)9017克;(2)95%;【解析】【分析】(1)总质量=标准质量×抽取的袋数+超过(或短缺的)质量,把相关数值代入计算即可;(2)找到所给数值中,绝对值小于或等于5的食品的袋数占总袋数的多少即可.【详解】解:(1)总质量为=450×20+(﹣6)+(﹣2)×4+1×4+3×5+4×3=9000﹣6﹣8+4+15+12=9017(克);(2)合格的有19袋,∴食品的合格率为1920=95%.【点睛】考查有理数的相关计算;掌握正数与负数相对于基数的意义是解决本题的关键;根据绝对值的意义得到合格产品的数量是解决本题的易错点.26. 小明在研究数学问题时发现一个有趣的现象:(1)请你用不同的三位数(个位数字不能为0)再试试,写出你发现了什么有趣的现象.(2)用你所学过的知识解释其中的道理.【答案】(1)结果一定等于1089;(2)理由见解析.【解析】试题分析:(1)验证即可;(2)我们可设百位数字为a,十位数字为b,则个位数字为a-2,由此列出第一步与第二步的代数式,第三步根据整式的加减法的计算法则可得结果为198,由此即可解答.解:(1)例如给出的是614 则614-416=198,198+891=1089.(2)设百位数为a,十位数为b,个位数是a-2,则第一步100a+100b+a-2,第二步100(a-2)+10b+a=101a+10b-200,第三步两数相减一定得198,第四步交换差的百位数字与个位数字,的891,最后求和,所以结果一定等于1089.点睛:本题考查了整式加减的运用,认真读题,理解题意是关键.。

相关文档
最新文档